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SUMMARY 
 
The critical structural response caused by near-fault ground motions is often influenced by the presence of 
a velocity pulse in the fault-normal component. This paper describes a procedure for simulating fault-
normal near-fault ground motions for a specified seismic environment (i.e., the magnitude, distance and 
faulting mechanism of an earthquake and the soil conditions at the site). The proposed ground motion 
velocity model is defined by a number of parameters that, for a specified near-fault record, are determined 
by a nonlinear regression. This paper derives predictive relationships for these parameters based on the 
seismic environment of a site using results obtained from a series of regression analyses performed on an 
ensemble of recorded fault-normal near-fault ground motions. The ability and limitations of the proposed 
simulation procedure for structural analysis and design are evaluated by comparing the displacement 
demands in linear and nonlinear single-degree-of-freedom systems caused by the ensemble of recorded 
ground motions and their simulations. The results of these analyses indicate that, on average, the 
simulated and recorded responses agree at periods greater than 1.5s; however, at shorter periods, 
discrepancies as large as 20% are observed.  
 

INTRODUCTION 
 
For structures located within 15 km of a rupturing fault, damage is often incurred during one or two cycles 
of severe inelastic deformations that coincide with a large amplitude velocity pulse in the fault-normal 
component of the ground motion. Because such ground motions impose severe demands on structures, 
there is an increasing demand from the professional practice for accelerograms that can be used as input to 
nonlinear time-history analyses of structures located in near-fault environments. Unfortunately, only a 
small number of ground motions have been recorded in such environments, so there is a need for 
procedures that can be used to generate simulated near-fault ground motions to augment the historical 
database.  
 
In this paper, we describe an analytical model for the fault-normal velocity pulse that is similar to models 
previously proposed by Menun [1] and Mavroeidis [2]. While it has been demonstrated that such models 
can accurately predict the response of structures whose fundamental period of vibration is greater than or 
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equal to the period of the velocity pulse, for structures that have shorter natural periods, these models tend 
to underestimate the displacement demands due to their inability to reproduce the high frequency content 
of the recorded ground motions. To address this problem, the ground motion model proposed in this paper 
includes a stochastic component to represent the high frequency content. 
  
The proposed simulation procedure utilizes several parameters to control the temporal and frequency 
domain characteristics of the resulting ground motion. Empirical relationships that can be used to predict 
appropriate values for these model parameters for a given seismic environment (the magnitude, distance 
and faulting mechanism of the earthquake and the site soil conditions) are derived from regression 
analyses performed on an ensemble of recorded fault-normal near-fault ground motions. To specify the 
high frequency content of the simulated records, readily available attenuation relationships for response 
spectrum ordinates and Arias duration are used to calibrate the parameters of the stochastic component of 
the model.  
 
To assess the suitability of the proposed simulation procedure, a series of nonlinear time-history analyses 
are performed on linear and nonlinear single-degree-of-freedom systems using the ensemble of recorded 
ground motions and an ensemble of simulated ground motions. In general, it is found that the ensemble 
means of the simulated and recorded responses agree at periods T>1.5s; however, discrepancies as large 
as 20% are observed for T<1.5s. 
 

GROUND MOTION MODEL AND SIMULATION PROCEDURE 
 
Velocity pulse model 
A distinct large-amplitude velocity pulse is often seen in the fault-normal component of the ground motion 
recorded near a rupturing fault. Seismologists have determined that this phenomenon is caused by the 
superposition of seismic shear waves in the direction of the rupture propagation when the rupture velocity 
is approximately the same as the shear wave velocity (e.g., Somerville [3]). Plotted in Figure 1 are 
synthetic ground motions generated by the Haskell source model [4] assuming forward directivity site 
conditions. The velocity pulses that are apparent in these synthetic ground motions are idealized in this 
paper as 
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where Vp and Tp characterize the amplitude and period of the velocity pulse, respectively, t0 specifies the 
time at which the pulse starts, α is shape parameter that defines the growth and decay of the velocity pulse 
and tp = t0 + 0.75Tp is the time at which the peak velocity occurs. Using the iterative procedure described 
by Menun [1], the parameters of the ground velocity model defined by (1) are calibrated to fit the synthetic 
ground motions plotted in Figure 1. By superimposing the resulting velocity traces obtained from (1) over 
their Haskell counterparts in Figure 1, we can see that the proposed ground velocity model can capture the 
salient features of the seismological source model.   

 
Table 1a.  Recorded ground motions on rock and fitted ground motion model parameters. 

Earthquake Mw Station 

 

R 

(km) 

PGV 

(cm/s) 

Vp 

(cm/s) 

Tp 

(s) 

α 
 

N. Palm Springs 6.0 North Palm Springs 8.2 73.5 58.9 1.26 -2.28 

N. Palm Springs 6.0 Desert Hot Springs 8.0 26.9 -22.0 1.38 2.05 

N. Palm Springs 6.0 Whitewater Trout Farm 7.3 35.8 -27.3 0.63 0.63 

Parkfield 6.1 Temblor pre - 1969 9.9 22.4 -12.9 0.39 0.00 

Morgan Hill 6.2 Anderson Dam 2.6 27.3 -27.3 0.49 -5.96 

Morgan Hill 6.2 Gilroy Array # 6 11.8 36.5 -32.0 1.04 1.70 

Morgan Hill 6.2 Coyote Lake Dam 0.1 67.1 -46.8 0.76 -0.93 

San Fernando 6.6 Pacoima dam 2.8 114.3 -103.2 1.38 1.95 

Superstition Hills 6.7 Parachute Test site 0.7 106.8 105.9 2.12 1.29 

Northridge 6.7 Rinaldi Receiving 7.1 173.1 165.0 1.16 3.13 

Northridge 6.7 Newhall-W.Pico Canyon Rd. 7.1 87.7 101.5 2.18 -1.48 

Northridge 6.7 Pacoima Dam Downstream 8.0 49.6 -46.1 0.48 6.58 

Northridge 6.7 Pacoima Kagel Canyon 8.2 56.2 -50.1 0.72 3.09 

Northridge 6.7 LA Dam 2.6 75.1 76.3 1.42 3.16 

Nahanni, Canada 6.8 Site 1 6.0 45.8 17.4 3.25 0.78 

Nahanni, Canada 6.8 Site 2 8.0 23.9 21.4 1.20 -8.75 

Loma Prieta 6.9 Gilroy Array #1 11.2 38.5 -36.9 4.24  -11.0 

Loma Prieta 6.9 Gilroy-Gavilan Coll. 11.6 30.8 20.6 1.77 -2.56 

Loma Prieta 6.9 Saratoga-Aloha Ave. 13.0 55.6 -50.6 2.25 -1.77 

Loma Prieta 6.9 Saratoga-W Valley Coll. 13.7 71.3 -70.7 2.16 -4.19 

Loma Prieta 6.9 Los Gatos 3.5 173.0 109.2 3.21 0.50 

Loma Prieta 6.9 Lexington Dam 6.3 178.8 156.2 1.81 -1.93 

Kobe, Japan 6.9 KJMA 0.6 95.7 -78.3 0.86 0.00 

Kobe, Japan 6.9 Kobe Station 3.4 160.3 -118.1 0.90 0.00 

Landers 7.3 Lucerne Valley 1.1 136.0 -68.2 5.54 -0.14 

Kocaeli, Turkey 7.4 Gebze 17.0 50.3 -41.6 6.47 0.53 
 
 



The corresponding idealized ground acceleration, which is found by differentiating (1), can be written as 
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We remark that the phase angle ϕ has a very subtle effect on the time, tp
(a),  at which the peak acceleration 

occurs; thus, tp
(a)

  is  not the same as tp but it is very close to tp.  

Table 1b.  Recorded ground motions on soil and fitted ground motion model parameters. 

Earthquake Mw Station 

 

R 

(km) 

PGV 

(cm/s) 

Vp 

(cm/s) 

Tp 

(s) 

α 
 

Whittier Narrows 6.0 Bell Gardens – Jaboneria 9.8 19.1 -20.5 0.71 0.71 

Whittier Narrows 6.0 Santa Fe Springs – E Joslin 10.8 23.7 15.5 0.70 -2.71 

Parkfield 6.1 Station 2 (Cholame  #2) 0.1 75.0 -57.0 1.88 -1.68 

Coalinga 6.4 Pleasant Valley P.P.-Bldg 8.5 57.9 -54.3 0.70 -3.04 

Superstition Hills 6.7 El Centro Imp. Co. Cent 13.9 51.9 43.2 2.41 1.25 

Northridge 6.7 Canoga Park -Topanga Can 15.8 53.5 -40.3 2.02 -1.12 

Northridge 6.7 Canyon Cty-W Lost Cany 13.0 53.5 27.2 1.89 0.89 

Northridge 6.7 Jensen Filter Plant 6.2 104.5 69.8 2.83 -0.40 

Northridge 6.7 Newhall – Fire Station 7.1 120.9 -106.8 0.93 3.54 

Northridge 6.7 Sepulveda VA 8.9 65.5 19.1 2.99 0.00 

Northridge 6.7 Sylmar Converter Station 6.2 130.3 -74.6 2.88 0.52 

Northridge 6.7 Sylmar Converter East 6.1 116.5 -60.6 3.05 0.67 

Northridge 6.7 Sylmar Olive View Med FF 6.4 123.1 58.5 2.53 -0.32 

Loma Prieta 6.9 Gilroy-Historic Bldg. 12.7 31.9 -21.0 1.54 -0.78 

Loma Prieta 6.9 Gilroy Array #2 12.7 45.7 -31.7 1.43 0.47 

Loma Prieta 6.9 Gilroy Array #3 14.4 49.3 34.8 1.79 2.20 

Loma Prieta 6.9 Gilroy Array #4 16.1 35.7 20.9 1.37 0.00 

Erizincan 6.9 Erizincan 2.0 120.2 92.6 2.31 1.32 

Kobe, Japan 6.9 Port Island 6.6 100.3 -97.8 2.34 -1.27 

Kobe, Japan 6.9 Takatori Station 4.3 173.8 144.5 2.11 1.02 

Kocaeli, Turkey 7.4 Duzce 12.7 58.8 -56.2 4.59 0.70 

Kocaeli, Turkey 7.4 Yarimca 2.6 69.5 76.9 4.27 0.57 

Chi-Chi, Taiwan 7.6 TCU075 1.5 88.3 88.8 5.01 -0.63 

Chi-Chi, Taiwan 7.6 TCU129 1.2 60.0 40.2 7.41 -0.44 

Chi-Chi, Taiwan 7.6 TCU065 1.0 92.6 96.9 4.73 0.35 

Chi-Chi, Taiwan 7.6 TCU076 2.0 62.6 42.7 4.15 0.75 



Using the iterative procedure mentioned above, the ground velocity model defined by (1) is fit to each 
member of an ensemble of 52 recorded fault-normal near-fault ground velocities listed in Tables 1a and 
1b. The fitted model parameters Vp, Tp, and α for each ground motion are summarized in Tables 1a and 1b 
along with the moment magnitude of the event, Mw, the recorded peak ground velocity, PGV, and the 
closest distance to the fault rupture, R. 
 
To demonstrate typical fault-normal ground velocities generated by the model, four recorded ground 
velocities and their fitted pulse models are plotted in Figure 2. Also shown in this figure are the 
corresponding accelerations obtained by differentiating the velocity records and their pseudo-acceleration 
response spectra. We remark that the ground motions plotted in Figure 2 are representative of the entire 
ensemble of ground motions listed in Tables 1a and 1b. Comparing the response spectra of the records to 
their fitted models, we can see that the model matches the intermediate and long spectral periods well but 
it cannot reproduce the high frequency content of the recorded ground motions. Therefore, to generate 
more realistic near-fault ground motions, it is necessary to introduce high frequency content into the 
model. 



 
High frequency content model 
Once the velocity pulse is found for a given near-fault record, the high frequency content can be readily 
obtained. If we let ag(t) denote the recorded acceleration, then we can define the acceleration associated 
with the high frequency content as  

)()()( tatata pgn −= ,                                                                                                                       (5)  

where ap(t) is defined by (2). As mentioned above, to generate realistic simulations of fault-normal near-
fault ground motions we need a model for an(t) that can be superimposed on the velocity pulse model. It is 
known that the high frequency content of an earthquake ground motion is the result of sudden changes in 
the rupture velocity and slip amplitude. Since these details are unpredictable and stochastic, deterministic 
methods that convolve the source function with either synthetic or empirical Green’s function cannot be 
used to simulate high frequencies. Thus, we adopt the stochastic model  
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to simulate the high frequency content, where ωk, k = 1,2,…,nω is a set of equally spaced frequencies that 
are included in the sinusoidal superposition, ϑk are uniformly distributed random phase angles over [0,2π), 
Bk are coefficients that define the relative strengths of the different frequencies used in the simulation of 
an(t) and An(t) is a modulating function that characterizes the temporal variation in the intensity of the high 
frequency accelerations.  
 
Based on careful examinations of the 52 near-fault ground motions included in this study, we assume  
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which has a form that is identical to (3). Note that in (7), β  and  tn serve the same purposes as α and tp in 
(3). In particular, β  is a shape factor that defines the growth and decay of the high frequency accelerations 
and tn ≈ tn

(a), the time at which the peak high frequency accelerations of a realization occur. The data 
presented in Figure 3a suggests a relatively strong correlation exists between tp

(a) and  tn
(a)

  for the ground 
motions considered in this study. Recall that tp ≈ tp

(a), as indicated by Figure 3b. Consequently, we assume 
tn = tp. Additionally, β is found to be related to the Arias duration, td, between the times at which 5% and 
95% of the Arias intensity of a recorded accelerogram are realized; namely, 

dt

5.2≈β .                                                                                                                                          (8) 

Using the above relationships for tn and β, the modulating functions for the high frequency content of four 

Figure 3a. Correlation between tp
(a) and tn

(a). Figure 3b. Correlation between tp and tp
(a). 
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representative accelerograms from the ensemble of 52 are plotted in Figure 4. It is evident from this figure 
that the modulating functions match the temporal variation of the high frequency accelerations well. We 
remark that Figure 4 indicates that An(t) does not have a pronounced stationary strong motion phase. This 
is in contrast to the modulating functions commonly assumed for far-field ground motions that are usually 
characterized by an initial build up, a relatively long stationary phase, and a gradually decaying tail.  

 
Simulation procedure 
To generate the ensemble of ground motions for a given near-fault environment, we superimpose the 
velocity pulse and high frequency content models described in the previous sections to yield 
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Note that in the proposed model, the velocity pulse is deterministic while the high frequency content is 
treated as a realization of a stochastic process defined by the deterministic modulating function An(t), 
randomly generated phase angles ϑk and frequency coefficients Bk. An iterative procedure that is based on 
the SIMQKE algorithm described by Gasparini [5] is used to find the coefficients Bk. In particular, these 
coefficients are determined such that the mean displacement response spectrum of the ensemble of ground 
motions generated by (9) approximately matches a target displacement response spectrum. A detailed 
description of the procedure used to find Bk can be found in Menun [6]. 
 
Verification 
For each near-fault ground motion listed in Tables 1a and 1b (i = 1,2,…,52), 20 simulated ground 
motions, asij(t) = api(t) + anij(t),  j = 1,2,…,20, were generated using (9), where api(t) is the acceleration 
time history associated with the velocity pulse fitted to the ith recorded ground motion and anij(t) is the jth 
realization of the high frequency accelerations obtained for a random realization of the phase angles ϑk in 
(9). To generate the simulations for the ith ground motion, the shape parameter β used in the definition of 
An(t) was computed using (8) with the Arias duration of the recorded ground motion and the frequency 
coefficients Bk in (9) were calibrated to match the response spectrum of the record. 
 
To assess the suitability of the proposed simulation procedure for structural analyses, we consider the 
response of an SDOF system to the recorded ground motions and their simulations described above. The 
oscillator has initial stiffness k0, yield strength fy, post-yield stiffness k0/10 and damping ratio ζ=0.03. The 



ductility ratio of the system is defined as µ = δmax/δy, where δmax is the maximum absolute displacement of 
the oscillator when it is excited by a ground motion and δy =  fy / k0 is the displacement at which the 
oscillator first yields. For an oscillator that has initial natural period T, let δy,gi(T,µ) denote the required 
yield displacement of the system such that the ductility ratio is µ  when the oscillator is subjected to ith 
recorded ground motion listed in Tables 1a and 1b. Similarly, let δy,sij(T,µ), δy,pi(T,µ) and δy,nij(T,µ) denote 
the required yield displacements when the oscillator is subjected to asij(t), api(t) and anij(t), respectively. A 
plot of δy,gi(T,µ), δy,pi(T,µ), δy,nij(T,µ) or δy,sij(T,µ) as a function of T for a prescribed value of µ is known as 
a constant ductility response spectrum. 
 
We assess the ability of the proposed simulation procedure to reproduce the important characteristics of a 
fault-normal near-fault ground motion by computing the response ratio 
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for each simulated ground motion. It should be apparent that when ψsij(T,µ) = 1 the simulated ground 
motion predicts displacement demands that are equal to those caused by the recorded ground motion that 
the simulation is based upon. Previous studies (Menun [1] and Alavi [7]) suggest that the response of 
nonlinear SDOF and MDOF systems to fault-normal near-fault ground motions is sensitive to the ratio γ = 
T/Tp. Consequently, it is useful to rewrite (10) as  
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where Tpi is the velocity pulse period found for the ith ground motion. The sample mean for the response 
ratio defined by (11),   
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which includes all ground motions (i = 1,2,…52) and all simulations (j = 1,2,…,20) for each ground 
motion, is plotted in Figure 5 as a function of γ. To better understand the accuracy and limitations of the 
proposed model, it is also useful to consider the response ratios associated with the fitted velocity pulses, 

),(/),(),( , µγδµγδµγψ pigipipiypipi TTT = ,                                                                                  (13) 

and the high frequency accelerations, 
),(/),(),( , µγδµγδµγψ pigipinijypinij TTT = .                                                                                  (14) 

The sample mean curves for these response ratios are also plotted in Figure 5 as a function of γ. As 
indicated in Figure 5, the velocity pulse model (without the high frequency accelerations superimposed 
upon it) causes displacement demands that are comparable to the recorded near-fault ground motions 
when γ > 0.65; however, it underestimates displacement demands when γ < 0.65 (short periods). In 
contrast, the displacement demands caused by the high frequency accelerations (without the accelerations 
associated with the velocity pulse) are comparable to those caused by the recorded ground motions when γ 
< 0.65, but underestimate the displacement demands when γ > 0.65. However, when the simulated high 
frequency accelerations are superimposed on the velocity pulse model, the sample mean is close to unity 
for all values of γ; i.e., the proposed simulation procedure generates acceleration time histories that, on 
average, cause displacement demands in the nonlinear SDOF system that are comparable to that caused by 
the recorded near-fault ground motions at all periods and ductility demand levels.   
 
Estimating the target response spectrum 
The simulations used to generate the results plotted in Figure 5 utilized the response spectra of the original 
records to calibrate the frequency coefficients in (9). In reality however, a target response spectrum for a 
given seismic environment is required to implement the above simulation procedure. The proposed model 
assumes that a fault-normal near-fault ground motion consists of a velocity pulse, ap(t), and high 
frequency content, an(t), that, based on the results presented in Figure 5, are well separated in the 
frequency domain; i.e., ap(t) dominates at long periods and an(t) dominates at short periods. Consequently, 



if we can obtain estimates for the response spectra Sap(T,ζ) and San(T,ζ) associated with ap(t) and an(t), 
respectively, then it is reasonable to construct the target response spectrum, Sas(T,ζ),  needed to estimate 
the frequency coefficients in (9) by an square-root-sum-of-squares (SRSS) rule; i.e., 

22 )],([)],([),( ςςς TSaTSaTSa nps += .                                                                                   (15). 

This rule assumes that the peak displacement caused by ap(t) is uncorrelated in time with the peak 
displacement caused by an(t). Figure 6 presents comparisons of Sas(T,ζ) computed using (15) to the 
recorded response spectrum, Sag(T,ζ), for four representative ground motions. It is apparent from this 
figure that Sas(T,ζ) is in good agreement with Sag(T,ζ). As expected, the largest differences between 
Sas(T,ζ) and Sag(T,ζ) occur at those periods at which ap(t) and an(t) make comparable contributions to the 
response. However, the procedure does not appear to be biased since Sas(T,ζ) over-predicts Sag(T,ζ) for 
some records and under-predicts Sag(T,ζ) for others. Procedures for estimating Sap(T,ζ) and San(T,ζ) 
needed to compute Sas(T,ζ) for a given seismic environment are described below. 
 

PREDICTIVE RELATIONSHIPS FOR GROUND MOTION MODEL PARAMETERS 
 
Predictive relationships for velocity pulse model 
In this section, we develop relationships that can be used to predict the model parameters Tp, Vp and α that 
define ap(t) for a given seismic environment. We remark that the parameter t0 only serves to locate the start 
of the pulse along the time axis; consequently, the only criteria an analyst need consider when specifying 
t0 is that t0 = 0 and large enough that the high frequency modulating function An(t) defined by (7) is close 
to zero at t = 0. 
 

Figure 5. Response ratio curves for 1≤µ≤8.  
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Velocity Pulse Amplitude, Vp 
Several studies have noted that the peak ground velocity (PGV) observed at a site during an earthquake is 
dependent upon the magnitude (Mw), distance (R), and site conditions. In particular, Alavi [7], Rodriguez-
Marek [8] and Somerville [9] have performed regression analyses to relate PGV to Mw and R in the near-
fault zone using different sets of recorded ground motions. Based on the 52 near-fault ground motions we 
have included in this study, we propose  

 RM w 1010 log16.021.049.0PGVlog −+= .                                                                                   (16) 
The data summarized in Tables 1a and 1b suggests that a strong correlation exists between Vp 

and PGV, 
which is a reasonable observation when one considers the role that Vp plays in (1). A regression analysis 
of the data listed in Tables 1a and 1b yields Vp = 0.80PGV, which when combined with (16) allows us to 
express Vp in terms of Mw and R as   

RMV wp 1010 log16.021.039.0log −+= .                                                                                      (17) 

 
Velocity Pulse Period, Tp 
Figure 5 indicates that Tp has a significant effect on the structural response, particularly when T/Tp ≈ 1. 
Consequently, a realistic pulse period is critical if the proposed ground motion model is to be used in 
dynamic analyses. When fitting the proposed velocity model to the ground velocity generated by the 
Haskell source model (Figure 1), we found that Tp is related to the rise time, tr, assumed in the Haskell 
model. Based on this observation and those made by Somerville [10], who noted a relationship between 
the rise time and magnitude of an earthquake, it is reasonable to assume that Tp is related to Mw. Using the 
52 near-fault ground motions included in this study, the following empirical relationship was derived 
 wp MT 54.038.3log10 +−= .                                (18) 

Figure 6.  Examples of the SRSS rule. 
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This regression, which is shown in the Figure 7a, indicates that there is a strong dependence between Tp 
and Mw. Also plotted in this figure are the regressions for rock and soil conditions, which indicate that the 
relationship between Tp and Mw is different for these site conditions at small magnitudes but the difference 
disappears as Mw increases. We remark that similar empirical relationships between pulse period and 
magnitude have also been proposed by Alavi [7], Rodriguez-Marek [8] and Somerville [11], but with 
different definitions for the period of the pulse and different data sets.  
 
Velocity Pulse Shape Parameter, α 
The shape parameter α  influences both the waveform of the velocity pulse (a time domain characteristic) 
and the width and location of the spectral content (frequency domain characteristics). When α  is assigned 
a large absolute value, the length of the signal in the time domain increases but the bandwidth of the 
frequency content decreases. Plotting the absolute values of α against the values of Tp obtained for the 
ground motions listed in Table 1a and 1b reveals the empirical relationship 

pT

5.2
|| =α ,                                                                                                                                   (19) 

which is shown in Figure 7b. This observation suggests that once Tp is estimated using (18), a realistic 
value of α can be obtained from (19).  
 

Predictive relationships for high frequency content 
Recall that the high frequency content introduced into a simulated record is a realization of a stochastic 
process (6). In addition to the randomly generated phase angles, ϑk, the model requires as input a shape 
parameter β and frequency coefficients Bk.  
 
High frequency shape parameter, β 
The shape parameter β, which controls the rate at which the intensity of the high frequency accelerations 
grow and decay over time is related to the Arias duration of the ground motion as indicated by (8). 
Consequently, for a given seismic environment, an appropriate value for β may be estimated using 
available attenuation relationships for Arias duration, such as that proposed by Abrahamson [12], and 
substituting the predicted Arias duration into (8). We remark that, based on the analyses that we have 
performed thus far with the proposed procedure, the quality of the simulated ground motions appears to be 
insensitive to small perturbations in β. 

Figure 7a.  Relationship between Mw and TP. 

10 

1 

5 

Tp 10 

|α| 

|α|=2.5/TP 

Figure 7b.  Relationship between α and TP. 
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Frequency coefficients, Bk 
Recall that the frequency coefficients assumed in (6) and (9) are calibrated to match a target response 
spectrum, which is generated by combining the response spectrum associated with the velocity pulse, 
Sap(T,ζ), with the assumed response spectrum associated with the high frequency content, San(T,ζ), by 
means of the SRSS rule (15). We remark that once the parameters of the velocity pulse model have been 
assigned, Sap(T,ζ) is readily available. To specify San(T,ζ), we utilize the empirical response spectral 
attenuation relations without the directivity modification developed by Abrahamson [13].  
 
To investigate the suitability of this approach for specifying San(T,ζ), the Abrahamson and Silva 
attenuation relationship was used to predict the mean response spectrum associated with the magnitude, 
distance, faulting mechanism, and site condition of each ground motion listed in Tables 1a and 1b; i.e., 52 
response spectra, corresponding to the 52 ground motions listed in Tables 1a and 1b were predicted. In 
Figure 8, the ensemble statistics of these predicted response spectra are plotted against the ensemble 
statistics of the response spectra computed for the recorded high frequency content of the ground motions. 
It is clear from this figure that a bias is present in the predicted spectra. To understand the source of this 
bias, it is instructive to compute the response spectrum ratio  
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for each ground motion (i = 1,2,…,52), where San,i(T,ζ) and SaA&S,i(T,ζ) are the recorded and predicted 
response spectra, respectively.   

The average response spectrum ratio  

∑
=

=
N

i
iSaSa T

N
T

1
, ),(

1
),( ζψζψ                                                                                                  (21) 

for rock (N = 26) and soil (N = 26) site conditions are shown in Figure 9, in which it is apparent that the 
bias varies with spectral period. For the soil site condition, the bias is small at short periods but becomes 
significant for intermediate and long periods. For the rock site condition, the bias fluctuates slightly with 
the period; however, an obvious trend like that observed for the soil sites is not apparent. To correct the 
bias noted in the predicted response spectra in Figure 8, we propose the piecewise-linear correction 
functions plotted in Figure 9 for rock and soil site conditions. 

 
SIMULATIONS BASED ON THE PREDICTIVE RELATIONSHIPS 

 
The objective of the proposed simulation procedure is to generate near-fault ground motions for a given 
seismic environment. With the predictive relationships for the ground motion model parameters 
established in the previous section, we are now able to simulate the fault-normal near-fault ground motion 
for an arbitrary site.  

Figure 8.  Ensemble statistics of San and SaA&S . 
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For each ground motion listed in Tables 1a and 1b, the magnitude, distance, faulting mechanism and site 
conditions were used to predict the model parameters of the velocity pulse and the high frequency 
accelerations using the empirical relationships presented in the previous section. The predicted response 
spectrum for each record was then generated using the SRSS rule (15). Figure 10 compares the ensemble 
statistics of these predicted response spectra with those of the recorded response spectra. Studying this 
figure, we see that for periods T>1.5s the ensemble mean of the predicted response spectra matches that of 
the recorded response spectra. However, for periods T<1.5s, discrepancies as large as 20% between the 
ensemble means can be seen. Figure 10 also indicates that the variation of the predicted response spectra 
is less than that of the recorded response spectra at all periods. This reduced variability is due to the fact 
that when we estimated the model parameters using (17), (18) and (19), we ignored the aleatory variability 
present in the regression analyses used to derive these empirical relationships; e.g., for a given magnitude 
event, all simulations have the same pulse period Tp and shape parameter α, since Tp (and hence α) is only 
a function of Mw in (18). We remark that ignoring the aleatory variability when predicting the model 
parameters may also be partially responsible for the observed discrepancies between the ensemble means. 
Probabilistic models for the model parameters that account for the scatter of the data present in Figures 7a 
and 7b may be more appropriate than the deterministic relationships used to generate the response spectra 
plotted in Figure 10. 
 
Using the predicted response spectra computed above as targets, ground motion time histories for 
earthquakes of different magnitudes were simulated using (9). Figure 11 presents the simulated ground 
velocities on rock condition for three events of different magnitudes and their corresponding response 
spectra. Note that, in contrast to the current provisions of the Uniform Building Code [14] that stipulate a 
monotonically increasing spectral amplitude with increasing magnitude for all periods, the amplitudes of 
the simulated response spectra do not increase monotonically with magnitude; the spectral shape of the 
simulated near-fault ground motions is magnitude dependent at intermediate and long periods. 

Figure 9.  Ensemble mean of response spectrum ratio’s ψSa and correction functions. 
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Figure 10.  Ensemble statistics of Sag and Sas. 
 



 
CONCLUSIONS 

 
In this paper, a fault-normal near-fault ground motion simulation procedure, which complements the 
current state of practice by providing engineers with ground motions that are representative of the near-
fault environments when recorded ground motions are not available, is described. The proposed procedure 
constructs a simulated fault-normal near-fault accelerogram by superimposing a realization of 
nonstationary high frequency accelerations obtained from a stochastic model on to the acceleration time-
history associated with a deterministic model of the velocity pulse commonly observed in such ground 
motions.   
 
To generate a simulated ground motion with the proposed procedure, the analyst must specify the values 
of several model parameters that control the temporal and frequency domain characteristics of the ground 
motion. Empirical relationships that can be used to predict appropriate values for the model parameters for 
a given seismic environment (magnitude and distance of the earthquake and the site soil conditions) are 
derived from regression analyses performed on an ensemble of 52 recorded fault-normal near-fault ground 
motions. Available attenuation relationships for response spectrum ordinates and Arias duration are also 
used to specify the high frequency content of the simulated records. 
 



The ability and limitations of the proposed simulation procedure are examined by comparing the 
displacement demands in linear and nonlinear single-degree-of-freedom systems caused by the ensemble 
of recorded ground motions and their simulations. In general, it was found that the ensemble means of the 
simulated and recorded response spectra agree at periods T>1.5s. However, discrepancies as large as 20% 
were observed for T<1.5s. It was also noted that the variability in the predicted spectral ordinates about 
the ensemble mean was less than that seen in the recorded ground motions. This reduction in the 
variability is attributed to the fact that the scatter of the data present in the regression analyses used to 
derive the empirical predictive relationships for the model parameters was ignored. This observation 
suggests that probabilistic models that can properly account for inherent variability present in the model 
parameters may be more appropriate than the deterministic equations used to predict the model parameters 
in this paper. 
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