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SUMMARY 
 
The structure-soil dynamic interaction is mainly confined in frequency domain because evaluating the 
dynamic effects of infinite medium on structural response is difficult. In this paper, an adaptive damping-
extraction procedure, which can simulate the dynamic properties of non-homogeneous infinite medium by 
applying artificial damping and then extracting the effects, is proposed for the dynamic interaction 
analysis of structure-unbounded rock system. Based on the proposed procedure, it is convenient to get 
dynamic interaction force in time domain acted on interface between unbounded rock and structure. The 
corresponding FE numerical implementation of the procedure in time domain is given by precise step-by-
step time integration scheme. Some key factors in implementation are discussed and the numerical tests 
demonstrate satisfactory accuracy and excellent application prospect. 
 

INTRODUCTION 
 
The structure and the infinite medium are two main distinct parts with different properties in the dynamic 
soil-structure interaction analysis. It has been demonstrated that the radiation damping of infinite medium 
plays an important role in the seismic responses of large hydraulic structures, tunnels and long spanned 
bridges etc. In unbounded medium, the motion from wave source can only propagate outwardly and can 
be reflected back by the outer boundary if the unbounded region is modeled by finite region. Thus the 
problem of simulating infinite medium attracts intense attention of researchers and many approaches are 
suggested. Some methods model the infinite medium by study the dynamic characteristics at structures-
infinite medium interface, such as boundary element method, trial function method and dynamic infinite 
element etc; Other methods simulate the infinite medium by applying local artificial boundary to make the 
outwardly propagating wave transmit the outer boundary of finite region, such as transmitting boundary 
method and visco-elastic boundary method. All these are convenient to be applied to the dynamic soil-
structures interaction analysis in frequency and difficult in time domain because of the problem of 
convolution integral.  
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As shown in Fig 1, if introducing seismic excitations via the elastic unbounded soil, the discrete equation 
of motion of the structure in time domain can be expressed as 
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The right-hand side of Eq.(1) represents that, only the structural nodes in contact with the soil are loaded. 
For the total time history, the ground’s interaction forces )}({ tRb  in theory are equal to the convolution 

integrals of the soil’s dynamic stiffness )]([ tS g
bb  and the relative motion  ( )}()({ tutu g

b
t
b − ), in which 

{ })(tu g
b  is the excavated ground scattering motions. Analogous to the familiar Duhamel integral, if the 

)}({ tRb  in Eq.(2) are directly numerical evaluated in time domain, the current interaction forces are 
related to all of the ground motions heretofore, and thus unavoidably leads to a huge computational effort.  
Also in other important aspects, many investigations have been done on the overcoming of convolution 
integrals existing in the time-domain dynamic analysis. Wolf [2] proposed a simple recursive algorithm, 
with considering the effects of only m  time segments before the current time nt on the current ground 
interaction forces ( nm < ). Zhang [3] suggested fitting the dynamic stiffness matrix of unbounded soil in 
time domain by a few piece-wise linear segments. And then based on an implicit integral scheme, the 
convolution integral can be evaluated only by using the response matrices )]([ tS g

bb  at these few coupling 
time steps. To some extent, the above-simplified numerical algorithms result in an improvement over 
current methods and obviously reduce the computational efforts of convolution integrals in time domain, 
however, unavoidably inducing some algorithm errors. A real need exists to develop a new procedure to 
calculate the interaction forces of unbounded medium in time domain without convolution integrals. 
Damping-Solvent Extraction Method (DSE method) is a simple, accurate and generally applicable method 
[4], it provide a new approach in the substructure method to approximately simulate the radiation 
conditions of unbounded medium by applying artificial material damping to attenuate both outgoing and 
reflected waves at the outer boundaries of bounded computational soil region, and then ‘extracting’ the 
artificial damping to remove its undesirable effects. Although the convolution integral do not appeal in the 
formula of DSE method, the time parameter t is retained because of the incomplete decoupling in the 
process of time-frequency transforming, which in fact is an alternative form of convolution integral. 
The objective of this paper is to propose a complete numerical step-by-step integral scheme for time-
domain implementation of DSE method, which can avoid the convolution integral and greatly reduce the 
computational efforts by dividing the total displacements into regular part and an additional modified part. 
Some discussions are presented and the unconditional convergence and good accuracy of the new 
developed algorithm are demonstrated. 
 

Fig.1 Dynamic soil-structure interaction and 
the wave scattering motions 
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Ⅰ.REVIEW OF THE DAMPING SOLVENT EXTRACTION METHOD 
 
The damping extraction method can succeeds to simulate the radiation condition of infinite medium and 
efficiently evaluate the desirable dynamic response matrix of unbounded soil, owing to the following three 
main steps in general. 
Step 1: A bounded soil domain adjacent to the generalized structure is selected. Artificial material 
damping is first introduced into the computational soil region, depending on the approximate equivalency 
between radiant damping and material damping in reducing the amplitudes of outwardly propagation 
waves. For a sufficiently large artificial damping ratio, the reflected waves g  at the outer boundary are 
greatly attenuated by the introduced material damping and fail in influencing the motion of structure-soil 
interface, therefore the desired performances for the radiation condition of unbounded region is perfectly 
simulated in a bounded domain. The outer boundary may be also defined as an absorbing boundary to 
decay the waves further. 

Step 2: With one certain frequency ω , the dynamic stiffness )]([ ωζS of the bounded damped domain on 

the soil-structure interface is then computed, which and whose first-order frequency derivative are 
assumed to be equal to the corresponding values of the artificially damped unbounded medium.  

Step 3: Influences of the introduced artificial damping on the equivalent dynamic stiffness )]([ ωζS  of 

damped unbounded domain is extracted, by means of Taylor expansions at the dimensionless frequency 
*
0a  with respect to ω , and finally the dynamic stiffness of unbounded medium can be obtained 

 In attempting to simplify the complex expressions of )]([ ωζS  in the time domain analysis, a equivalently 

artificial mass-proportional nodal damping matrix ][2 Mζ  and additional nodal stiffness matrix ][2 Mζ  

are introduced into the same bounded domain, instead of the previous hysteretic material damping in the 
frequency domain.  
The equation of motion of the artificially damped bounded domain in time domain is given by [4] 

[ ] }{}){]([}]{[2}]{[ 2 PuMKuMuM =+++ ζζ &&&                                                        (3) 

Eq.(3) results in a desirably simple expression of the dynamic stiffness matrix of the damped bounded soil 
in the frequency domain, as 

][)(][)]([ 2 MiKS ζωωζ −−=                                                                                  (4) 

and in dimensionless form as  
[ ])(])[]([)]([ 0

2
0

2
0

2
0

∗−∗− =−= aSGrMaKGrS ssωζ                                                        (5) 

Where sCria 0
*
0 )( ξω −= ； G  is the shear elastic modulus and the dimensionless frequencies 0a  and 

*
0a  correspond to the natural material and artificially damped material respectively, 

 Fig.2 FE numerical model for the time-domain  

implementation of DSEM 
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To calculate [ ])( 0aS  from [ ])( 0
∗aS , the first two terms of a Tailor expansion of [ ])( 0

∗aS  at frequency 0a  

are formulated 
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and the same relation applies as in Eq(5) 

)]([)]([ 0
2

0 aSGrS s ∞−∞ =ω                                                                                       (7) 

Substituting Eqs.(5) and (7) into Eq.(6), the dynamic stiffness in frequency domain of un-damped 
unbounded medium can be obtained  

ωζζ ωζωω ,)]([)]([)]([ SiSS +=∞                                                                          (8) 

By applying inverse Fourier transformations to Eq.(8), the impulse displacement response matrix 
(dynamic stiffness matrix in time domain) of natural unbounded soil will be finally expressed in time 
domain as 

)]()[1()]([ tSttS ζζ+=∞                                                                                               (9) 

Defining ( ){ }tR∞  and ( ){ }tu  as the force and displacement vector at the interface of infinite medium and 

structure, then the interaction force at the interface can be obtained by Duhamel integral as 

τττ dutSttR )}({)]([0)}({ ∫ −∞=∞                                                                             (10) 

Substituting Eq.(9) into Eq.(10), a simple time-domain formulation with two-terms superposition will be 
gotten as the follows 

)}({)}(){1()}({ tRtRttR rζζ ζζ −+=∞                                                           (11) 

with                        τττ−= ∫ ζζ dutS
t

tR )}({)]([
0

)}({                                                                      (1

2) 

and                         ττττζζ dutSttR r )}({)]([0)}({ ∫ −=                                                                  (1

3) 
It’s worth noting that all of the new presented algorithms in the next sections come from Eqs.(11)-(13). 
However, the above time-domain equations with convolution integrals are only exact in theory, and its 
computational efforts of solution are too substantial to afford in the practical applications. From an 
engineering point of view, )}({ tu  and )}({ tut  can be considered as the displacement vectors at the 

surface of damped bounded soil region, under prescribed loadings )}({ τζR and )}({ tR rζ at the same 

places, respectively. And obviously, with the known enforced loadings, both of them can be easily solved 
from the dynamic equilibrium equation of damped bounded soil region (see Eq.3). 
 

II. NUMERICAL IMPLEMENTATION FOR REFINED DSE METHOD IN TIME DOMAIN 
 
Though the convolution integral is avoided, the time t is appear in Eq.(11) and it is inconvenient for the 
application. A updated method is proposed here and the compete numerical step-by-step integral 
procedure is derived to overcome the shortage of the DSE method.  
The equation (3) of motion of damped bounded soil is firstly represented in partition matrices form as 
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in which the subscripts b  and m  denote the soil-structure interface nodes and inside nodes of the 
bounded soil (see Figure 2), respectively.  



Defining               ][][ MM = , ][2][ MC ζ= , ][][][ 2 MKK ζ+=                                                                 (15) 

Then Eq.(14) can be decomposed into two sub-formulations as 
}]{[}]{[}]{[}]{[ mmmmmmmmmbmb uKuCuMuK ++=− &&&                                                          (16a) 

}]{[}]{[}]{[}]{[}{ mbmbbbbbbbbbb uKuKuCuMR +++= &&&ζ                                                     (16b) 
Similarly, according to Eq.(13), the equation for modifying motions of the same damped region subjected 

to the prescribed force )}({ tR brζ  is given by 
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where }{ rbu 、 }{ rbu& 、 }{ rbu&&  are the vectors of modified motions of the nodes at the soil-structure 

interface, with }{ rmu
、 }{ rmu& 、

}{ rmu&&  denoting the additional motions of inside nodes. 
In order to determine the modified displacements inside of the soil region, it’s necessary to follow the 
numerical relations of Eq.(18a) for the interface nodes. 

Defining }{}{ brb utu =                                                                                                      (18a) 

Then the derivation of Eq.(18a) with respect to time will result in  
}{}{}{ bbrb uutu += &&                                                                                                                       
}{}{2}{ bbrb utuu &&&&& +=                                                                                                            (18b) 

Obviously in Eqs.(11) and (18), containing the absolute time parameter t  will brings some 
inconveniences for the practical adoptions by the dynamic interaction analysis in time domain. And thus 
also perhaps causes unsteady numerical results, owing to the parameter t  continuously enlarging the 
diversity of quantity among the displacement, velocity and acceleration till the end of seismic excitations. 
To a certain extent, Eq.(11) is a representation of the incomplete space and time decoupling of 
convolution integral in the time domain. Therefore, to remove the absolute time in the final numerical 
formulations, a valid assumption is introduced in this section for the expressions of modified motions of 
the inside nodes in bounded soil region, as the following 

}{}{}{ mmrm vutu −=                                                                                                            (19a) 

By applying operation of derivates in Eq.(19a), the modified velocity and acceleration can be also 
obtained as 

}{}{}{}{ mmmrm vuutu &&& −+=                                                                                                          

}{}{}{2}{ mmmrm vutuu &&&&&&& −+=                                                                                           (19b) 

For the Eq.(16) considered, substituting Eqs.(18) and (19) into the modified equation of (17), will leads to 
the equivalently decomposed expressions of Eq.(17) as the follows 

}]{[}]{[}]{[ mmmmmmmmm vKvCvM ++ &&& }]{[}]{[2 mmmmmm uCuM += &                                     (20a) 

}]{[}]{[2}{}{ bbbbbbbbr uCuMRtR ++= &ζζ }]{[ mbm vK−                                                        (20b) 

And then, by using Eqs.(16) and (20) in Eq.(11), one can achieves the final time-domain formulation of 
interaction forces.  

{ ( )} [ ]{ } ([ ] 2 [ ]){ }bb b bb bb bR t M u C M uζ∞ = + −&& & ([ ] [ ]){ } [ ]{ } [ ]{ }bb bb b bm m bm mK C u K u K vζ ζ+ − + +    (21) 

in which, }{ mu and }{ mv  can be solved form the Eqs.(16a) and (20a) by usual finite element methods. 

Since the influence of absolute time on the numerical calculation of Eq.(21) has been removed, the 
interaction forces )}({ tR ∞  in Eq.(21) can be expediently evaluated by directly applying some various 
step-by-step integral schemes. A computational program is developed to verify the new proposed 
algorithms. 
  



III. NUMERICAL RESULTS AND DISCUSSION 
 

In this section, the unbounded soil’s interaction forces )}({ tR ∞

 is evaluated and compared to demonstrate 
the validity and accuracy of the proposed procedure.  
Computational model 

A rectangular rigid foundation embedded in homogenous half-plane with length of bounded region l   

equal to b =20m as shown in Fig.3 is selected as practical example, assumed to be subjected to transient 
excitation of prescribed vertical displacement at the center of the rigid base.  

The material parameters of soil are as the follows: PaeG 82.3= (Shear elastic modulus) 25.0=µ (Poisson 

ratio) and 
3/30.2 mkge=ρ , with the according speeds of acoustic waves smcs /400=  and 

smcP /693= .  
To easily compare the numerical results, transient excitations are taken as the simple harmonic motions, 

with the period scbT s 4.0/8 ==  and the amplitude mu 20.00 = , expressed as the following 

⎪⎩

⎪
⎨

⎧

=>

=≤−=
sTt

sTt
T

tu
tub

8.020

8.02))
2

cos(1(
2)(

0 π

                                                                         (22) 

The dimensionless nodal damping coefficient is scbd /ζ= . For different radiation radium l , 
=d lb /5.0 , lb /  and lb /2  are selected for computation. 

Results and analysis  
Based on the proposed algorithm of DSE method, Fig.4 and 5 show the numerical results for three values 
(0.5,1 and 2) of the dimensionless artificial damping factor d , in which FB stands for Fixed Boundary 
and VB for Viscous Boundary. Accordingly, other related parameters in the evaluation include: viscous 
dashpots at outer boundaries, the damping ratio (an approximate value of 0.2) for viscous boundary 
model, and the damping ratio of lower modes (selected in the range of 16%~20%) for damped bounded 
soil model. In addition, extended mesh model are also applied in this paper to get exact results, with a 
large computational soil region of length aPtcl ≥ , in which at  denotes the effective total time of seismic 
excitation.  
It is evident from Figure 4 that, when compared with viscous boundary model, the agreement with exact 
results for DSE time-domain method is commonly improved in the case of any damping factor, only 
causing a little increase of computational effort. In particular, the best precision exists for the case of 

0.1=d , which is consistent with the conclusion of Reference [7]. Additionally, the step-by-step integral 
scheme for the DSE time-domain method, proposed in this paper, is highly advantageous to the adoption 
in computer programming for dynamic interaction analysis.   

Fig.3 FE discretization of finite region adjacent to structure-medium interface 
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The vibration phase difference between outer boundary and interface is 
sclie /ω−
 for un-damped finite 

region with radiation radium l . In terms of Eq.(4), the corresponding phase difference  become 
ss clicl ee // ωζ −−
( 

sclibdl ee // ω−−
 if expressed in dimensionless form) if ω  is replaced by ζω i− . That is to 

say, after introducing artificial damping, the wave attenuation ratio propagate from interface to outer 
boundary is  

bdle /* 1 −−=β                                                                                                                    (23) 

Thus the wave attenuation ratio at interface is bdle /21 −− 。 
The attenuation ratios for different value of  bld /⋅  are listed in Tab.1 and can be referenced for the 
selection of artificial damping coefficient d。 

Tab.1  attenuation of vibration amplitude on the interaction face 
bld /⋅  0.25 0.5 1 2 

Attenuation ratio 0.394 0.632 0.865 0.982 
It is also indicate that the proposed procedure can improve the accuracy of the simulation of unbounded 
medium while the computational effort increase a little compared to classical visco-elastic local artificial 
boundary 
Figure 6 shows that it is relatively worse and of insufficient accuracy for the results for the high damping 
bounded soil models, instead of the naturally infinite medium. So, the advantages in precision for DSE 
time-domain method are more prominent for the smaller computational soil region, also greatly reducing 
the evaluation efforts as other numerical algorithms usually requiring a relatively large soil region. 

To some extent, the results in Figure 5 for bounded damped medium model (DSE method without 
extraction step) are similar to the dynamic responses of high damping bounded soil model, besides 
differences only existing in the amplitude and phases at various time steps. Therefore, in order to ensure 

(a)  L=1b                                       (b)   L=2b                                          (c)   L=3b   
Fig.4 dynamic interaction force of unbounded rock for various region length L 

Fig.5 comparison of numerical results               Fig.6 comparison of numerical results at 
as l=2b and d=0.5                                             various step of DSEM 
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the precision of results, it has been exhibited as a necessary step for extracting the influences of artificial 
damping further in the implementation of DSE method. 
 

CONCLUSION  
 
Dynamic stiffness with a certain frequency (See Fig.1) cannot sum up all of the dynamic properties of 
natural soil region in time domain, especially for seismic excitations with a frequency range, so seeking 
after completely time-domain numerical method is important. In this paper, a refined damping-solvent 
extraction method is proposed, which completely avoid the convolution integrals, as required in other time 
domain algorithms. The new time-domain method ensures the seismic excitations introduced at the 
structure-soil interface, avoiding the inverse computations from the recorded background seismic motion 
to base-rock motions. Finally, multiple support excitations and traveling waves can also be considered 
through the different initial oscillatory time at various excitation points of the interface nodes in time 
domain analysis. 
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