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SUMMARY 
 
Real time dynamic substructuring is a novel experimental testing technique used to test the dynamic 
behaviour of large structures subject to loading. The technique involves creating a hybrid model of the 
entire structure by combining an experimental test piece, the substructure, with a set of numerical models. 
Such testing will allow the behaviour of critical elements to be viewed under extreme dynamic loading at 
full scale. 
 
We consider the problem of formulating a multi-actuator substructuring model and determine the 
characteristics of assessing accuracy in both pre-testing estimation and post-process measures using 
synchronization theory. 
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INTRODUCTION 
 
In this paper we consider the hybrid experimental-numerical testing technique known as real-time 
dynamic substructuring. The technique involves creating a hybrid model of the whole structure by 
combining an experimental test piece - the substructure - with one or more numerical models. This allows 
design engineers to view the behaviour of critical structural elements under extreme dynamic loading at 
full scale. So far the technique has been developed successfully using delayed time scales - known as 
pseudo-dynamic testing, Shing [1] and Donea [2] - with the limitation that dynamic and hysteresis forces  
must be estimated. Implementing the substructuring process in real-time eliminates the need for these 
estimations and has been the subject of much recent research in this area; Nakashima [3], Horiuchi [4], 
Nakashima [5], Blakeborough [6], Darby [7], Darby [8] and Wagg [9]. 
 
To couple the experimental and numerical parts of the model, transfer systems are used to transfer the 
appropriate force and displacement signals between the two parts of the model. Transfer systems are 
typically single actuators (electric or hydraulic), but could also be in the form of a shaking table. Single 
actuator substructuring has been developed beyond the 'proof of concept' stage, and experiments with 
simple substructures have been carried out; Nakashima [3] , Horiuchi [4], Darby [8] and Wagg [9]. Multi-
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actuator substructuring presents a significant engineering challenge in terms of real-time implementation 
but also in terms of measuring the overall accuracy of the substructuring process; Blakeborough [6], 
Darby [7], Darby [8] and Wagg [10]. 
 
In this paper we will consider the problem of formulating a substructuring model with multiple transfer 
systems. We show that the dynamic characteristics of the transfer systems (actuators) are crucial in 
determining the likely accuracy of the testing. The control required to carry out successful substructuring 
has two main sources of error - lag in the transfer system response and the measurement of the feedback 
force. We demonstrate how coupling between these sources of error can destabilize the substructuring 
system. Following this we describe how techniques from synchronization theory can be used to give an 
online accuracy measure based on the delay between the signals passing through the transfer system. 
Finally we comment on techniques to minimize error and thus significantly increase accuracy in the 
substructuring control implementation. 
 

THEORETICAL BACKGROUND 
 
The entire structure, which we refer to as the emulated system, is represented by hybrid numerical-
experimental substructuring model where the dynamics of the numerical model are combined with the 
dynamics of the substructure, recorded in time series data format.  The general principle of substructuring 
remains constant regardless of the number of transfer systems present in the system, however the problem 
from a control point of view becomes more complicated due to the introduction of cross-coupling between 
the control signals.  
 
In this paper, we will consider the example of a three mass oscillator system with two diametrically 
opposing excitation walls as shown in Figure 1. This will allow us to demonstrate the problems of 
achieving accurate control for multiple transfer substructuring using a simple example. 
 

 

Figure 1: Schematic representation of the three mass system (numbering system chosen as mass 3 
will be later removed as the substructure thus simplifying synchronisation enumeration). 

 
In order to simplify coherence testing, the masses are coupled by four identical linear springs, ik , and 

damped by coupled viscous dampers, ic , where i = 1, 2, 31, 32.  Spring and damper constants 31 and 32 

are used to indicated firstly that these operate on mass m3 and secondly which mass they influence 
respectively. The system is excited via two moving supports, jr , where j = 1, 2.  

 
The general equation of motion for the system shown in Figure 1 can be written as 
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where, M, D and K are the mass, damping and stiffness matrices respectively and )(tSr is the support 

excitation. ξ is a vector and represents the states of the system, such 
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In order to create a substructured model of the system shown in Figure 1, the middle mass, 3m , and 

accompanying springs, 31k  and 32k , are taken to be the substructure. This leaves both excitation walls 

and respective nearest masses to be used to create two independent numerical models who's influence is 
imposed on the substructure by two separate transfer systems (actuators) via two independent control 
signal, u1 and u2. The influence is represented by two autonomous forces, 1F  and 2F , acting on each side 
of the substructure which are measured by a set of time series measurements. This new substructured 
model is shown schematically in Figure 2. 
 

 

Figure 2: Schematic representation of a substructured three mass system with two transfer systems 

(2) 



The aim of the control algorithm is to achieve synchronization between the output of each numerical 
model, zi, and the actual position of the respective transfer system, xi, where i = 1, 2. Mechanical cross-
coupling occurs between the transfer systems due to the coupled nature of masses, thus the motion of one 
can have a significant effect on the motion of the other introducing an added complexity into the 
formulation of the control algorithm. Therefore, decoupling the dynamics such that this cross-coupling 
experienced by each transfer system can be dealt with as a disturbance is a crucial step in the 
substructured model formulation. 
  
Therefore, we can write the equations of motion for the emulated system in full, 
 

,0)()()()(

,0)()()()(

,0)()()()(

*
3

*
232

*
1

*
331

*
3

*
232

*
1

*
331

*
33

*
3

*
232

*
222

*
3

*
232

*
222

*
22

*
1

*
3311

*
11

*
1

*
3311

*
11

*
11

=−−−+−−−+

=−−−+−−−+

=−−−+−−−+

zzkzzkzzczzczm

zzkzrkzzczrczm

zzkrzkzzcrzczm

&&&&&&

&&&&&&

&&&&&&

 

 
and the dynamics of numerical model, 
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Due to the linear nature of the emulated system we know explicitly the force at each time interval allowing 
us to assess the accuracy of an individual test. However, in standard substructuring, these forces would 
not be known and could only be measured experimentally. 
 
In general, we consider the dynamics of the transfer systems to be linear and in the form 
 

),()()()( tftButAxtx ++=&  
 
where, x is the state vector of the transfer system (experimental measurement rather than a numerical 
estimation), A and B are constant matrices which represent the dynamic parameters of the transfer system 
and u(t) is the control signal. 
 
In our three mass system example (assuming that an actuator can be modeled as a 2nd order system) the 
equation of motion for the transfer systems are 
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Therefore rewriting Equation 7 in the form of Equations 6, we obtain 
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Mechanical cross-coupling only occurs via the f(t) vector  due to the absence of diagonal terms in A and B 
matrices and thus can be treated solely as a ‘disturbance’. This now allows us to design two individual 
SISO controllers, one for each transfer system, which can work in parallel and allows us to observe the 
effect of this cross-coupling. 
 
The aim of the control algorithm is to achieve synchronization between the output of the numerical model, 
z, and the actual position of the transfer systems, x. However, the physical transfer systems will always be 
subject to a lag, t∆ . The exact nature of the error in the substructuring model has not been fully 
characterized but from current testing it is thought that there are two coupled components which we can 
write as,  
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where, 1g  is a function which describes the accuracy of numerical model compared to the respective part 

of the emulated system each time step, such that [ ]Tzzzzg 2
*
21

*
11 −−= . Note that 1g  also includes a 

measure of the accuracy of the force measurement of f(t) fed back from the substructure. 2g  is a function 
which indicates the synchronization of the plant to its respective numerical model, such that 

[ ]Txzxzg 22112 −−= which is effected by the lag in the system, t∆ . 
 
The coupled nature of these errors means that if we achieve perfect synchronization by removing the lag 
from the plant, 02 =g , then correspondingly 01 =g  as the correct force will be added into the numerical 

model at the correct time, thus achieving the dynamics of the emulated system.  However, any error in 2g  

and this will result in a corresponding error in 1g  and thus propagate each time step leading to instability 
in the substructured model. 
 

EXPERIMENTAL SETUP 
 
To implement real-time substructuring we are using a dSpace DS1104 R&D Controller Board running on 
hardware architecture of MPC8240 (PowerPC 603e core) at 250 MHz with 32 MB synchronous DRAM 
(SDRAM). This DSP type board offers 4 A/D channels at 16 bit, 4 A/D channels at 12 bit with 8 D/A 
channels at 16 bit, of which 5 and 4 are required respectively for this substructuring example. This is fully 
integrated into the block diagram-based modeling tool MATLAB®/Simulink® which is used to build the 
substructuring model. The dSpace companion software ControlDesk is used for online analysis and 
control, providing soft real-time access to the hard real-time application. Figure 3 shows the substructure 
model setup (a) and an enlarged view of the substructure with the load cells measurement locations (b). 
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Two UBA (timing belt and ball screw configuration) linear Servomech actuators are used as the transfer 
systems, with maximum force capacity of 500N and maximum linear speed of 640mm/s. These are driven 
independently by two Panasonic Minas Series AC servo motors which are configured as analogue 
amplifiers to remove any internal closed loop control functions. Three RDP Electronics DCT captive 
guided DC LVDT displacement transducers are used to measure the displacement of the two transfer 
systems and the substructure which have a ±0.11% linearity error on full scale deflection of 50mm. Each 
unit has an internal bearing that guides the armature built-in dc to dc signal conditioning to help remove 
noise. Two RDP Electronics model 31 precision miniature tension/compression load cells are used for the 
force measurements either side of the substructure. The unit is applicable both in tension and compression 
with linearity  ±0.15%, hysteresis ±0.15% and non-repeatability ±0.1% of full scale deflection. Each mass 
is a constant 2.2kg and connected to the rig via three parallel shafts constraining their motion to one 
degree of freedom with an axial alignment accuracy of ±0.1mm. Each mass has three LBBP linear ball 
bearings with double lip seals and raceway plates to reduce friction. Through system identification the 
spring constants were found constant for all and equal to k =4750N/m and damping ratio of c=6Ns/m. 
 

THE EFFECT OF DELAY ON THE SUBSTRUCTURED MODEL 
 
There is an important difference between a standard control problem and that of a substructured system. 
For substructuring, the reference signal for each transfer system is not known at the start of the time 
interval as in a normal control problem, but must be created in its respective numerical model at the start 
of each time step. We require two parts to create this signal, firstly the known part made from the 
dynamics of the continuous equations and secondly the unknown part which is the relevant force 
measurement from the substructure itself. This is where the first dichotomy arises; we require the 
dynamics of the substructure at the end of the time step in order to calculate the force on the numerical 
model for the start of the time step as can be seen from Figure 4. In a purely numerical simulation we can 
get around this problem due to Simulink scheduling, as the execution order of the model is automatically 
altered during the initialization phase.  However, algebraic loops are strictly prohibited in any real-time 

Figure 3: a) Experimental rig set-up of substructured model, b) Substructure enlarged view 
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programming as any alterations in the way the model executes during the build phase would effect the 
timeliness of its operation.  The only way round this problem is to hold the feedback signal until the next 
step, therefore by altering the structure in this way we have effectively introduced a one time step delay 
into one of the signals which used to create the numerical model.  
 

 

Figure 4: Basic substructuring model structure 

 
The effect of this one time step delay can be seen in Figure 5 which shows the time domain response for 
one of the transfer systems (with a simulated substructure). It is clear that as resonance is approached, the 
magnitude of the force signal rapidly increases and this time step delay in feeding the force signal back 
into the numerical model has a significant effect on the creation of its dynamics z1 and therefore a 
reduction in synchronization to the perfect dynamics of the emulated system shown by z1

*.  
 

 

Figure 5: Effect of a single time step delay on the force signal for its respective numerical model 



It is important to note that we are assuming no plant dynamics and perfect synchronization of the transfer 
system, x1, so the divergence of the numerical model from the emulated system is purely down to the force 
signal being fed into the numerical model one time step late. However, although there is this discrepancy 
in synchronization the substructuring algorithm is stable (we are using a time step of 1ms in this case).  If 
we increase the delay of the feedback loop we can see that we can see the effect on the stability, as can be 
seen Figure 6. Increasing the delay to 2ms, it can be seen that the substructuring algorithm remains stable 
for around 40 seconds before going unstable during the second mode of resonance, whereas when the 
delay is further increased to 3ms, the model becomes unstable almost immediately even before any 
resonance peak is reached.  It is clear that as the frequency increases this constant delay error has an 
increasingly significant effect as a larger percentage of the period is missed. This instability shown by the 
substructuring algorithm can be characterized by a function of exponential growth, where the feedback 
delay can be thought of as adding negative damping to the system with instability occurring at the point of 
sign change, Horiuchi [4]. 

 

Figure 6: Progression to instability as the feedback delay on the force is increased (numerical 
substructure simulation) 

 
To complete the substructure model we must include the plant dynamics, which include the characteristics 
of the transfer systems and control algorithm used, as can be seen in Figure 7. Consequently, the addition 
of these dynamics increases the phase delay of the feedback force from the substructure subject frequency 
of excitation. We see the effect on the stability of the numerical model in Figure 8. The close up shown in 
Figure 8 (b) highlights the coupling between the errors in the substructure model and demonstrates this 
positive exponential growth of the numerical model z1 compared to the emulated system z1

*. 



 

Figure 7: Completed substructure model structure 

 

 

Figure 8: Instability of the substructure algorithm due to phase delay of the plant response 
(numerical substructure simulation) 

 
MEASURING SYNCHRONIZATION ACCURACY 

 
In order to keep the substructuring algorithm stable when we include the plant dynamics, we must use the 
force signal from the emulated system as this removes the phase delay on the force signal fed back to the 
numerical model, thus ensuring that z1

* = z1. Figure 9 (a) shows a small section of the plant (the transfer 
system and controller) response x1 in relation to its numerical model z1 using the emulated force.  This is a 



typical response you would expect from a tuned linear controller, quite high accuracy apart from a phase 
lag. A 'synchronization subspace' plot is used to show the effectiveness of the controller by plotting the 
desired verses actual responses, Ashwin [11], as shown in Figure 9 (b).  Subspace plots are important as 
they allow the effectiveness of the controller to be characterized in an online procedure, aiding in tuning 
and in evaluating the success of the substructure test in a post process procedure. A subspace plot shows 
the amplitude accuracy and the magnitude of delay coupled together at any one time interval. Perfect 
synchronization is represented by a straight line at an angle of 45o to the horizontal with maxima and 
minima of the reference signal.  Any reduction in synchronization can be seen as a deviation from this 
idealized line. For constant wall excitation conditions these plots build up into a repeating periodic 
pattern, which can appear complex, however, the individual components of amplitude and delay produce 
their own specific and identifiable patterns if evaluated separately. The result of varying the amplitude 
accuracy is to change the angular orientation of the subspace plot compared to the idealized 45o line and 
the consequence of introducing a constant delay between the reference signal and the response is to 
transform the idealized straight line into an ellipse. 
 

 

Figure 9: a) Typical experimental plant (transfer system) response to reference signal from the 
numerical model, b) Comparison in synchronisation subspace of actual plant response x1 and a 

forward time shifted (15ms) plant response x1
s. 

 
We see that the subspace, Figure 9 (b), plot for z1 against x1 shows a high amplitude accuracy due to its 
orientation and the appearance of a constant delay. The plot shows the first 25s of a sine sweep test which 
is why the maxima and minima of the plot change. If we shift the plant results in a post process procedure 
by 15ms forward to produce x1

* and re-plot in the synchronization subspace we see a result far closer to 
the idealized 45o line of perfect synchronization. This does not hold for the entire test as the plant 
introduces a phase lag rather than a constant delay, however it does suggest that if we can overcome this 
problem we can achieve excellent synchronization.  
 

NUMERICAL-EXPERIMENTAL RESULTS 
 
Figure 10 shows the experimental test results for a constant sinusoid input of 3Hz to Excitation Wall 1, r1, 
and 5Hz to Excitation Wall 2, r2. Figure 11 shows the experimental test results for a constant sinusoid 
input which is equal and opposite for both Excitation Walls, r1 and r2 = 6Hz. In order to keep the 
substructuring algorithm stable, we are using the force from the emulated system to create the numerical 
model. 



 

Figure 10: Experimental test results for sinusoid input of r1 = 3Hz and r2 = 5Hz; (a) and (b) for 
transfer system 1, (c) and (d) for transfer system 2, (e) and (f) for the substructure. 



 

Figure 11: Experimental test results for sinusoid input of r1 = 6Hz and r2 = 6Hz; (a) and (b) for 
transfer system 1, (c) and (d) for transfer system 2, (e) and (f) for the substructure. 



Figure 10 shows the experimental test results for a constant sinusoid input of 3Hz to Excitation Wall 1, r1, 
and 5Hz to Excitation Wall 2, r2. Observation of the synchronization subplots for the two transfer systems, 
Figures 10 (b) and (d), we see a high degree of amplitude accuracy but a phase lag between the numerical 
models and their respective transfer systems. This translates a phase lag though to the substructure but 
retains a high degree of amplitude accuracy. This is an important result as it suggests that if the phase 
error can be removed from the control of each transfer system then we can ensure synchronization of the 
substructure. 
 
Figure 11 shows the experimental test results for a constant sinusoid input which is equal and opposite for 
both Excitation Walls, r1 and r2 = 6Hz. As the motion of the Excitation Walls are equal and opposite, the 
output from each numerical model will also be equal and opposite, which in turn should mean that the 
substructure is stationary. It is clear from Figure 11 (e) that the substructure is not stationary but in fact 
shows a periodic pattern. Figures 11 (b) and (d) show a different level of synchronization to each other 
even though the demands on each plant and the transfer systems themselves are identical. Transfer System 
1 shows a larger but more constant delay to Transfer System 2 as a constant delay is represented by a 
perfect ellipse in a subspace plot. This clearly indicates that each plant has different dynamics due to the 
frictional component associated with each transfer system, which transfers through to the dynamics of the 
substructure.  
 
The differing transfer system dynamics would mean that different phase delays would be produced in the 
feedback of the force readings. Although in this case we are using the emulated force, Figure 12 shows the 
effect of differing levels of synchronization of the two transfer system as we sweep on excitation wall 
from 1 to 15Hz whilst keeping the other constant. Unidentified resonance peaks in the substructure are 
produced as can be seen from Figure 12 (d).  
 

 

Figure 12: Experimental test results for sinusoid input of r1 = 1 to 15Hz (in 60s) and r2 = 5Hz 



CONCLUSIONS 
 
There are two components to the accuracy in a substructuring test, the accuracy of the numerical model(s) 
created compared to the emulated system and the level of synchronization the transfer system(s) achieve. 
These components are coupled such that if perfect synchronization is realized then there will be no error 
in the numerical model(s), however, any error in synchronization will cause an incorrect reference to be 
created such that the synchronization of next time step will further diverge from the emulated system. This 
is due to the hybrid nature of the numerical model(s) in substructuring. The phase lag in the discrete force 
signal(s) fed back each time step has a significant effect on the stability of the model. If this delay is 
greater than a nominal value then instability will occur. We can infer from Figure 10 that if we can 
achieve perfect synchronization of the transfer system(s) then we can achieve synchronization of the 
substructure. 
 
Multi-transfer system substructuring introduces new problems into dynamical process. We can decouple 
the transfer system dynamics for simple control however the mechanical cross-coupling puts much higher 
demands on the system. Additionally, Figure 11 and 12 indicate that it is not only the phase lag which is 
important between transfer systems but also their relative phase difference as this introduces unidentified 
resonance dynamics of the substructure. 
 
Future development in substructuring must evolve around overcoming the phase lag of the transfer 
systems. Two areas under development at the moment are an open-loop phase inversion of the modeled 
plant using bond graph modeling techniques and a closed-loop adaptive feedback forward prediction 
algorithm using polynomial statistical analysis. 
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