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SUMMARY 
 

This paper discusses a vibration control algorithm for the Maxwell model that represents a building 
structure, under nonstationary random disturbances. First discussed is the optimum selection of passive 
mechanical parameters and active feedback gains for the system under stationary random process. 
Selecting an appropriate set of passive mechanical parameters under a given feedback gain minimizes the 
energy requirement for the controller. This optimum selection is probabilistically obtained under stationary 
random process. It is also proved that the same optimum parameter selection minimizes the force 
requirement for the controller. The stochastically expected optimum parameter set is numerically evaluated 
in the time domain under nonstationary random excitations. The deterministic analyses ascertained that the 
control energy converges to zero as the time goes to infinity under any nonstationary random disturbances. 
It is, then, theoretically proved that there exists an algorithm that could completely eliminate the energy 
requirement for the active controller under any random excitations.  

 
 

INTRODUCTION 
 

The structural control concept can be traced back to Yao [1] followed by theoretical investigation by 
several people such as Roorda [2], and Yang [3], just to mention a few. One of the pioneering age’s 
application projects was the Tuned Mass Damper activated by hydraulic actuators that was placed on John 
Hancock Tower in Boston, 1977 [4]. Soong [5] was one of the consulting researchers participated in this 
project, which made him to proceed to the active control research in the following years. He also used an 
active tendon to be placed in a building model on a shaking table, and successfully controlled the response 
vibration of the system [6]. Nishimura and Masri [7] conducted an experimental study of active control, 
which used a steel model (5 degree of freedom model) with an active controller placed in the middle of it. 
The phase lag of the upper portion of the specimen with respect to the lower portion works as a damping 
augmentation, which was successfully observed in the laboratory test. Theoretically predicted control 
performance was experimentally observed for the 1st, 2nd and 3rd mode vibration simultaneously. Those 
early attempts, however, did not successfully grow into a feasible technology in the civil engineering, 
though they received much attention.  
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On the other hand, Kobori [8,9,10] started a methodological research project and successfully completed 
the first application of AMD (Active Mass Driver) for an office building in Tokyo, 1989. This machine 
was composed of 4000kg mass, hydraulic actuator, sensing devices, signal processor and miscellaneous 
mechanical equipments. It could instantaneously activate itself to attenuate the response vibration of the 
structure as soon as its sensors detect the ground motion in case of earthquake.  

Since this first application was successfully completed in 1989, there were numerous research groups 
attempting to refine this technology. Attention was paid to how to reduce the controller’s force and power 
without degrading the control performance. These research activities resulted in what is now called hybrid 
mass dampers, which were implemented into several tall buildings in Japan. The theoretical formation of 
those projects was similar to what is shown by Yang and Samali [11] in the sense that they are both based 
on the modern control theory and its optimum algorithm. In retrospective view, Morison and Karnopp [12] 
are probably the first people who investigated hybrid mass dampers. They used modern control theory and 
came to the conclusion that numerically obtained optimum feedback gains could not be intuitively obtained 
by a simple physical analogy. In fact, it is impossible to constitute a system with active controller that 
requires no energy dissipation capacity.  Because we could not determine that optimum feedback gains 
until we fix a system including a controller. Further discussion will be referred to the later part of this 
paper.  

On the other hand, the author [13] found a unique control algorithm that made it possible to vanish the 
control energy completely under any nonstationary random disturbances. According to the algorithm, the 
control actuator generates either driving force or braking force according to the relative motion of the main 
structure to the auxiliary mass. Naturally, these two forces cancel each other when the system is under 
stationary condition. The physical meaning of the algorithm is clear and simple so that the extension of the 
same approach to another active structure formation such as active bracing seems possible and attractive.  

In this paper, the integral of the power response from the beginning to the end of an event of earthquake 
is defined as an index for the active structural member’s damage. Then, an algorithm is proposed and 
defined to reduce the system response. It has a unique feature that requires no energy dissipation capacity 
to achieve response reduction. The author conducted several numerical calculations according to this 
algorithm, which makes the control energy converge to zero as the time goes to infinity under any random 
disturbances regardless of their spectra and magnitude.  

 
 

OPTIMIZATION AND LIMINATION OF PASSIVE DAMPING  
 

An example multi-degree-of-structure model is shown in Fig.1, while partially strengthened model by 
means of bracing is shown in Fig.3. The model in Fig.2 represents a frame with linear dampers equipped 
inside. We wish to minimize the response of the frame in Fig.2 under earthquake disturbances by selecting 
the most appropriate damping coefficient. As the damping coefficient becomes smaller, the frame 
dynamics in Fig.2 comes closer to that of Fig.1. On the contrary the damping coefficient becomes larger, 
the dynamics in Fig.2 comes closer to that of Fig.3. There is no response reduction expected from either 
case. In other words, there is expected the optimum value that gives the structure the maximum damping 
performance.  

The optimal damping coefficient is obtained in this section under stationary random excitation. Then, we 
evaluate the performance of the Maxwell model by the equivalent SDOF (Single Degree of Freedom) 
model.  The equation of motion in Fig.2 is shown in below.  
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The disturbance excitation is supposed to be (3) and several parameters are defined by (4).   
 

(3) 
 
 

(4) 
 

 
We obtain (5) by considering (3) and (4) and taking the Laplace transforms of (1) and (2). 
 
 

(5) 
 
 
The transfer function representation is shown below. 
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Fig.1 The Original Frame           Fig.2 Maxwell Model                Fig.3 Brace Model 
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where   
 

(7) 
 
 

(8) 
 
 
If the disturbance excitation is supposed to be a stationary random process, the expected mean square of 

random variable X is given by (9).  
 

(9) 
 
 
Under a white noise disturbance whose spectrum )(ωfS is equal to oS , we find that (9) is equivalent to 
 
 

(10) 
 

 
We can minimize ][ 2XE to (11) by selecting dη to (12). 
 

(11) 
 
 

(12) 
 
 

It will be convenient to evaluate the performance of the optimum Maxwell model by identifying the 
SDOF model that has the same response under the same disturbance excitation. The transfer function of a 
SDOF model with the frequency eqω  and damping ratio eqη is given by (13) and (14). 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4 The Optimum Maxwell Model and the Equivalent SDOF Model 
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(13) 
 
 

(14) 
 
 

In the end, the mean square of the random variable X with respect to the white noise of the power 
spectrum oS  is given by 

 
(15) 

 
 

Comparing (11) with (15), we can evaluate the performance of the Maxwell model by means of 
equivalent damping ratio eqη .  

 
 

(16) 
 
 

The natural frequency of the frame with the optimal damping coefficient optc can be found by solving 
the characteristic equation of (17). 
 

(17) 
 
 

Although it is possible to obtain the rigorous solution of (17), it would be extremely complicated. When 
the optimal damping coefficient is selected, the complex solution of (17) represents the equivalent angular 
frequency eqω and damping ratio eqη . From (12) we understand that the complex stiffness of the 
Maxwell model has the absolute value of dkk 5.0+ , therefore eqω can be approximated by (18) 
 
 

(18) 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
Fig.5 Displacement Response Spectra              Fig.6 Displacement Response Spectra 

El Centro(NS) 341 cm/sec2                      Taft (EW) 176 cm/sec2                    

22 2

1
)(

eqeqeq

X
ss

sH
ωηω ++

=

eqeq

oS
XE

ηω
π

3
2

2
][ =














=

3

2

4

1

eq

do
eq ω

ωωη

0)(22 2222223 =++++ dodooptodopto sss ωωωωηωωηω

k

k d
oeq 2

1+= ωω

)()()( sFsHsX X=



Substitution of (18) into (16) yields (19), which represents the equivalent damping ratio of the SDOF 
model that has the same response power as the optimum Maxwell model in Fig.2. 
 
 

 (19) 
 
 

We understand from (19) that the equivalent damping ratio eqη is directly linked with the ratio 
β between dk and k . We understand from (18) that eqk in Fig.4 is directly linked with β as well.  
These two equations have been obtained in the frequency domain under stationary random process. Hence, 
we numerically calculate the displacement response spectra of the optimum Maxwell model and the 
equivalent SDOF model in Fig.4 under nonstationary random earthquake disturbances. The results are 
shown in Fig.5 and Fig.6, where El Centro (NS) with peak acceleration 341cm/sec2 and Taft (EW) with 
176cm/sec2 are used for the disturbances, respectively. The stiffness ratio β  in Fig.5 is 0.1 and β in 
Fig.6 is 0.3. The difference between the lines of two models is so small that we can evaluate the response 
of a Maxwell model if we know the stiffness ratio β .  
 
 

OPTIMIZATION OF ACTIVE BRACE (FUNDAMENTAL CONTROL LAW) 
 

As is reviewed in the previous section, limitation does exist for passive damping installation. We try to 
find an active control law to improve the damping performance for the system in Fig.7, where we 
substitute the passive dampers by actuators or active controllers. We place those active controllers in series 
connection with the stiffness dk , and we define the fundamental control law for a SDOF model that 
represents the building dynamics in Fig.7. Considering the equation of motion in (20) and (21), we 
understand that the primary response x  is regarded as the input signal while the secondary response 
y can be viewed as the output signal.  

As the output signal increases, the strain energy in the brace member also increases. Therefore, we need 
to increase the right side of (21) to push more strain energy into the brace member. At the same time the 
energy once accumulated in the brace member should be dissipated in the damping device as swift as 
possible. These two functions are requested for the active controller or the fundamental control law, which 
is shown in (22). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7 Fundamental control law for the active brace 
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 (20) 

 
(21) 

 
(22) 

 
  The first term of (22) works as an engine to push the vibration energy into the brace member, while the 
second term works as a braking force to dissipate the strain energy in the brace member. This is the 
physical meaning of the fundamental control law prescribed by (22). As we increase the feedback gain g , 
the energy dissipation per unit time linearly increases. Therefore we must select an appropriate 

Ac according to the feedback gain g . The following calculation is conducted to find the optimum 
)( optA cc = for this purpose. The same procedure in the previous section is applied for the following 

calculation. 
 

(23) 
 

Substituting (22) and (23) into (21), we obtain the equation of motion in Laplace transform. 
 

 
(24) 

 
 
Therefore, the transfer function of X from F  is given by (25). 
 
 

(25) 
 
 

If we suppose that the external disturbance is a white noise whose power spectrum is oS , the expected 
mean square of the random variable X is given by (26). 
 
 

(26) 
 
 

where the following substitution is introduced. 
 
 

(27)         
 
 

The damping ratio Aη can be viewed as the main variable of the function (26) so that the optimal 
damping ratio can be obtained in the same procedure and given by (28). 
 
 

(28) 
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The control performance of the above algorithm can be evaluated in terms of the equivalent damping 
ratio eqη and frequency eqω . We can replace (26) by (29) when the optimum damping (28) is selected. 
 
 

(29) 
 
 
The equivalent frequency eqω can be obtained by the absolute value of the complex solution of (30). 
 
 

(30) 
 

According to the same analogy in the previous section, we can approximate the frequency eqω by (31). 
 
 

(31) 
 
 
We can also estimate the equivalent damping ratio by comparing (15) with (29). 
 
 

(32) 
 

 
The feedback gain should be positive and satisfy the following equation to keep the system stable. 
 

(33) 
 

Analytically expected performance can be verified by response analyses under earthquake disturbances. 
The parameters for the fundamental model are shown in Table 2, where the optimum feedback gain 

Ac along with g , the equivalent SDOF model, and other necessary parameters are also indicated. These 
parameters are obtained from (28), (31) and (32).  
 

Table 2  Parameters for the fundamental control law and the equivalent SDOF model 
Parameters for the 
fundamental control law in 
Fig.7 

m = 1.0  ωο =6.32(rad/s)  ωd= 2.0 (rad/s)  k = 40.0  kd = 4.0 
g = 0.3  β = 0.1  ηA = ηopt= 0.06  cA = copt  = 0.756 

The Equivalent SDOF model 
in Fig.7 

m =1.0 ωeq= 6.00 (rad/s) ηeq = 0.098 
keq  = 36.0  ceq = 1.18 

 
 
 
 
 
 
 
 

Fig.8 Fundamental Control Law                    Fig.9 Equivalent SDOF model        
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The ground motion is supposed to be El Centro (NS) of which acceleration is 341cm/sec2. The 
fundamental control law reduces the displacement response as isshown in Fig.8 that corresponds well to 
the equivalent SDOF model shown in Fig.9. The expected damping factor for the original Maxwell model 
would be 2.3% without active control, while the fundamental control law increases the effective damping 
ratio up to 9.8% shown in Table 2. 
 
 

ENERGY DISSIPATION RESPONSE OF THE HYBRID CONTROL LAW 
 

We have determined the optimum feedback gains for the fundamental control law to minimize the 
response of the Maxwell model. Is it possible to reduce the control force and energy without degrading the 
control performance that is once achieved by the fundamental control law? We try to find the positive 
answer to this question. This is the purpose of the following calculation in this section. We define the 
hybrid control as is shown in Fig.10, where active braces are installed into the structure along with passive 
damping devices. The equation of motion in Fig.10 is given below. 
 

(34) 
 

(35) 
 

We select a control law that prescribes the actuator by (36) which has two feedback gains. You can 
select g  arbitrary, but you must select another feedback gain Ac  that should satisfy (37).  

 
(36) 

 
(37) 

 
As long as we keep satisfying (37), there still remains one freedom left for us to select another feedback 

gain Ac . The purpose of hybrid control is to attribute some of the control force to the passive device so 
that the energy requirement for the control actuator is reduced without degrading the performance once 
achieved by active control. Indeed, we can completely eliminate the active control energy by selecting the 
optimum Ac . The following equation will be satisfied regardless of the active control algorithm.  
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig.10 Hybrid control law for the active brace  
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(38) 

 
 

The power equilibrium can be obtained by multiplying the velocity vector to both sides of (38). 
 

(39) 
 
Integrating both sides of (39) from the beginning to the end of an event of earthquake, we can evaluate 

the energy equilibrium, which is given by (40). 
 

(40) 
 

 
Provided that the system is stable, the vibration will be subdued gradually as the time goes to infinity. 

Hence, we expect that (40) will converge to (41). 
 

(41) 
 
 

The first term of the left hand side of (41) represents dissipation energy, the second term means 
actuator’s control energy, while the right side of (41) is the total input energy due to the excitation ground 
motion. If we knew the ground motion in advance, we would be able to calculate both sides of (41) 
precisely. In addition to this we could select dc to the optimum value according to (42) so that we could 
make the control energy converge to zero for this particular ground motion. Of course it is impossible to 
tell what should happen in the future, we could not select the optimum dc until an earthquake actually 
takes place. This is the limitation for the deterministic approach.  

 
 

(42) 
 
 
 

On the other hand, if we replace the nonstationary random disturbance by a stationary random process, 
we will be able to predict the response and evaluate (43) instead of (42). This stochastic approach, however, 
necessitates us to suppose a spectrum for the disturbance excitation in the frequency domain. If we wish 
that any spectrum could satisfy the condition given by (43), a white noise should satisfy it as well. This is a 
necessary condition. 

 
(43) 

 
 

If the white noise has a uniformly distributed spectrum oS , the denominator of (43) is given by 
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The numerator of (43) is equivalent to the following equation. 
 

(45) 
 

 
where )(thx

& is the velocity impulse response function. Hence, (45) is equal to (46). If the 
auto-correlation function of the disturbance is defined by (47),  (45) eventually equals to (48). 

 
 

(46) 
 

(47) 
 

(48) 
 

 
The auto-correlation function is the Delta function given by (49), because we suppose the 

disturbance is the white noise whose power spectrum is oS . 
 

(49) 
 
 

The velocity impulse response satisfies (50) so that substitution of (49) and (50) into (48) yields (51). 
 

(50) 
 

(51) 
 
 

We found the optimum feedback gain Ac  and the passive damping coefficient pc are given by 
(52) after substituting (44) and (51) into (43). 
 

 
(52) 

 
 
In addition to this, we can prove that (52) is not only the necessary condition but also the satisfactory 

condition as well. If the condition by (52) is satisfied, the transfer functions of )(sX , )(sY  and 
)(sU from )(sF are given by (53), (54) and (55), respectively. 
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where 
 

(56) 
 

Once the hybrid control law and the associated parameters are determined according to (28), (36), (37) 
and (52), we can evaluate the power spectrum for the actuator control power by calculating the left hand 
side of (57). It is understood from (57) that the condition is always satisfied regardless of the spectrum of 
disturbances.  Hence, we proved that (52) is not only the necessary condition but also the satisfactory 
condition for (43). 

 
 

(57) 
 
 
A small comment on the comparison with the modern control method is stated as follows. In general, we 

could not formulate a linear quadratic optimum analysis until we select and determine the target system 
model. According to the method in this section, we select pc  in Fig.10 after determining feedback gain 
g . Therefore, this optimum solution could not be achieved by the conventional modern control approach. 

 
 

CONTROL FORCE RESPONSE OF THE HYBRID CONTROL LAW 
 

We have successfully adjusted the damping coefficient and found the necessary and satisfactory 
condition that minimizes the control power in a stochastic sense for the active brace shown in Fig.10. In 
this section, we try to minimize the control force without degrading the damping performance in the same 
manner as before. We prescribe the control law that is identical to (35). 

 
(58) 

 
If the disturbance is supposed to be a stationary random process, the expected mean square of the control 

force is given by (59). 
 

(59) 
 
 

We can view the right side of (59) as a quadratic function with respect to pc . When pc takes the 
following value, the expected control force response will be minimum. 

 
(60) 

 
In the time domain, we have the following equation for the control power. 

 
 

(61) 
 
If the disturbance is again supposed to be a stationary random process, the both sides of (61) can be 

viewed as power spectrum. 
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(62) 
 
 

Hence, we found the passive damping coefficient optc  that could vanish the control power in an 
ensemble sense, which is given by (63). 

 
 

(63) 
 
 
We found that (63) is identical to (60). As a result, pc  that minimizes the control force in a 

probabilistic sense also minimizes the control power at the same time. In the previous section, we proved 
that (52) is the necessary and satisfactory condition to minimize the control power under any stationary 
random process regardless of their spectrum. In the end, what minimizes the control force under any 
random process is also equal to (52).  

In the long run, we proved that the optimum solution that minimizes the control power in an ensemble 
sense also minimizes the control force under any stationary random process. In addition to that this closed 
form solution has nothing to do with the spectrum of the disturbance excitation. 
 
 

NUMERICAL ANALYSES 
 

We have found the optimum feedback gains and passive parameters that could minimize the control 
force and power for the hybrid brace control law under stationary random process. This is a probabilistic 
method. In this section we set up an example model that was based on the previous formulas, then this 
model is used to check the energy convergence or (64) under some ground motions. 

 
(64) 

 
 
 

Table 3 Parameters for hybrid control law for the active brace 
Parameters for the 
analytical model in Fig.10 

m = 1.0  ωο =6.32(rad/s)  ωd= 2.00(rad/s)  k = 40.0  kd = 4.0 

Hybrid control law in Fig.10 
 

g = 0.3         β  =0.1  
  copt = 0.756   cp  = 0.189   cA = 0.567 

 
 
 
 
 
 
 
 
 
 
 

Fig.11 Energy Response under El Centro(NS)       Fig.12 Energy Response under Taft(EW)   
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If we knew the whole ground motion in advance, we could calculate the whole system response and the 
optimum pc that could satisfy (42). In other words, we could make (64) be satisfied. It is, of course, 
impossible, because we can’t tell the future. Therefore, we obtained the most probable parameters by a 
stochastic method. Now we can calculate pc and Ac  in advance. Yet, there remains a suspicion if (64) is 
satisfied in a deterministic sense. Is (64) satisfied under any nonstationary random excitations? This is the 
motivation and purpose of the following calculation.  

There is one example model given in Table 3. The optimum parameters are obtained by (28) and (52). 
The total input energy, the active control energy, and the passive dissipated energy are defined by (65), 
(66), and (67), respectively. The energy coming into the system is defined negative, and the energy 
dissipated in the system is positive.  

 
(65) 

 
 

(66) 
 
 

(67) 
 

 
The energy responses are shown in Fig.11 when the ground motion is supposed to be El Centro 

(NS) 341 cm/sec2. The control energy converges to zero under the earthquake ground motion, which is 
a typical example of nonstationary random excitation. Another example is shown in Fig.12, where the 
control energy again converges to zero under Taft (EW) 176cm/sec2 earthquake disturbance. 
Therefore, (64) is actually satisfied under nonstationary random disturbances. We can explain the 
reason for this interesting result. We found that (64) is equal to (68) by referring to (54) and (55).  

 
 

(68) 
 
 
Thus, the control energy under any earthquake motion converges to zero, as long as the system is stable. It 

also is proved that the control energy is always negative by referring to (68). In fact, we found that the 
control energy responses are negative at any moment in Fig.11 and Fig.12.  

 
 

CONCLUSIONS 
 

We found that the damping augmentation expected from the passive devices in a building structure 
is relatively small.  It is true that we could make passive damping devices affluent with energy 
dissipation capacity, but it is virtually impossible to put the whole input energy into a small portion of 
a structure. As a result, we could not make maximum use of the damping devices to attenuate the 
response vibration of the system. Under the same constraint condition, there is an active control law 
that could improve the control performance without any energy supply. According to this method, it is 
always possible to make the control energy converge to zero as the time goes to infinity under any 
non-stationary random disturbances.  
  The conventional definition of the damage on structure members depends on strength, deformation 
level, and accumulated energy dissipation. Especially, the energy integral over the whole length of 
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excitation period has been recognized as the most reliable and general index that is least influenced by 
earthquake spectrum, structure systems, material properties, strength, and so on. But we have to admit 
that there exits an active structure member for which we could not apply the conventional energy 
based assessment approach as least theoretically.  
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