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SUMMARY 
 

In the present paper the dynamic behavior of different types of submerged structures like vertical 
shafts of morning glory spillways, submerged tower intake, and oil tanks is studied.  Then, the 
limitations of various approximated formula are demonstrated.   

Due to approximation of satisfying radiation boundary conditions (e.g. Sommerfeld), solutions based on 
domain wise discretization are not accurate. Among the boundary wise discretization methods, the Trefftz 
method is adopted in this research. Assuming the fluid as linear compressible non-viscous material and 
considering the effect of surface waves, the dynamic behavior of submerged rigid structure subjected to 
ground vibration is investigated. The effect of the shape of embedded structure on the hydrodynamic 
pressure is presented and discussed. The proposed method is verified for a semi-circular cross section 
with the available analytical solution. 

 
INTRODUCTION 

 
Although a number of different methods are available for analysis of non-submerged structures [1, 2, 3, 
4], however, there are few findings for submerged structures. From the practical point of view, there are 
some structures that are submerged like the vertical shaft of morning glory spillways, submerged tower 
intake, oil tanks which are installed on seabed and subsurface topographies in seas. 
Due to the difficulty of satisfying radiating boundary conditions (Sommerfeld), solutions based on domain 
wise discretizations, for example the finite element method (FEM) and finite difference method are not 
accurate methods as they need a lot of elements which makes the calculation time consuming. 
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By reducing the dimensions by one and satisfying the radiating boundary conditions, the solutions based 
on boundary wise discretizations are efficient and more accurate for fluid-structure interaction. Among 
boundary element methods, the Trefftz method [5] is utilized for analysis of the submerged structures. The 
main reason to select this method is due to non-singularity behavior of weight functions satisfying both 
the radiation condition and the governing differential equation making the method rather simple.  This is 
in contrast to the conventional boundary element method (BEM) that uses fundamental solutions or the 
Green function which has singular behavior, making it a rather complicated method. Probably, for this 
reason, the conventional BEM is not popular for such cases. 
 
Assuming water as a linear compressible non-viscous fluid and the structure as a rigid solid, and 
considering the effect of surface waves due to ground excitation and also the complicated shape of the 
structure, the well-known Trefftz method can not be used directly without any modification. Therefore, 
the domain is divided into interior and exterior domains with a virtual boundary. The boundaries between 
fluid and structure and the rigid floor are satisfied by the Trefftz method in the interior domain. For 
exterior domain, the Trefftz method is used to satisfy the radiation conditions and the effect of water 
surface waves. 
 
The two solutions based on the exterior and interior domains with a virtual boundary meet the 
compatibility of velocity and equilibrium of pressure conditions minimizing the error in the sense of least 
square method. 
 
To obtain the final results, a linear simultaneous system of equations should be solved. The coefficients of 
equations are integrals around discretized boundaries of structures, water surfaces, rigid bases and virtual 
boundaries between the interior and the exterior of the structures. The analytical solution of submerged 
rigid structures under harmonic base excitation is obtained for the semi-circular cross section case. The 
solution is used as a benchmark to verify the proposed method.  Finally, a parametric study is carried out 
to evaluate the influence of a submerged structure’s shape on the hydrodynamic pressures due to base 
excitation. 
 

THEORETICAL FORMULATION 
 

Considering a submerged structure shown in Figure 1 in fluid domain, its response is calculated under 
base excitation. For simplicity, it is assumed that the shape of structure and base excitation in the y 
direction is uniform. Hence its response may be obtained in 2D modeling.  The findings are believed to 
have quite wide ranging validity in the context of 3D modeling for case of non-uniform cross section or 
base excitation. 
 
The following assumptions are used in the case of fluid domain: 
 
• The fluid is linear and non-viscous; 
• The flow of fluid is irrotational; 
• The base of fluid is assumed as rigid base. 

 



Fig. 1 - 3D description of submerged axisymmetric cylindrical structure 
 

 
The hydro dynamical pressure satisfy the following equation in time domain 
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where 
2∇ : Laplace operator 

( )t,p ξ : Hydrodynamic pressure 
c : Sound velocity in fluid  
ξ : Coordination of a general point in fluid domain 
 
The above equation can be rewritten in terms of frequency domain that is expressed as Helmholtz 
equation. 
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That ( )ωξ ,p  represents the complex hydrodynamic pressure in frequency domain and k= ω /c, where ω 
is one frequency component of base excitation. 
 
The boundary conditions which should be satisfied simultaneously with Equation 2 are: 
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υΓΓΓΓΓ and,,, 4321 are defined in Figure 2. 

 

 



 

Fig. 2 - The definition of different boundary conditions 
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In the absence of surface wave, the above equation takes the form:  
 

( ) 0, =ξωp                            on 4Γ  (6) 

where n  is normal to structure in the outward direction of structure, ( )ωξ ,nu&&  is normal acceleration 

component and wρ  represents the water density and g  is the gravitation acceleration. In the exterior 

domain, the solution should satisfy radiation boundary condition. 
 
As shown in Figure 2, the polar coordinate system is chosen. Thus, the Equation 2 can be expressed in 
interior (in) domain: 
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By satisfying the boundary condition on 2Γ  and 3Γ  and excitation condition as antisymmetric case, the 

solution yields to: 
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where ( )krJj jj αα ,12 −=  and ( )kry jα  are the first and second kind of Bessel function respectively, 

with  jα  as the order. 

 
In exterior domain (out), the Equation 2 is written in Cartesian coordinate system that is also illustrated in 
Figure 2: 
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By satisfying radiation boundary conditions, 2Γ , 3Γ and 4Γ , the solution of the above equation is given by 

the equation: 
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where Hnn 2)12( πλ −= , 22
nn k−λ=µ  and H  is the depth of water. To find out the unknown 

coefficients ( )nnn CandB,A , the compatibility of velocity components and equilibrium conditions are 

satisfied on the boundary between interior and exterior domains ( υΓ in Figure 2) in the sense of least 

square method. 
 
If 321 and, εεε  are the errors pertinent to equilibrium and compatibility conditions in the least square 

method: 
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By minimizing the errors in terms of unknown coefficients, the following equations are derived: 
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If L is considered to 2m, then the total number of equations becomes 3m which the unknown coefficients 
will be 4m. By satisfying the boundary condition on 1Γ  , the m additional equations can be obtained as: 
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where 
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The prime indicates the derivation with regard to its argument. θLandLr  are cosine of normal direction 

with respect to r and θ  coordinate system respectively.  A two-node curve element is used to numerically 
calculate the integrals which appear in Equations 17, 18 and 19 for the arbitrary cross-section.  This 
element is depicted in Figure 3. 
 

 
 

Fig. 3 - The geometrical description of a two-node curve element 
 
The r and θ  of each node on the element are given by 
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where ( ) ( ) ( ) ( )2θ,2
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N +=−= are the coordinates of node 1 and 2, 

respectively.   
 
The normal component of ground acceleration is expressed as: 
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where ( )ωgu&&  is the ground acceleration in frequency domain. The values of rL  and θL at each point of 

the element are: 
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VERIFICATION OF THE FORMULATION 
 

Considering the cross section of structure as semi-circular shown in Figure 4, the problem can be solved 
analytically. Figure 5 illustrates the vertical distribution of hydrodynamic pressure for r0/H=0.1 and 
ωH/c=0.1. 
 

 
Fig. 4 - The geometrical description of a semi-circular structure 

 
Fig. 5 - The vertical distribution of a semi-circular structure  

for r0/H=0.1 and ωH/c=0.1 
 

It can be seen that the results appear to be consistent with the exact solution when 5 elements are used. 
The high rate of convergency is observed by comparing the results of 3 elements modeling with 5 element 
modeling.  
 

PARAMETRIC STUDY 
 

The purpose of the parametric study is to examine the influence of different parameters on the behavior of 
submerged structures in the case of base motion.  Three factors are investigated including the r0/H, 
dimensionless frequency (ωH/c) and different cross section types on hydrodynamic pressure.  
 
 
 
Effect of r0/H 



Figure 6 shows the effect of r0/H on the vertical distribution of hydrodynamic pressure (HP) of semi-
circular cross section structure for different r0/H in the case of ωH/c=0.1.   
 

 

Fig. 6 - The vertical distribution of HP for ωH/c=0.1 for different r0/H 
 

It is obvious that by increasing r0/H, the magnitude of hydrodynamic pressure also increases.  However, 
when ωH/c< π/2, where π/2 is dimensionless cutoff frequency, there is no imaginary part of HP.  This fact 
is shown in Figures 7a and 7b. 
 

Fig. 7a - The real part of vertical distribution of HP for r0/H=0.1 and different ωH/c 
 

 

 



 
Fig. 7b - The imaginary part of vertical distribution of HP for r0/H=0.1 for different ωH/c 

 
 
Effect of dimensionless frequency 
To take into account of the dimensionless frequency ωH/c on hydrodynamic pressure of semi-circular 
cross-section, different values of r0/H are selected.  The real and the imaginary parts of vertical 
distribution of hydrodynamic pressure are presented in Figures 8a and 8b, respectively.  The results show 
that the resonant frequency is equal to π/2.  From these figures, it is noted that at the lower rate of ωH/c, 
the difference between the corresponding hydrodynamic pressures is high; however, with the increase of 
ωH/c, the variation becomes negligible. 
 
 

 
Fig 8a - The real part of vertical distribution of HP in terms of  

dimensionless frequency for different r0/H 
 



 
Fig 8b - The imaginary part of vertical distribution of HP in terms of  

dimensionless frequency for different r0/H 
 

Effect of different cross-section shape on HP 
In order to assess the effect of cross-section shape on hydrodynamic pressure, the semi-elliptic submerged 
structure is considered as shown in Figure 9.    

 
Fig. 9 - Semi-elliptic submerged structure 

 
Figure 10a presents the isopressure for x0/H=0.15, z0/H=0.1and ωH/c=0.1for real part of hydrodynamic 
pressure of elliptic cross-section.  The obtained results can be compared with the results of semi-circular 
cross section as plotted in Figure 10b. 
 

 
Fig. 10a - The real part of vertical distribution HP for semi-elliptic cross section  

with x0/H=0.15, z0/H=0.1  and ωH/c=0.1 
 



 

 
Fig. 10b - The vertical distribution HP for semi-circular cross section 

 with r0/H=0.1 and ωH/c=0.1 
 

CONCLUSION 
 

On the basis of the proposed method through this study, the following points can be drawn: 
 
(a) The performance of this approach has been assessed by comparison with results obtained from 

analytical solution.  It is concluded that for the practical problem in hand, the approach is adequate 
for the range of different types of submerged structures under consideration; 

(b) It has been shown that the Trefftz method produces an increase of the convergence in the analysis 
of dynamic behavior of submerged structures; 

(c) It is found that the resonant dimensionless frequency namely, cutoff frequency for different ratios of 
r0 /H is the same and equal to π/2; 

(d) For semi-elliptic cross-section, similar to semi-circular cross-section, the maximum pressure occurs 
in the middle of fluid and structure boundaries in both cases. 
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