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SUMMARY 

 
The present paper focuses on the contact-impact analysis of two buildings during the 1977 

Vrancea Earthquake, Romania.  
The strength structure, for both of them, is made up of steel frame. The buildings have different 

heights, lateral stiffness and masses. A Time history analysis in elasto-plastic range of steel behaviour has 
been accomplished, in order to model the impact. Thus, for modeling the contact of these two buildings 
Gap finite elements are being used. So, this analysis shows the individual vibration characteristics of each 
building but also, the deformations and forces resulted from the contact in the structures.  

This paper points out both the necessity of a certain determination for computing the gap between 
two new buildings, as well as the method of analysis for the old buildings with unsuitable gaps between 
them. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. The discretization in finite elements of two buildings structure 
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INTRODUCTION 
 

The paper presents the modal and nonlinear dynamic analysis of two buildings in earthquake 
interaction (figure 1). 

The higher building (figure 2) is a station for coal distribution, nitrogen and oxygen strength 
structure, afferent to F2 furnace, belonging to S.C. SIDEX S.A. Galati, Romania. The Distribution Station 
has 4 technological levels.  

The strength structure is made up of many-stored bracing steel frames, being assembled by 
welding. The building has 4 levels of 6m height, one span of 6m and two bays of 6m. In the gable, the 
building has two consoles about 3.20m and 1.95m respectively. The Station is parallel with the furnace 
house. The building is covered with iron pleated. 

The building is supported by foundation plates up to the –2.20m depth and by drilling piles of 800 
mm diameter beyond that. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. The high structure 

 
The access in the Station is done through a gangway being supported by the furnace house and 

the stairs between the floors. Between the furnace house and the Station there are some pipes which 
penetrate in the Station from where the connections with the furnace are made. 
 The lower building (figure 3) is an industrial hall with ground floor and partial first floor. The 
ground floor space is used as storage space and the first floor houses offices. The strength structure is 
made of metallic farms with stiffness bars vertically as well as horizontally. The pillars transmit the loads 
to the foundation land through some isolated foundations. 
 Between the two buildings there is an earthquake distance of 3 cm. 

The buildings have the ‚C’ category of importance in accordance with H.G. 766/1997, and III in 
accordance with P100-92 standard.  The buildings are placed in ‚C’ seismic zone with Tc=1.5 period of 
corner and Ks=0.20, seismic zone coefficient. 
 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3. The lower structure 
 

CONSIDERATIONS REGARDING THE MODELLING 
  

The strength of both structures has been analysed using a finite element method. For this purpose the 
high structure has been divided into 214 BEAM finite elements connected in 90 nodes. For defining the 
sections of the elements three constants’ sets have been necessary. The columns have I cross-section 
composed of welding steel (flange: 350x20, web: 500x15), the bracings are made up of two U20 
laminated channel section and the beams have I cross-section composed of welding steel (flange: 240x15, 
web: 400x8).  

 The lower structure has been divided into 554 BEAM finite elements connected in 232 nodes. 
The columns has wide flange cross-section composed of welding steel (flange: 180x20, web: 450x12), the 
vertical bracings are made up of pipe ∅140/8 section, the horizontal bracings are made up of angle 
100x100x10 section, the purling are made up of two U20 laminated channel section and the frame girders 
have flange composed of two 140x140x40 angle section and the truss of frame girder is composed of two 
140x140x40 angle section. 

All the steel elements are made of OL37. For the simulation of the steel elements in elasto-plastic 
range, BEAM finite element with von Mises constitutive law has been used. The interaction between the 
structures was modelled with Gap finite elements.  
 

CONSIDERATIONS REGARDING THE DYNAMIC ANALYSIS 
 

Linear modal analysis 
The moving equation for an undamped dynamic system, expressed in matrix notation is: 

[M] {ü} + [K] {u} = {0}                    (1)  
where:  

  [M] – the structure mass matrix; 
  [K] – the structure stiffness matrix in elastic range. 
For a linear system, free vibrations will be harmonic having the form: 

{u} = {φ}i  cos ωi  t                     (2) 
where:        {φ}i -  eigenvector representing the mode shape of the i-th natural frequency; 
          ωi -  i-th natural circular frequency (radians per unit time); 
           t  -  time. 



 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Figure 4. High structure. The first mode of vibration 

 
Thus, equation (1) becomes: 

 
( -ω2 [M] +[K] ) {φ}i = {0}                      (3) 

 
This equation is satisfied if either {φ}i is zero or the determinant of (-ω2[M]+[K]) is zero. The 

first option is the trivial one and, therefore, is not of interest. Thus, the second one gives the solution: 
 

⏐[K] -ω2 [M] ⏐= 0                      (4) 
 
This is the standard form of eigenvalues equation which must be solved for up to n values of ω2 

and n eigenvectors {φ}i which satisfy equation (3), where n is the number of DOF’s. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 
Figure 5. High structure. The 2-th mode of vibration 

 



The eigenvalue and eigenvector problem needs to be solved for mode-frequency analysis. 
It has the form of: 
 

[K] {φi}= λi [M] {φi}                      (5) 
where: 
    λi  - the eigenvalue. 

By applying this type of analysis, the eigenvalues and eigenvectors of the first 20 modes of 
vibratoins have been obtained. The rate of modal mass participation obtained for horizontal vibrations is 
~90%, and for vertical vibrations is ~80%. 

Due to the obtained first period of T1 = 0.87 s, the structure is considered a semi-flexible 
structure. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6. High structure. The 3-th mode of vibration 
 
 

Table1. High structure. Eigenvalue and mass participation factors 
 

Mode ω (rad/s) ν (hertz) T (s) Fpx (%) Fpy (%) 

1 7.21 1.14 0.87 0.07 35.70 

2 8.47 1.34 0.74 0 42.20 

3 14.80 2.35 0.42 93.70 0 

4 16.38 2.60 0.38 1.09 6.67 

5 17.80 2.83 0.35 0.02 0.39 

6 19.22 3.05 0.32 0 2.55 

7 20.87 3.32 0.30 0.02 0.78 

8 29.40 4.67 0.21 0 3.23 

9 30.18 4.80 0.20 0 0.42 

10 32.87 5.23 0.19 0 0.88 

 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7. Lower structure. First mode of vibration 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 8. Lower structure. The 2-th mode of vibration 
 

 

 

 

 

 

 

 

Figure 9. Lower structure. The 3-th mode of vibration 



Table 2. Lower structure. Eigenvalue and mass participation factors 
 

 
Time history analysis 

The strength structures have been dynamically analyzed using the directly integration 
method of the differential motion equation, considering the damping influence in structure’s 
dynamic response. 

When using the finite element method for structures’ discretization, the moving equations 
system becomes: 

[M] )}(]{[)}(]{[)}(]{[)}({ tuMtUKtUCtU &&

&&& −=++       (8) 
Using the Newmark [1] integration scheme, we can make the following assumptions: 
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where: α si β are the parameters which give the stability and accuracy of the integration process. 
For solving the displacements, speeds and accelerations at t+∆t time, we considered the 

equations (9), (10) and also the equilibration equations at t+∆t time: 

tttttttt RKUUCUM ∆+∆+∆+∆+ =++ &&&                                           (11) 

 Solving the equation (10) for ttU ∆+
&&  varying with ttU ∆+  and then placing the obtained 

relation in (9), we obtain the equations for ttU ∆+
&&  si ttU ∆+

& . Both of them varying only with the 

unknown displacements ttU ∆+ . These two equations for ttU ∆+
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out ttU ∆+ . Then, using the equations (9) and (10) it obtains acceleration ttU ∆+
&&  and speeds ttU ∆+

& . 
The complete algorithm using the Newmark integration scheme is made of: 

 The first computations: 
• it forms the matrix K (of stiffness), M (of masses) and C (of damping); 

• it gives to the displacement, speed and respectively acceleration, one first value: 000 , UsiUU &&&  

• it selects ∆t – step of time, α and δ parameters, and also, the integration constants are computed: 
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Mode ω (rad/s) ν (hertz) T (s) Fpx (%) Fpy (%) 

1 19.17 3.05 0.32 0.26 83.5 

2 26.34 4.19 0.23 47.7 0.45 

3 28.84 4.59 0.21 5.31 0.23 

4 33.88 5.39 0.18 32.7 0.83 

5 34.10 5.42 0.17 4.91 3.96 

6 39.87 6.34 0.15 0.04 6.90 

7 54.54 8.68 0.11 0 26.1 

8 63.76 10.14 0.09 0.86 0.54 

9 68.82 10.95 0.09 3.89 0 

10 72.55 11.54 0.08 1.10 0.65 



δ ≥  0.50;  α ≥ 0.25 (0.50+δ)2                        (12) 
• it forms the stiffness matrix: 

K̂ : K̂ =K+a0M+a1C                  (13)   
  

       
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 10. The 1977 Vrancea earthquake 

 
For each time-step: 
• it calculates loading for  t+∆t step of time: 
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• it calculates the displacement for t+∆t step of time: 

K̂ ttU ∆+ = ttR ∆+
ˆ           (15) 

• it calculates the accelerations and speeds for the  t+∆t step of time: 

( )
tttttt

ttttttt

UaUaUU

UaUaUUaU

∆+∆+

∆+∆+

++=

−−−=
&&&&&&

&&&&&

76

320       

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.  High structure response 



For simulating the dynamic action of the earthquake, the 1977 Vrancea recordings (Figure 10)  
have been used. The earthquake has a magnitude of M=7.4 and the following characteristics: 

- ground accelerations 0.20g; 
- the maximum displacement at the ground level 3.7 cm; 
- the length of action 42 sec. 
The recorded acceleration graph have been divided in 200 steps having the first case of loading: 

dead loadings (the weight of the structure) and live loadings placed on the floors. 
The response of high structure in elasto-plastic range is presented in figure 11. The low structure, 

during the earthquake action, is in elastic range (figure 12). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 12.  Lower structure response 
 

THE CONSTITUTIVE RULE OF THE MATERIAL 
 

The constitutive Von Misses [2] rule of the steel with cinematic consolidation has been used in 
time-history analysis for modelling the behaviour in elasto-plastic range. 

The expression of the equivalent stress is : 
 

σe = [
2

3
({s} – {a})T [M]({s} – {a})]1/2                    (17) 

where:   
{s} – the deviatoric stress vector; 
 
  {s} - {σ} - σm [ 1   1   1   0   0   0  ]T                                     (18) 
where: 

       σm =  
3

1
 (σx + σy + σz )                                                   (19) 

    σm – the mean of hydrostatic stress; 
  {a} – the yield surface translation vector. 
 

Note that since the equation (17) is dependent on the deviatoric stress, yielding is independent of 
the hydrostatic stress. When  equivalent stress σe is equal to the uniaxial yield stress, σy , the material is 
assumed to yield.  

 



The yield criterion is therefore: 

F = [
2

3
({s} – {a})T [M]({s} – {a})]1/2 - σy = 0                        (20) 

The associated flow rule yields: 
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so, the increment in plastic strain is normal to the yield surface. The associated flow rule with the von 
Mises yield criterion is known as the Prandtl – Reuss flow equation. 
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Figure 13. The von Mises yield criterion 

 
The yield surface translation is defined as: 

{a} = 2G {εsh }                                              (22)            
where: 
  G – the transversal shear modulus; 
 

The increment deformation is analogously computed with (23) equation: 
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where: 
  E – the longitudinal Young’s modulus; 
  ET – the tangent modulus from the bilinear uni-axial stress-strain curve. 
The yield surface translation {εsh} is initially zero and changes with subsequent plastic straining. 



The equivalent plastic strain is dependent on the loading history and is defined : 
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where: 

  ε̂ pl

n
- the equivalent plastic strain for this time point; 

  ε̂ 1
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n−
 - the equivalent plastic strain from the previous time point. 

The equivalent stress parameter is defined : 
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where: 

  σ̂ pl

e
- the equivalent stress parameter. 

Note that when there is no plastic strain ( ε̂ pl
= 0),  σ̂ pl

e
is equal to the yσ  yield stress. 

If the load were to be reversed after plastic loading, the stress σe would fall bellow yield, but σ̂ pl

e
 

would register above ( since ε̂ pl
 is non zero). 

 
CONSIDERATIONS REGARDING THE TIME HISTORY ANALYSIS 

 
The seismic interaction of the two structures has been dynamically analysed in four types of 

placement. Thus, the following distances between buildings have been considered: 0 cm, 1 cm, 2 cm, 3 
cm, the last choice representing the genuine placement of the buildings. Following the performance of the 
4 time history analysis, the seismic forces dissipated through collision have been rendered in graphs 
(figures 14÷17). For the earthquake distance of 0 cm (figure 14), the interaction between the two 
structures is unfolded through out the duration of the seism.  The second situation analysed, that of the 
earthquake distance of 1cm (figure 15), shows that the structures interact between the moment of PGA 
(peak ground acceleration) and the end of the acceleration graph. For an earthquake distance of 2 cm 
(figure 16), 8 collisions between the buildings are noticed. A single collision occurs for the earthquake 
distance of 3 cm (figure 17). 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 14. Gap forces for 0 cm  Figure 15. Gap forces for 1 cm 
 
 
 



 
 
 
 
 
 
 
 
 
 

 
Figure 16. Gap forces for 2 cm  Figure 17. Gap forces for 3 cm 

 
The movement response of structures in the four cases of interaction is rendered by comparison 

with the case when the structures do not interact.   
 
 
 
 
 
 
 
 
 
 
 

Figure 18. Lower structure. Negative increased displacements 
 

Figure 18 shows the variation of negative maxims to the low structure response for the 4 cases of 
earthquake distance. The variation of positive maxims of the low structure response for the 4 cases of 
earthquake distance is rendered in figure 19. Similarly, in figure 20 are presented the negative maxims’ 
variation whereas in figure 21 the positive maxims variation in displacements for the high structure 
response, regarding the 4 types of earthquake distance. 

 
 
 
 
 
 
 
 
 
 
 
 
         Figure 19. Low structure. Positive increased displacements 
 
 



 
 
 
 
 
 
 
 

 
 
 

Figure 20. High structure. Negative increased displacements 
 
 
 
 
 
 
 
 
 
 
                
 

Figure 21 High structure. Pozitive increased displacements 
 

CONCLUSIONS 
 

The independent analysis of the two strength structures having different masses and rigidities, 
showed different response to seismic action. Thus, as a result of the seismic action, the low structure 
remains in the elastic field of behaviour for steel, while the high structure displays a mainly elasto-plastic 
behaviour. The two buildings are differently influenced by the size of the earthquake distance. Thus, the 
low building is influenced more by the 1cm earthquake distance, while a  3cm earthquake distance has 
major influences on the high building. Also, as a result of collision, the lower structure suffers minor local 
plastifications, while for the higher building the dynamic amplification involves major elasto-plastic 
changes, and also in elements located outside the contact area. 

For the case when there is no gap between the buildings, no major amplification of dynamic 
response upon seismic action occurs for none of the buildings, the dissipation of seismic energy through 
moderate collisions occurring through out the duration of the seismic movement.  

This fact might partially explain why buildings which do not comply with seism safety standards 
have not collapsed during major earthquakes.  
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