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SUMMARY 
 
This paper addresses the assessment of destabilizing effects of gravity, usually referred to as P-Delta 
effects, in highly inelastic structures when subjected to seismic excitations. The proposed approach is 
based on an equivalent single-degree-of-freedom (ESDOF) system of the actual building. Appropriate 
properties of the ESDOF system are defined, based on results of a corresponding global pushover 
analyses. P-Delta effects are incorporated via an auxiliary backbone curve, which is rotated by a uniform 
stability coefficient. The procedure is evaluated for several multistory generic frame structures. The 
collapse capacity of these structures is derived from a set of Incremental Dynamic Analysis (IDA) studies 
involving 40 ground motions whose intensity is increased until P-Delta instability occurs. The results are 
translated from the ESDOF domain into the domain of the multi-degree-of-freedom (MDOF) system, and 
utilized for the estimation of P-Delta effects in MDOF structures. “Exact” results are contrasted with 
outcomes of the analyses utilizing ESDOF systems. Assumptions and limitations of the ESDOF system 
approach are discussed. The emphasis is on the level of response at which the structure approaches 
dynamic instability (sidesway collapse). 
 

INTRODUCTION 
 
Gravity loads lead to a reduction of the lateral stiffness of buildings. Generally, for elastic structural 
behavior, the decrease is of minor importance in realistic buildings because its magnitude is small 
compared to the first order elastic stiffness. During severe seismic excitations, however, inelastic 
deformations combined with gravity may cause a structure to approach a state of dynamic instability if the 
post-yield tangent stiffness becomes negative. In such a condition, the displacement response tends to 
amplify in a single direction due to the ratcheting effect, and as a result, the global collapse capacity of the 
structure is attained at a rapid rate. Studies of the effect of gravity on the inelastic seismic response of 
structures have been recently presented in [1 - 6]. 
 
Equivalent single-degree-of-freedom (ESDOF) systems are used extensively in current design practice to 
estimate global strength, stiffness, and ductility requirements for multi-degree-of freedom (MDOF) 
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structures. Properties of ESDOF systems have been proposed by several investigators through various 
formulations (see e.g. [7 - 11]), but the common assumption in most (not all) of the methods is that the 
deflected shape of the MDOF system can be represented by a shape vector, which remains constant during 
the time history, regardless of the level of deformation. Application of ESDOF systems for the seismic 
response prediction of MDOF frame structures is highly desirable in order to customize the extensive 
database of single-degree-of-freedom (SDOF) systems for these more general structural systems. Because 
P-Delta effects are mostly controlled by lateral displacements in the lower stories, it is reasonable to 
assume that these effects can be captured by means of ESDOF systems even in tall buildings in which 
upper stories are subjected to significant higher mode effects. 
 
The P-Delta effect varies over the height of the structure as a function of the axial force demand and the 
interstory drift. If the story drifts remain rather uniformly distributed over the height, regardless of the 
extent of inelastic behavior, then a global assessment of P-Delta is not difficult. However, if a partial 
mechanism develops, which may extend over one or several stories, then the effective P-Delta effect will 
be greatly affected by the change in deflected shape, and it will be amplified in those stories in which the 
drift becomes large. This will affect the effective P-Delta stability coefficient that should be employed in 
the ESDOF system. Bernal [12] and Aydinoglu [13] have provided good insight into this problem. 
However, adequate incorporation of P-Delta effects in these ESDOF systems becomes a challenging task 
for highly inelastic systems. 
 
In real (not equivalent) SDOF systems the effect of P-Delta on the force-displacement relation can be 
simply modeled by a uniform rotation of the entire hysteretic loop by means of the elastic stability 
coefficient. In general, the concept of rotation of the hysteretic loop by means of the elastic stability 
coefficient is also applied to ESDOF systems, see e.g. [14, 15]. However, when structures respond highly 
inelastic and the P-Delta effects become large the elastic and inelastic stability coefficients may be very 
different [2]. In these cases, a formulation based only on the elastic stability coefficient is unable to 
capture the inelastic response because the effective post-yielding stiffness is underestimated. Bernal [12, 
16] has suggested to consider P-Delta effects in the ESDOF model by assigning an "average" stability 
coefficient to the backbone curve of the ESDOF system, which is composed of an elastic stability 
coefficient assuming a straight deflected shape, and an inelastic stability coefficient associated with the 
shape of the mechanism at collapse. The shape at collapse is determined from a static pushover analysis, 
and for both the elastic and inelastic stability coefficient analytical expressions are given by Bernal [16]. 
In this approach the strain hardening and strength deterioration at critical regions are not included. 
Furthermore, it is often cumbersome to identify the mechanism involved in P-Delta collapse because not 
only the global pushover curve (base shear versus roof displacement) must be determined, but also the 
story drifts of all stories are to be recorded and subsequently evaluated. 
 
In this paper, an alternative procedure for considering P-Delta effects in ESDOF systems is proposed to 
simplify the derivations of the ESDOF system properties. Appropriate parameters of ESDOF systems are 
defined rigorously. The shape vector, yield displacement, and post yield stiffness ratio are tuned to results 
from a global pushover of the corresponding MDOF structure with and without gravity. Elastic and 
inelastic stability coefficients are derived directly from the roof displacement versus base shear relation 
without specification of their analytical expressions. The underlying assumption of this procedure is that 
the post-yielding global stiffness, obtained from the roof displacement vs. base shear relationship, reflects 
the impact of the global or local mechanism involved when the structure approaches dynamic instability. 
Consideration of strain hardening is no additional effort, which is another advantage of the proposed 
procedure. The basic difference with respect to current methodologies is the explicit consideration of the 
inelastic stability coefficient.  
 



The objective is to assess the extent to which the collapse capacity of regular MDOF structures can be 
derived from results of the proposed ESDOF system. To achieve this objective, collapse capacities are 
computed for selected MDOF structures and their corresponding ESDOF models, and the errors in the 
ESDOF model predictions are evaluated. The collapse capacities are derived from a set of Incremental 
Dynamic Analysis (IDA) studies involving 40 ground motions whose intensity is increased until P-Delta 
instability occurs. The results of this investigation are valid only for non-deteriorating hysteresis systems, 
i.e., strength and stiffness deterioration due to excessive deformations or cyclic loading is not considered. 
 

THE EQUIVALENT SINGLE-DEGREE-OF-FREEDOM (ESDOF) MODEL 
 
Structural modeling of the ESDOF system 
Starting point of the subsequent considerations is the governing set of differential equations of an MDOF 
structural system given as 

 garMqxM −=+&&  (1) 

where M is the mass matrix, x denotes the vector of the dynamic degrees of freedom, i.e. displacements 
relative to the base and rotations, and r is the influence vector representing the quasi-static displacements 
of the degrees of freedom from a unit support displacement in direction of the ground acceleration ag . q is 
the vector of internal forces. The deflected shape of the MDOF system is represented by a shape vector, 
φ , which remains constant during the time history, regardless of the level of deformation. The appropriate 
choice of φ  is discussed in a subsequent section. A proper choice of the degree of freedom is the roof 
displacement xr . Assuming φ  normalized with respect to xr , the deflected shape x of the MDOF system 
may be expressed as 

 x = φ xr  , φr =1 (2) 

Substituting Eq. (2) into Eq. (1) and pre-multiplying the resulting expression with φ T  gives the equation 
of motion of the ESDOF model in analogy to a real SDOF system, 

 gaLqDL *** −=+&&  (3) 

where D and q*are the equivalent displacement and the force, respectively, of the ESDOF system,  

 D =
m*

L* xr  , q* = φT q  , L* = φT M r  , m* = φ T M φ  (4), (5), (6), (7) 

Structural (linear) damping is considered via a viscous damping ratio, which corresponds to the modal 
damping coefficient of the fundamental mode of the MDOF system.  
 
The force-deformation relationship of the ESDOF system is determined from the base shear-roof 
displacement relationship of a nonlinear pushover analysis of the MDOF structure. Thereby, the nonlinear 
global pushover curves have to be idealized by a bilinear, trilinear, or multilinear diagram; see for example 
Fig. 1 for a bilinear idealization. Note that for the subsequent considerations the global pushover curves of 
the MDOF structure without gravity loads (i.e. no P-Delta) are utilized as the base case. The 
corresponding variables are indicated by a subscript “0”, whereas parameters, which are effected by P-
Delta are characterized by a subscript “p” (see also Fig. 1). The diagram needs to be translated into the 
force-deformation domain of the ESDOF model before it can be utilized for the ESDOF model analyses. 
The yield displacement Dy  of the ESDOF system is obtained by multiplication of the roof displacement at 
yield xry  with the ratio m* / L*  (see Eq. (4)). 
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Figure 1: Global pushover curve of a MDOF structure with and without P-delta effects and its bilinear 

idealization. 
 
The relation between the base shear V0  and the equivalent force q* is established following the procedure 
outlined subsequently. To satisfy static equilibrium the story force vector q0  and the vector of lateral 
loads applied to the MDOF structure in the pushover analysis must be equal: 

 q0 = λ R   (8) 

where R is a vector (with arbitrary magnitude) proportional to the lateral loads, and the coefficient λ  is a 
multiplier, which determines the magnitude of the lateral loads. Furthermore, the base shear V0  is defined 
as the total sum of the story forces,  

 V0 = 1T q0 = λ 1T R  (9) 

and thus, the relation between the equivalent force of the ESDOF system q0
*  and the base shear V0  can be 

expressed by (compare also with Eq. (5)): 

 q0
* = β V0  , β =

φ T R

1T R
 (10), (11) 

The proposed procedure becomes identical with the approach of Fajfar [11], when the product of mass 
matrix and shape vector Mφ  and the distribution vector of the lateral load R are proportional. The 
equivalent force qy 0

*  at yield may be found by inserting the base shear at yield Vy0  into Eq. (10). Utilizing 
the equivalent stiffness 

 k0
* =

qy 0
*

Dy

 (12) 

and “mass” L*  (compare with Eq. (6)), the initial (elastic) period of vibration of the ESDOF system can be 
computed from 

 T0 = 2 π
L* Dy

qy 0
*  (13) 

which may be different from the initial period of the actual MDOF system. 
 



Representation of P-Delta in the ESDOF model 
The impact of P-Delta on global pushover curves is illustrated in Fig. 1. It can be seen that the roof yield 
displacement xry  is in general not substantially affected by P-Delta, however, elastic and post-yielding 
stiffness may decrease strongly (dependent on the magnitude of the gravity loads). Thus, P-Delta effects 
reduce the yield strength Vyp of the MDOF system and the yield strength qyp*  of the ESDOF system, and 
the initial periods of vibration with and without P-Delta, Tp  and T0 , respectively, of the ESDOF model 
are related as: 

 Tp = T0
1

1−θe
 (14) 

because  

 qyp
* = qy0

* 1− θe( ) (15) 

In Eqs (14) and (15) θe represents the elastic stability coefficient.  
 
P-Delta effects in SDOF systems should be represented by rotation of the hysteresis diagram. The question 
is what is the most appropriate stability coefficient (angle of rotation) to be employed. The P-Delta effect 
in MDOF systems depends on many aspects, including relative story strength and stiffness, distribution of 
gravity loads over the height, and the extent of inelastic behavior. It can be argued that in the elastic range 
of response the maximum story stability coefficient is most appropriate. However, in the inelastic range 
the P-Delta effect grows, and its importance strongly depends on the deflected shape of the structure, 
which varies with the extent of inelastic behavior. Thus, the maximum elastic story stability coefficient 
loses much of its meaning in the inelastic range and it may severely underestimate the importance of P-
Delta effects.  
 
The search for appropriate stability coefficients in ESDOF systems is a challenge partially addressed here. 
In this study, P-Delta effects are represented by the elastic and the inelastic stability coefficient, θe and θi , 
respectively, obtained from the global pushover curve, as shown in Fig. 1. The coefficients θe and θi  are 
often different, but in an ESDOF system the rotation applies to both elastic and inelastic range. In general, 
θi  is larger than θe. Therefore, the classical approach of rotating the entire hysteretic loop by means of θe 
may severely underestimate the effect of P-Delta on the structural response of the ESDOF model. Thus, 
the need exists to create an auxiliary backbone curve, whose rotation by an “auxiliary” stability coefficient 
θa  results in the desired backbone curve including the P-Delta effect, but with the constraint that the 
auxiliary stability coefficient should be close to θi . The relations between the auxiliary backbone curve 
and the backbone curves of the equivalent ESDOF system with and without P-Delta are illustrated in Fig. 
2. In the following a subscript “a” refers to properties of the auxiliary backbone curve. These properties 
are generated from the following conditions: 
• The yield strength including P-Delta must be the same when determined from the actual (without P-

Delta) and the auxiliary envelope: 

 qyp
* = 1 −θe( )qy0

* = 1− θa( )qya
*  (16) 

• The yield displacement is the same for all backbone curves, and may be expressed by the ratios of both 
auxiliary stiffness over auxiliary strength and actual stiffness over actual strength: 

 Dy =
qy0

*

k0
* =

qya
*

ka
*  (17) 

• The post-yielding stiffness including P-Delta effects is the same when calculated from the auxiliary 
envelope or the original backbone curve: 
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Figure 2: Global pushover curve in the ESDOF domain with and without P-delta effects and the 

corresponding auxiliary envelope. 
 

 α s0 −θi( )k0
* = α sa −θa( )ka

*  (18) 

• The strain hardening coefficient of the auxiliary backbone curve α sa  and of the original backbone 
curve (system without P-Delta) α s0  are identical: 

 α s0 = α sa  (19) 

The combination of Eqs (16) to (19) results in the following initial stiffness, yield strength, and stability 
coefficient of the auxiliary backbone curve: 

 ka
* =

1− θe +θi −α s0

1 −α s0
k0

*  , qya
* =

1− θe +θi −α s0

1− α s0
qy 0

*  , θa =
θi −θe α s0

1− θe +θi −α s0
 (20) 

Then, the period of vibration of the auxiliary ESDOF system is modified according to 

 Ta = T0
1 −α s0

1− θe +θi −α s 0
 (21) 

For backbone curves with small strain hardening coefficients (α s0  < 10%), the formulation can be 
condensed by assuming that the slope of the auxiliary backbone curve is equal to that of the original 
backbone curve (instead of using the same strain hardening coefficient of Eq. (19)): 

 k0
*α s 0 = ka

* α sa  (22) 

This simplification does not lead to an appreciable loss of accuracy, and when Eqs (16) to (18) and (22) 
are combined, the following modified expressions are derived: 

 ka
* = 1 −θe + θi( ) k0

*  , qya
* = 1− θe +θi( )qy 0

*  , α sa =
α s0

1− θe +θi
 , θa =

θi

1− θe +θi
 ,  (23) 

 Ta = T0
1

1− θe +θi
 (24) 

The yield reference displacement Dy  and the parameters m*  and L*  remain unaltered in the auxiliary 
ESDOF system.  



In earlier approaches dynamic P-Delta effects of SDOF systems may be considered only by rotating the 
hysteresis loop according to an elastic stability coefficient. The proposed use of an auxiliary backbone 
curve permits the direct use of the inelastic stability coefficient in the ESDOF analysis. Implementation 
requires that the SDOF analysis program either accommodates rotation of the hysteresis loop by an angle 
θa  or permits incorporation of P-Delta effects corresponding to a gravity load that causes a stability 
coefficient θa . 
 
Translation of results from the ESDOF domain into the MDOF domain 
The results derived by means of an ESDOF model must be transformed back to the MDOF domain. For 
example, the equivalent displacement D is multiplied by the ratio L* / m*  in order to describe an estimate 
of the roof displacement xr  of the actual MDOF structure, compare with Eq. (4). Results could be 
presented as normalized maximum peak roof displacement (Engineering Demand Parameter - EDP) 
versus an appropriate measure representing the intensity of the imposed ground motion (Intensity Measure 
- IM). For example, the parameter [Sa (T1) / g] /γ  could be used as a relative intensity measure, where 
Sa(T1)  is the spectral acceleration at the fundamental period of the MDOF structure (without P-Delta). 
The base shear strength coefficient γ , defined as γ =Vy0/ M g, is used to identify the strength of the 
structure [17]. The transfer of the relative intensity of the ground motion from the ESDOF into MDOF 
system domain is given by the relation: 

 
Sa(T1) / g

γ
≡

Sa(T1) / g

Vy 0 / M g
=

1

λIM

Sa(T1) /g

qy0
* /L* g

 , λIM =
L*

β M
 (25), (26) 

If the maximum roof displacement xr , normalized by the spectral displacement Sd(T1)  is used as the 
EDP, the ESDOF to MDOF transformation is 

 
xr

Sd
= λEDP

D

Sd
 , λEDP =

L*

m*  (27), (28) 

 
EVALUATION OF THE PROPOSED ESDOF SYSTEM 

 
In this section the capability of the proposed ESDOF system to predict the collapse capacity of tall 
buildings is evaluated by numerical simulations. Assumptions and limitations are discussed. 
 
Analyzed generic MDOF frame structures 
For this study, two-dimensional regular generic multi-story single-bay frames of uniform story height are 
utilized. Medina [2] provides a detailed description of these structural models. They are composed of rigid 
beams, elastic flexible columns, and rotational springs at the beam ends. Nonlinear behavior at the 
component level is modeled by non-degrading elastic-plastic behavior of the rotational springs to 
represent the global cyclic response under seismic excitation. The bilinear hysteretic model is used 
throughout the study. The strength of the springs is tuned such that yielding is initiated simultaneously at 
all spring locations in a static pushover analysis under a parabolic (NEHRP, k = 2) design load pattern. To 
each joint of the frame an identical point mass is assigned. The bending stiffness of the columns and the 
stiffness of the springs are tuned to render a straight line fundamental mode shape. P-Delta effects are 
simulated by assigning identical gravity loads to each story. This implies that axial column forces due to 
gravity increase linearly from the top to the bottom of the frame. The considered structures have a 
fundamental period of vibration of T1  = 0.2 N (N is number of stories), which makes them rather flexible 
and sensitive to P-Delta effects. The properties of the considered MDOF frame structures are as follows: 
• Number of stories, N = 12 and 18 
• Fundamental period, T1  = 2.4 s for N = 12, and T1  = 3.6 s for N = 18 
• Base shear strength coefficient, γ  = 0.1 
• Strain hardening ratio of the springs, α  = 0, 0.03 and 0.06 



• Percent of Rayleigh damping, ζ = 5% of the first mode and the mode at which the cumulative mass 
participation exceeds 95% 

• P/W ratio (ratio of dead load plus live load to dead load), ϑ  = 1.4, 1.2 and 1.0 
 
Applied procedure 
The following procedure is used to carry out a seismic evaluation of the collapse capacity of regular 
MDOF buildings utilizing ESDOF systems. 
 
Ground motion records 
A set of ordinary ground motion records (records without near-fault characteristics), denoted as LMSR-N, 
is utilized for time history analyses. The bin LMSR-N contains 40 ground motions recorded in Californian 
earthquakes of moment magnitude between 6.5 and 7 and closest distance to the fault rupture between 13 
km and 40 km. These ground motions were recorded on NEHRP site class D (FEMA 368, 2000). Medina 
[2] selected the records of the bin LMSR-N from the PEER (Pacific Earthquake Engineering Research) 
Center Ground Motion Database. This set of ordinary records has strong motion duration characteristics 
that are not sensitive to magnitude and distance. Qualitatively, conclusions drawn from the seismic 
demand evaluation using this set of ground motions are expected to hold true also for stiffer soil and rock. 
A statistical evaluation of this bin of records and its detailed description are provided in [2]. 
 
Analysis and representation of the results 
For a given structure with assigned geometric and structural properties, and a given ground motion record, 
a nonlinear time history analysis is performed. In the numerical simulations member P-delta effects and 
large displacement effects are not incorporated, because a pilot study revealed that both effects do not 
significantly affect the response even when dynamic instability is approached [18]. Utilizing ESDOF 
systems for collapse capacity prediction of tall buildings assumes implicitly that their seismic response is 
dominated by the first mode. Thus, the 5% damped spectral acceleration at the fundamental period Sa(T1)  
of the MDOF structure (without gravity loads) is selected as the IM. Results are presented as normalized 
maximum roof displacements versus the relative intensity [Sa (T1) / g] /γ . The relative intensity 
[Sa (T1) / g] /γ  is plotted on the vertical axis, and the maximum roof displacement xr  normalized by the 
spectral displacement Sd(T1)  is plotted on the horizontal axis. In this representation a vertical line implies 
that xr  increases linearly with the ground motion intensity level Sa(T1) / g . In the analysis process for a 
given structure and a given ground motion, the value of [Sa (T1) / g] /γ  is increased in small increments of 
0.25 until either a value of 15 is reached or dynamic instability is evident. The latter, which is synonymous 
to collapse, is assumed to occur when the relationship between the relative intensity [Sa (T1) / g] /γ  and 
the normalized roof displacement approaches a zero slope. The normalized roof response to 40 ground 
motions provides a statistical representation of the response, which in subsequent graphs is represented by 
median values. 
 
Evaluation and discussion of the results 
Assessment of a 12 story MDOF structure 
A 12 story frame with a fundamental period of vibration T1  = 2.4 s is utilized to illustrate and evaluate the 
proposed procedure. The strain hardening ratio α  at the element level (i.e. of the rotational springs) is 3%. 
A first story elastic stability coefficient of θs1  = 0.084 can be derived if the ratio ϑ  of total dead + life 
load to total dead load (P/W ratio) acting on the first story level is 1.4. Specific data for the 12 story 
analysis cases are summarized in Tables 1 and 2. 
 
Global pushover curves with and without P-Delta effects are obtained by application of a parabolic and an 
inverted triangular lateral load pattern, respectively. For this model the triangular load pattern is congruent 
to the shape of the first mode. In Fig. 3 global pushover curves for this structure are presented in non-
dimensional form, using the base shear Vy0  and the roof yield displacement xry  of the system under 
parabolic load pattern without P-Delta effects for normalization. Heavy lines represent the nonlinear static 
response considering P-Delta, whereas thin lines refer to results without P-Delta effects. The global elastic 



stiffness for the system under inverted triangular load is slightly larger than for the structure under 
parabolic load. This fact is also reflected in the period of vibration of the corresponding ESDOF systems; 
the period of the ESDOF model based on a parabolic load pattern is larger when identical shape vectors 
are applied (see Tables 1 and 2).  
 

Table 1: Properties of ESDOF models based on global pushover under parabolic load pattern. 12 story 
generic frame: T1  = 2.4 s, α  = 3%, ϑ  = 1.4, θs1  = 0.084. 

shape 
vector 

α s0  θe  θi  θa  α sa  qya
* / qy 0

*
 T0  Ta  λEDP  λIM  

linear 0.039 0.060 0.096 0.093 0.038 1.04 2.46 2.42 1.44 1.44 

"1"       2.36 2.32 1.48 1.52 

"2"       2.58 2.53 1.41 1.34 

"3"       2.84 2.79 1.32 1.19 

 
Table 2: Properties of ESDOF models based on global pushover under triangular load pattern. 12 story 

generic frame: T1  = 2.4 s, α  = 3%, ϑ  = 1.4, θs1  = 0.084. 
shape 
vector 

α s0  θe  θi  θa  α sa  qya
* / qy 0

*
 T0  Ta  λEDP  λIM  

linear 0.045 0.062 0.094 0.091 0.044 1.03 2.40 2.36 1.44 1.28 

"1"       2.32 2.28 1.43 1.38 

"2"       2.50 2.46 1.38 1.24 

"3"       2.74 2.70 1.29 1.10 
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Figure 3: Global pushover curves based on parabolic and triangular load pattern, 12-story frame with and 
without P-delta effects. 

 
For a parabolic load pattern the post-yielding slope is linear, which is a result of tuning the yield strength 
to this load pattern. A strain hardening ratio α  of 3% for the rotational springs render global strain 
hardening ratios α s0  of 3.9% (parabolic load) and 4.5% (in average for inverted triangular load), 
respectively. P-Delta effects cause the nonlinear static response to have a negative post-yield slope. For 
the considered building the global stability coefficient in the inelastic branch of deformation θi  ( ≈ 9-
10%) is approximately 50% larger than the global elastic stability coefficient θe ( ≈ 6%). The inelastic 
slopes (including the effect of P-Delta) are parallel for both load patterns. In Tables 1 and 2 the stability 
coefficient θa  and the slope α sa  of the auxiliary backbone curve derived from Eq. (23) are given. Note 
that for this structure with a moderate negative post-yielding roof displacement slope the stability 
coefficient of the auxiliary backbone curve is slightly smaller than the inelastic stability coefficient. 



 
In Figs 4 and 5 the normalized displacement profiles at discrete roof displacements are shown. The 
profiles of Fig. 4 belong to the 12 story building under a parabolic load pattern. The normalized elastic 
deflected shapes of a static analysis with and without considering P-Delta effects (denoted by "1") are 
almost identical and close to a straight line. Driving the building in its inelastic range of deformation does 
not change the shape of the profile significantly when P-Delta effects are neglected (see the profiles 
denoted by "2" and "3" - light lines). However, the consideration of P-Delta leads to a "belly" in the 
inelastic profiles "2" and "3", indicating that there is a concentration of the story drifts in the lower stories. 
In Fig. 5 profiles of the same building exposed to a triangular load are presented. Here, the difference in 
the inelastic profiles "2" and "3" of a static analysis with and without P-Delta is less pronounced.  
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Figure 5: Deflected shapes from pushover 
analysis based on triangular load pattern, 12-
story frame with and without P-delta effects. 

 
Displacement profiles "1", "2" and "3" with P-Delta are subsequently utilized as shape vectors φ , which 
enter the properties of the ESDOF systems for deriving the nonlinear dynamic response of these structures 
subjected to ordinary ground motions. Additionally, a linear shape vector, which coincides with the first 
mode of the considered MDOF structures, is selected to model the ESDOF system. 
 
In Tables 1 and 2 the properties of all ESDOF models are summarized, based on parabolic and triangular 
load patterns and on different shape vectors. It can be seen that the period T0  of the ESDOF system is 
close to the fundamental period T1  of the corresponding MDOF structure when a linear or “elastic” shape 
vector is utilized. Inelastic profiles "2" and "3" lead to a softening of the ESDOF system. The scaling 
coefficients λEDP  and λIM  according to Eqs (26) and (28), respectively, are also given in these Tables. 
 
Fig. 6 shows the results of sets of IDA analyses applied to these ESDOF models based on the pushover 
with parabolic load pattern. The median response of the ESDOF models is presented in the MDOF 
domain. Heavy lines represent ESDOF results considering P-Delta effects, and light lines refer to 
outcomes disregarding P-Delta. When a curve becomes horizontal the collapse capacity of the 
corresponding ESDOF model is attained. Depending on the choice of the shape vector, ESDOF systems 
predict dynamic instability due to P-Delta between relative intensities [Sa (T1) / g] /γ  of 8.5 and 10.3. 
Comparison with the "exact" median of the relative collapse intensity ([Sa (T1) / g] /γ  = 9.7) from IDAs of 
the actual MDOF structure (shown by a dashed line) reveals that all ESDOF systems, even though they are 
based on different shape vectors, provide a reasonable estimate of the collapse capacity. The ESDOF 
system derived from shape vector "3" overestimates slightly the collapse capacity, whereas the equivalent 
system based on the elastic displacement profile underestimate its actual value. The dispersion of the 
ESDOF median response predictions utilizing various shape vectors is narrow banded for analyses 
without P-Delta, and also for moderate inelastic systems considering P-Delta when the relative intensity 



[Sa (T1) / g] /γ  is smaller than about 5. For this model, P-Delta effects do not have a pronounced influence 
on the system behavior at relative intensities ([Sa (T1) / g] /γ  lower than about 3.5. 
 
In Fig. 7 medians of peak roof displacements are presented when the properties of the ESDOF systems are 
based on a pushover analysis with triangular load distribution. The maximum roof drift demands are very 
similar to the predictions shown in Fig. 6 (parabolic load pattern): dynamic instabilities occur between 
relative intensities of 9.3 and 10.3. This confirms findings of earlier investigations (see e.g. [12]) that the 
results derived from ESDOF systems are insensitive to the choice of the load pattern in the underlying 
pushover analyses. 
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Figure 6: Effect of different shape vectors on the 

median normalized max. roof drift prediction 
with ESDOF model, 12 story frame with and 
without P-delta effects, underlying pushover 

with parabolic load pattern. 

Figure 7: Effect of different shape vectors on the 
median normalized max. roof drift prediction 
with ESDOF model, 12 story frame with and 
without P-delta effects, underlying pushover 

with triangular load pattern. 
 
 
Assessment of a 18 story MDOF structure 
The proposed procedure is tested also for a 18 story 3.6 s single-bay frame structure, which is more 
sensitive to P-Delta effects. The strain hardening coefficient α  of the bilinear springs is 3%, and the P/W 
ratio ϑ  is selected to be 1.4. P-Delta has a severe impact on this building, which is reflected by a first 
story elastic stability coefficient of θs1  = 0.130. Specific data for the 18 story analysis cases are 
summarized in Tables 3 and 4. 
 

Table 3: Properties of ESDOF models based on global pushover under parabolic load pattern. 18 story 
generic frame: T1  = 3.6 s, α  = 3%, ϑ  = 1.4, θs1  = 0.130. 

shape 
vector 

α s0  θe  θi  θa  α sa  qya
* / qy 0

*
 T0  Ta  λEDP  λIM  

linear 0.040 0.092 0.370 0.290 0.031 1.28 3.69 3.26 1.46 1.46 

"1"       3.46 3.06 1.50 1.62 

"2"       4.01 3.55 1.39 1.30 

"3"       4.69 4.14 1.23 1.08 

 
 
 
 
 



Table 4: Properties of ESDOF models based on global pushover under triangular load pattern. 18 story 
generic frame: T1  = 3.6 s, α  = 3%, ϑ  = 1.4, θs1  = 0.130. 

shape 
vector 

α s0  θe  θi  θa  α sa  qya
* / qy 0

*
 T0  Ta  λEDP  λIM  

linear 0.083 0.091 0.354 0.280 0.065 1.26 3.60 3.20 1.46 1.30 

"1"       3.54 3.15 1.45 1.36 

"2"       3.84 3.42 1.42 1.18 

"3"       4.16 3.70 1.34 1.07 

 
In Fig. 8 global pushover curves for parabolic and inverted triangular load patterns are presented. The 
shapes of the curves resemble those of the 12 story building, however P-Delta effects are much more 
pronounced. The inelastic stability coefficient (θi ≈ 35-37%) is about four times larger than the elastic one 
(θe ≈ 9%). The static roof displacement at collapse is only 3.6 times the roof yield displacement 
(parabolic load pattern). A 3% strain hardening ratio at the spring level results in 4.0% global strain 
hardening for the parabolic load pattern and in about 8% for an inverted triangular load pattern. Selected 
displacement profiles for a parabolic load pattern are shown in Fig. 9. In addition to a linear function these 
profiles (with P-Delta) are utilized as shape vectors for modeling the ESDOF systems. In Tables 3 and 4 
the properties of the ESDOF models and the auxiliary parameters according to Eqs (23) and (24) based on 
parabolic and triangular loading, respectively, are recorded.  
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Figure 8: Global pushover curves based on 

parabolic and triangular load pattern, 18-story 
frame with and without P-delta effects. 

Figure 9: Deflected shapes from pushover 
analysis based on parabolic load pattern, 18-
story frame with and without P-delta effects. 

 
Fig. 10 represents medians of the peak roof displacements derived from 40 IDA analyses for ESDOF 
systems with different shape vectors. According to a study on the MDOF structure, dynamic instability 
occurs at a relative intensity [Sa (T1) / g] /γ  of 3.4. Time history analyses using ESDOF systems predict 
this phenomenon at median intensities between 2.8 and 3.4. As for the 12 story structure, an ESDOF 
system based on the elastic-plastic deformation profile "3" leads to a higher estimate of the collapse 
intensity compared the outcomes utilizing shape vector based on a linear or elastic deflected profile. 
However, all ESDOF models based on different shape vectors result in a reasonable approximation of the 
collapse capacity. As shown in Fig. 11, ESDOF systems based on pushover outcomes with underlying 
inverted triangular load pattern also render estimates of about the collapse capacity of the same 
magnitude.  
 
A similar example is developed by varying the strain hardening ratio at the spring level: α  is stepwise 
increased from 0% to 3% to 6%. The ESDOF model used in the analyses is based on a parabolic pushover 
load and the inelastic shape vector "3". From Fig. 12 it can be observed that deviations between maximum 



roof drift predictions with and without P-Delta effects are initiated at the same relative ground motion 
intensity [Sa (T1) / g] /γ  of approximately 2 for all structures with different α , however the gradient and 
the rate of dynamic collapse depends strongly on the spring strain hardening ratio. Naturally the collapse 
capacity is largest for α  = 6% and smallest for α  = 0. The results of Fig. 12 indicate also that predictions 
of the collapse capacity with ESDOF systems are mostly on the conservative side.  
 
In another study the influence of the P/W ratio ϑ  on the quality of the collapse capacity predictions by 
means of ESDOF models is evaluated. Figure 13 shows stability coefficients as well as MDOF and 
ESDOF collapse capacities for P/W ratios of 1.4, 1.2 and 1.0 (θs1 = 0.13, 0.111, and 0.093, respectively). 
Observe the large effect of the P/W ratio on the collapse capacity of the MDOF structure, which may lead 
to differences of almost 60% depending on the additional live load included in the gravity load acting on 
the structure. 
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Figure 10: Effect of different shape vectors on 

the median normalized max. roof drift prediction 
with ESDOF model, 18-story frame with and 
without P-delta effects, underlying pushover 

with parabolic load pattern. 

Figure 11: Effect of different shape vectors on 
the median normalized max. roof drift prediction 

with ESDOF model, 18-story frame with and 
without P-delta effects, underlying pushover 

with triangular load pattern. 
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Figure 12: Effect of different strain hardening 
ratios on the median normalized max. roof drift 
prediction with ESDOF model, 18 story frame 
with and without P-delta effects, underlying 

pushover with parabolic load pattern. 

Figure 13: Effect of different gravity loads on 
the median normalized max. roof drift prediction 

with ESDOF model, 18 story frame with and 
without P-delta effects, underlying pushover 

with parabolic load pattern. 
 
 



SUMMARY OF PROCEDURE TO ESTIMATE THE COLLAPSE CAPACITY OF MDOF 
STRUCTURES UTILIZING ESDOF SYSTEMS 

 
The results presented here demonstrate that global P-Delta effects for non-deteriorating MDOF frame 
structures can be predicted with good accuracy from ESDOF systems using the following procedure: 
• Perform global pushover analyses of the MDOF structure, with and without considering P-Delta 

effects, to obtain global pushover properties and elastic and inelastic stability coefficients. It is 
recommended to select an inverted triangular or parabolic load pattern. 

• From the properties of the MDOF structure derive the auxiliary backbone curve and the auxiliary 
stability coefficient for the ESDOF system. 

• Select a shape vector according to the first mode or according to the elastic static deflection of the 
MDOF structure obtained from the pushover analysis. Determine the parameters of the ESDOF 
system, such as mass, stiffness, period etc. 

• Assign a constitutive law (hysteretic loop) to the ESDOF system, which represents, in the average, the 
nonlinear response characteristics of the MDOF structure. 

• Predict the time history response in the ESDOF domain, using the auxiliary backbone curve and 
stability coefficient, and transform the response back to the MDOF domain. 

• The collapse capacity can be obtained from a statistical evaluation of ESDOF data, with the results to 
be scaled up to the MDOF domain. Advantage can be taken of statistical data available on this 
parameter for ESDOF systems of appropriate properties, such as those presented in Ref. [6]. 

 
CONCLUSIONS 

 
The results presented in this study suggest that the application of the proposed ESDOF systems is 
appropriate to estimate P-Delta effects in non-deteriorating regular MDOF structures. In most cases the 
results derived from ESDOF systems for P-Delta collapse capacities are conservative; in particular if 
elastic deformation profiles are used as shape vectors. The initial period of the ESDOF depends on the 
load pattern and deformation profile of the underlying pushover. An overview of the dispersion of the 
results can be found by application of various proposed load patterns and shape vectors. Reviewing the 
results obtained in this study reveals that this dispersion decreases as the effect of P-Delta on the nonlinear 
response increases. 
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