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NUMERICAL SIMULATION OF NEAR-FAULT GROUND MOTIONS
AND INDUCED STRUCTURAL RESPONSES

Juin-Fu CHAI', Tsung-Jen TENG?and Wen-I LIAO®

SUMMARY

In this paper, a 3D quasi-dynamic model is developed to simulate the rupture and healing processes of a
buried fault plane. Based on the integral representation theory, the formulation of the near-fault ground
displacement can be derived for a 3D half-space by means of the slip function of the fault plane as well as
the Green’s function due to a unit point source within the half-space. Hence, the directivity effect and
radiation pattern of near-fault ground motions can be determined. Furthermore, based on the simulated
typical pulse-like near-fault ground motions, the induced earthquake performance and the required
ductility demand of a 12-level steel frame are evaluated. The results show that the distributions of the
structural response and ductility demand are in accordance with the growth and decline of ground velocity
pulse. Furthermore, it can be found that, within the pulse-affected area, the maximum story drift ratios for
different story levels are much different from each other, and the larger maximum story drift ratios are
induced at lower story levels.

INTRODUCTION

Near-fault ground motions, which have caused severe damages in recent disastrous earthquakes, are
characterized by a short-duration impulsive motion that will transmit large energy into the structures at the
beginning of the earthquake. It has been shown that the response of structures subjected to an observed
near-fault ground motion is much similar to that subjected to an equivalent pulse-like motion (Alavi and
Krawinkler [1]). Therefore, for the purpose of assessing near-fault effects, a quasi-dynamic rupture model
that reflects all of the physical realities of a buried dip-slip fault is developed in this paper to generate the
representative pulse-like near-fault ground motions instead of the observed ones.In fact, the pulse-like
velocity waveform is owing to the directivity effect where the rupture front and healing front are close to
each other to cause interference at that site (Somerville et al, [2]). Therefore, both the rupture and healing
processes should be included in the rupture model of a buried fault plane (Madariaga [3]; Boatwright,
[4]). In this paper, a 3D quasi-dynamic rupture model is proposed. For each point on the fault plane, it
begins to slip when the crack tip arrives from the hypocenter with a constant rupture speed, and the slip
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velocity will approach a constant soon and then deaccelerate to become zero. Because of the different
healing time at each point, the induced rupture snapshots are strongly asymmetric and the rupture growth
is intermediate between a circular rupture and a unilaterally propagating rupture.Based on the integral
representation theory (Pao and Varatharajulu [5]), the ground motions of a three dimensional half-space
can be determined by means of the slip function of a buried fault plane as well as the Green’s function due
to a unit point source within the half-space. It can be found from the synthetic time histories of the near-
fault ground motions that the pulse-like velocity waveforms exist within the affected range of directivity
effect. In addition, the response spectra caused by the representative pulse-like ground motions are also
determined to show the required spectral demand caused by near-fault ground motions. Finally, in this
study, the induced earthquake performance and the required ductility demand of a 12-level steel frame are
evaluated. The results show that the distributions of the structural response and ductility demand are in
accordance with the growth and decline of ground velocity pulse.

QUASI-DYNAMIC RUPTURE MODEL

Consider a dip-slip fault plane, the location of each point on the plane can be defined by the position
vector E=(&,7) as shown in Fig. 1. The origin of the local coordinates is coincident with the hypocenter
and the slip dislocation is along the &-axis. For each point &, it begins to slip when the crack tip arrives
from the hypocenter with a constant rupture speed v, and the slip velocity will approach a constant V,, soon
to represent the continuation of the self-similar slip distribution. Then, a causal healing behavior begins to
stop the rupture growth. The slip velocity V(,f) can be defined by
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Herein, T(&) and T,(§) are the times of the onset of rupturing and healing at &, respectively, T,(&) is the
time that the rupture heals, and A(§) is the healing interval. In addition, Tr=T}(&p) is the faulting duration,
[ is the healing speed that is specified as the shear wave velocity, and Er=(&:,0) is the last point of the
rupture to heal.

Specifying the rupture end on the positive &-axis (toward the ground surface) as Er=(&x,0), then the
faulting duration Tr can be determined from T(Eg)=T/,(Er) as
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As shown in Fig. 1, the boundary 7 of the rupture range can be defined by &, = (&, + Rcos€, Rsin6) , and
further, the function R(6) can be determined from T(&r)=T(Er) as
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It can be found that the extent of the rupture is asymmetric about the hypocenter, and the rupture growth is
intermediate between a circular rupture and a unilaterally propagating rupture. However, it is noted that
the rupture is symmetric about the &-axis. The healing interval A€) is defined as 4g at &, and then
decreases linearly to become zero on the boundary /. Therefore, as shown in Fig. 1, the healing interval
AE) for a point E=(&,77) within the rupture range can be defined by
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Figure 2 shows the space-time diagram of the rupture growth and healing of the adopted source model for
the points along &-axis. The fault is slipping inside the region bounded by the lines T(&) and T,(&), and is
healing in the gray region of T(&)<t<T},(&). Finally, the slip dislocation function can be defined from Eq. 1
as
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Figure 1. Local coordinates on the fault plane Figure 2. The space-time diagram of the

rupture growth and healing

NEAR-FAULT GROUND MOTIONS

Integral Representation Theory

As shown in Fig. 3, a fault plane X is defined in the half-space with a dipping angle J. Consider the global
Cartesian coordinate (x-y-z) system, the y-axis is defined as the intersection of the fault plane and the free
surface, and the later is defined by z=0. In addition, a local Cartesian coordinate (&-77-¢) system is defined



on the fault plane ({=0) with the origin being coincident with the hypocenter. The &-axis is along the slip
dislocation, and the angle between &-axis and y’-axis (parallel to y-axis) on the fault plane is defined by o
Therefore, the transform relationship between the unit vectors of the global and local coordinates can be
expressed by

e, =sinacosde +cosae, —sinasinde,

e, =—cosacosde, +sine, +cosasinde, (6)
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Figure 3. Global and local coordinates in 3D half-space for the near-fault analysis

Based on the integral representation theory, the induced displacement components at X, outside the fault
plane can be expressed by the Voigt form as

u,(x,) = [ [u,(x)] 05 (X,:x,)n, dS 3 x, ¢ % (7
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where [u;(Xo)] is the slip dislocation at rupture point Xy on the fault plane, 0' (xo,x )is the stress at X,

induced by a unit point force loaded along e; at xp, and 7, is the unit normal of the fault plane. Based on
the local coordinates, because [u;(E)]=[us (Ey)]=0 at each rupture point E=(&,7,0) and ne=1 with
ngs=n,;=0, Eq. (7) can be simplified by
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Based on the rotation transformation of displacement and force components between global and local

coordinate systems as well as the train rule, the induced displacement at X, outside the fault plane can be
expressed as
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where u is the shear modulus of the half-space. Parameter E\ (Xo;X;) is defined by
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where ufx(x;xp) , ufx(x;xp) and uf’”(x;xp) denote the displacement components (global x-y-z

coordinates) at X induced by a unit point force loaded along e, at x,. The other two parameters E, and E.
can be defined by Eq. (10) while the superscript ‘Gx’ of the displacement components being replaced by
‘Gy’ and ‘Gz’ to represent the unit point force loaded along e, and e,, respectively. In addition, the rupture
point Xo=(xo,Y0,20) on the fault plane can be expressed by the local coordinates as
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where Xa=(x4,Y4,24) denotes the hypocenter.

Green’s Function of Unit Point Force in Half-apace
Based on the global x-y-z coordinates, the displacement can be defined by the scalar potentials ¢, y and ¥
as

u=Ve+VxVx(0,0,)+Vx(0,0,p) (12)

All of the potentials satisfy the Helmoltz equations in frequency domain. For a point source located at X,
in a half-space, the induced potentials at x can be expressed in the frequency domain by
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where @,, 7, and ¥, are the solutions in an infinite space, ¢,, 7, and ¥, are the terms reflected from
the free surface (z=0). Considering the Fourier transformations between wavenumber and special
coordinate as well as the radiation conditions due to a point source, the general solutions of scalar
potentials can be solved and expressed by a double integral representation form as
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In addition, based on the traction free conditions on the free surface (z=0), the coefficients A,, B, and C, of
the reflected terms can be solved and expressed in terms of Ay, By and C as
vz, - 7V'Zﬂ . — -, - 7V)Zn . — - 7V)Zn
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herein, the reflected coefficients R,,, R, R, and R, are defined by
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Furthermore, it should be noted that the superscript "= of A, , B, andC, in Eq. (16) implies that the
coefficients of solutions in infinite domain should be evaluated under the condition of (z-z,)<0.

Consider the unit point forces along ey, ey and e,, respectively, the associated coefficients of the potentials
in an infinite domain can be solved as
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Therefore, the displacements u®* (x;%x,) ,u® (x;x,) and u® (x;x,) at x due to the unit point forces

loaded at x,, along ey, e, and e,, respectively, can be determined straightforwardly by Egs. (12)-(19).

Near-fault Ground Motions
Based on the displacements due to the unit point forces loaded along e, e, and e, the associated

parameters EX (X45X%,) E ,(Xy3%x,) and EZ (Xy5X,) can be determined by Eq. (10), and subsequently, the

induced near-fault displacement u(x,) with x, outside the fault plane can be determined by Eq. (9). Let



Xp=(x.,y,0) approach the free surface, the ground displacement components caused by the rupture of a fault
plane can be determined in the frequency domain and expressed by the double integral representation
form as
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where parameters A*, B* and C* are defined by
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Finally, based on the Fourier transformation between frequency domain and time domain, the time
histories of near-fault ground motions can be determined.

NUMERICAL EXAMPLE FOR A THRUST FAULT

Consider a reserve slip fault plane (o=n/2) buried in a half-space with longitudinal and shear wave
velocities of C,=5.6 km/sec and C,=3.2 km/sec, respectively. The hypocenter and the dip angle are defined
as x,=(0,0,13) km and &=40°. The dislocation [ (xy;@)] can be determined from the Fourier

transformation of the slip function D(&y;t) that is defined by Eq. (5) under the specified condition of
&=6.0km, &=5.25km, v=2.4 km/s, and 4r=0.5 sec. Furthermore, the maximum dislocation is scaled to



become 1.5 m. Figure 4 shows the associated snapshots of the slip dislocation functions at some discrete
times, and the space-time slip function for the points on &-axis is shown in Fig. 5.
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Figure 4. The snapshots of the slip dislocation functions under the specified conditions

Dig 1 ()

Figure 5. Space-time function of the slip displacement for points on &-axis

Based on the proposed methodologies, the induced near-fault ground motions can be determined. The
simulated time histories of ground displacement and velocity for observation points along x-, y-axes and
P-P’ line (with an angle of /4 from x-axis) are compared in Fig. 6. The representative pulse-like velocity
waveforms can be found within the near-fault area where the rupture front and healing front are close to
each other to cause interference, and the duration of the pulse is about 1.0 second. The contours of the
induced PGA and PGV are shown in Fig. 7, where the circles denoting the ground observation points

specified in this earthquake scenario.
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Figure 6. Time histories of (a) ground displacement and velocity along x-axis, (b) ground velocity
along y-axis and (c) along P-P’ line (1/4 from x-axis)
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Based on the simulated time histories of ground acceleration, the associated near-fault response spectra

can be determined. Figure 8 illustrates the response spectrum shapes (spectral acceleration, velocity and
displacement) for observation points located along x-, y-axes and P-P’ line, and the contour maps of the

spectral demands at structural period of 1.0 second are shown in Fig. 9. It can be found from Figs. 7 and 9

that the variation of near-fault spectral demands is coincident with that of the representative ground
velocity pulse.
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Figure 8(a): Horizontal response spectrum shapes (x-component) along x-axis
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Figure 8(b): Horizontal response spectrum shapes (x-component) along y-axis
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Figure 8(c): Horizontal response spectrum shapes (y-component) along y-axis
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Figure 9(a): Contour maps of the spectral displacement at structural period of 1.0 second (unit: m)
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Figure 9(b): Contour maps of the spectral velocity at structural period of 1.0 second (unit: m/s)
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Figure 9(c): Contour maps of the spectral acceleration at structural period of 1.0 second (unit: m/s’)

NEAR-FAULT EARTHQUAKE PERFORMANCE OF A 12-LEVEL STEEL FRAME

The time history analysis of a 12-level steel frame is considered to evaluate the near-fault earthquake
performances. The 12-level steel frame is located in Taipei City, and is specified as a moment resistance
system. Three bays with width of 950, 1050, 950 cm and 700, 800, 700 cm are considered for the steel



frame in X- and Y-directions, respectively. In addition, the height of the first level is 4.2 m, while 3.1 m
for the other story levels. Based on the current seismic design code (issued in 1997), the lateral design
base shear is determined to be 844.7 ton while total mass of the steel frame being 7714.3 ton.
Furthermore, following the specified design procedures for steel structures by allowable stress design
(ASD) method, the 12-level steel frame can be designed by using the STEELER design program. The plan
view and size of the designed steel frame are shown in Fig. 10.
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Figure 10. Plan view and size of the designed steel frame

The x-components of the near-fault ground motions determined for all of the observation points in the
aforementioned near-fault earthquake scenario (thrust fault) are considered as the input to implement the
time history analysis of the designed steel frame (X-direction) to evaluate the induced earthquake
performance. In order to yield the designed steel frame into the non-linear state, the ground motions for all
observation points are amplified such that the scaled PGAs are within the range of 80 gal to 320 gal. The
software of DRAIN-2DX is adopted in the time history analysis, and the bilinear model is assumed for the
designed steel frame. It is noted that the first mode period of the design steel frame is determined to be
1.85 seconds.

The observation points along x-axis are considered firstly. The associated maximum story drift ratio for
each story level of the 12-level steel frame is determined and compared in Fig. 11, and the distribution is
shown in Fig. 12. It shows that no significant difference of maximum story drift ratios among all story
levels can be found for an observation point at the foot wall with an epicentral distance larger than 15 km.
However, for an observation point within the pulse-affected area, the maximum story drift ratios for
different story levels are much different from each other, and the larger maximum story drift ratios are
induced at lower story levels (4-6 floors). It implies that the variation of required ductility demands of all
story levels is significant due to the near-fault effect, and hence should be taken into consideration in
designing a high-rise building against the near-fault ground motions.

On the other hand, the maximum story drift ratio among all story levels of the steel frame is determined
for all of the observation points, and the distribution and associated contour map are shown in Fig. 13.
Again, it can be found from Figs. 7 and 13 that the variation of near-fault ductility demands is coincident
with that of the representative ground velocity pulse.
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Figure 13. Distribution of the maximum story drift ratio of the 12-level steel frame and the
associated contour map



CONCLUSION

In this paper, a quasi-dynamic rupture model of a buried dip-slip fault is defined. Then, based on the
integral representation theory, the ground motions of a three dimensional half-space can be determined by
means of the slip function of a buried fault plane as well as the Green’s function due to a unit point source
within the half-space. In consequence of the directivity effect, the representative pulse-like velocity
waveforms can be found within the near-fault area owing to the interference of the rupture and healing
fronts. Therefore, instead of the scarcely observed near-fault ground motions, the near-fault structural
response spectra can be studied by the simulated representative pulse-like ones to show the attenuation of
required spectral demands for designing structures against the near-fault ground motions.

It can be found from the earthquake scenario caused by a reverse slip fault that the distribution of spectral
demands is coincident with that of the representative ground velocity pulse, and in general, the near-fault
impact in x-direction (perpendicular to the fault) is larger than that in y-direction (parallel to the fault).
Furthermore, based on the simulated typical pulse-like near-fault ground motions, the induced earthquake
performance and the required ductility demand of a 12-level steel frame are evaluated. The results show
that the distributions of the structural response and ductility demand are in accordance with the growth
and decline of ground velocity pulse. Furthermore, it can be found that, within the pulse-affected area, the
maximum story drift ratios for different story levels are much different from each other, and the larger
maximum story drift ratios are induced at lower story levels.
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