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SUMMARY 
 
To simplify the non-linear dynamic design procedure on steel framed structures to seismic actions, a new 
design-friendly reduced analysis is proposed as a vibration-mode failure-mode integrated analysis. The 
present method is based on two kinds of simplified plastic surface model: one modeling is a yield 
polyhedron model with reduced number of failure modes, and another much simpler model is a yield 
hyper-ellipsoidal model. The validity of the simplified analyses proposed is checked by comparison with a 
pseudo-dynamic response test on a 2-story steel frame specimen and a detailed analysis on a 9-story 3-bay 
frame model. 
 

INTRODUCTION 
 
The emphasis in seismic resistance design is shifting from “strength” to “performance” following the 
demand and collapse of numerous structures during recent earthquake. Gradually, performance based 
designs are becoming a part of code provisions with publication of FEMA-273 [1] in USA and 
Enforcement Order and Regulation after Building Standard Law of Japan was revised in 1998 [2]. At the 
same time, it may be fair to say that simple and efficient methods for capturing the essential and important 
features affecting the performance have not been adequately developed. The objective of this paper is to 
develop a design friendly method for performance evaluation of ductile steel moment-resisting frames, 
which are used as the primary lateral load resisting systems in many middle-rise buildings. Proposed 
research focuses on the simplifications of non-linear dynamic design procedures (NDP). This study 
intends to benefit the design engineer by bringing NDP, which is usually considered complicated and 
costly, within the reach of a structural engineer, who is familiar with linear dynamic analysis. 
 
This paper presents a non-linear dynamic procedure with partial-mode response analysis with simplified 
plastic failure surface models. A safety domain about plastic collapse of an elastic-perfectly plastic frame 
is approximated by a yield polyhedron with a reduced number of failure modes. To reduce the number of 
failure modes, a preliminary analysis based on first-order second-moment (FOSM) reliability method is 
proposed by Khandelwal [3]. This method requires, however, an exhaustive procedure to enumerate the 
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whole failure mechanisms, and the failure surface becomes a convex polyhedron made of a lot of hyper 
surfaces even after they are reduced. Sometimes it happens to encounter the problem of dealing with 
extreme points during the renewal procedure of restoring force. To avoid them, an alternative method is 
proposed in this paper. The plastic failure surface is approximated by a hyper-ellipsoidal model, which has 
no extreme point and provides a much easier procedure to trace the inelastic global behavior than the yield 
polyhedron model. Additionally, the method proposed does not require the enumeration of enormous 
failure mechanisms to arrange the hyper-ellipsoidal yield surface. 
 
And then, the validity of the proposed response analysis here is checked by comparison with a detailed 
computer analysis on a 9-story 3-bay steel moment-resisting frame as well as a pseudo-dynamic response 
test on a 2-story 1-bay steel frame specimen. 
 
 

PARTIAL MODE RESPONSE ANALYSIS IN MODAL SPACE 
 
The equation of motion for a multi-degree-of-freedom system with viscous damping and hysteretic 
inelastic restoring force under seismic excitation is represented as: 
[ ] { } [ ] { } { } [ ] { } 01 gMfxCxM &&&&& ⋅−=+⋅+⋅                                                                                                               (1) 

where [M] is mass matrix, [C] is damping matrix, { }x&&  are { }x&  acceleration vector and velocity vector 
relative to the ground, respectively, {f} is restoring force vector including plastic resistance of a frame, 
and 0g&&  is the ground acceleration. 
 
Here we define the transformation of displacement relative to the ground {x} and restoring force into 
modal coordinates as: 
Transformation of displacement: { } [ ] { }qx ⋅Φ=                                                                                            (2) 

Transformation of restoring force: { } [ ] { } [ ] { }rrf T ⋅Ψ=⋅Φ=
−1

                                                                    (3) 

where {q} is modal displacement vector, {r} is modal restoring force vector, [ ]Φ  is modal participation 
matrix based on classical normal modes for a linear-elastic frame system { } { } { }[ ]u,,u,u nn βββ L2211= , n 
is the number of vibration modes, and { }ψj  is the j-th base vector for force given as a column vector of 

[ ] [ ] 1−
Φ=Ψ T . 

 
By this transformation, the equation of motion on the modal space is given by: 
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where jh is the j-th modal damping constant, ωj  is the j-th natural circular frequency, and jM
* is the j-th 

effective mass. 
It should be noted that the modal coordinate used herein is just regarded as one of possible generalized 
coordinates, and it is not expected in the procedure to turn a stiffness matrix diagonal as done in a linea-
elastic modal analysis, because any stiffness matrix does not appear explicitly in Eqs.(1) and (4). Inelastic 
restoring force {f} and then inelastic modal restoring force {r} can be traced after any kind of hysteresis 
rule or algorithm (or sometimes measured from a loading test). 
 
The modal displacement increment can be calculated based on an explicit numerical integration (central 
finite difference) from the j-th modal component of restoring force: 
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j
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j qqq −=∆ ++→ 11 , n’ is the number of partial vibration modes. 

 
So far as all the vibration modes are considered, this analysis is strictly equivalent to the inelastic response 
analysis performed in the ordinary coordinate system. Furthermore, it is feasible to limit the vibration 
modes considered in the analysis to only a small number of relevant vibration modes (usually several 
lower-frequency modes are chosen). Such a technique of partial mode analysis is adopted in the following 
response analyses. 
 
 

SIMPLIFIED PLASTIC FAILURE SURFACE MODELS 
 
In this paper, the following two types of simplified plastic surface models are discussed. (1) One is a yield 
polyhedron model with reduced number of failure modes by the first-order second-moment reliability 
method (Khandelwal [3]), and (2) the other is a yield hyper-ellipsoidal model arranged to share some exact 
reference points on the yield surface obtained from pushover limit analysis. In this safety domain against 
plastic collapse, sequence of yielding before mechanism formation i.e. partial yielding is ignored (Fig.1). 

 
Fig.1 Skelton curves of member hysteresis based frames and simplified failure surface models 

 
Reduced yield polyhedron model 
A simple proposal to calculate global inelastic responses of MDOF steel moment-resisting frame was 
made by one of the authors [3], where a global yield surface model of a frame was arranged and simplified 
based on the limit analysis and the first-order second-moment reliability method. First, a procedure was 
proposed for ‘vibration mode – failure mode’ integrated analysis, wherein the restoring force 
characteristics are represented by a global convex yield polyhedron model, instead of a set of member-
hysteresis based models usually adopted in the inelastic structural analysis. Then FOSM is extended to 
choose an appropriate number of failure modes to be considered in the analysis. 
 
Equivalent-static seismic loading model 
A simple equivalent-static seismic loading model for linear-elastic seismic load effect is adopted only in 
the preliminary analysis to choose important failure modes. As the ground motion varies randomly in time, 
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mean value or expected value of modal restoring forces is taken as zero, and the modal restoring forces of 
different vibration modes are assumed statistically independent (Fig.2). In a usual notation of E( ) for 
expected value: 

( ) 0== rrE jj ; ( ) ( )jirrE ji ≠= 0                                                                                                             (6) 

( )ωσ jjAjrj ,hSMc ∗=                                                                                                                              (7) 

where rjσ  is standard deviation of the modal restoring force, c is a constant which is determined from the 

relationship between the standard deviation of modal restoring force at arbitrary points in time and its 
mean extreme as shown in Fig.3 (Davenport [4]), and around one thirds for the value of c may be 
acceptable when an earthquake-like short duration are dealt with (Shibata [5]), SA(jh, j ω ) is ordinate of 
acceleration response spectra, which depends on natural period and damping of j-th vibration mode. 
 

 
Fig.2 Random load model 

 

 
Fig.3 Probability density of random loading model and the peak response value 

 
Reduction of failure modes 
Stochastic limit analysis based on FOSM is applied herein for identification of more likely failure modes. 
It is assumed that the seismic action and the resistance are independent of each other. The performance or 
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limit state function, which is denoted by g and corresponding to each failure mechanism, can be written in 
terms of the energy dissipated by plastic portions and the work done by seismic action as: 
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where m is number of plastic portions (plastic hinges). The energy dissipated by plastic portions is 
represented by the sum of MP i |θ P i| ( m,,,i L21= ), where MP i is the basic variable of element moment 
capacity and |θ P i| denotes the rotation of the corresponding plastic hinge. The work done by the seismic 
action is expressed in the modal coordinates and represented by the sum of jqP |jr| ( n,,,j L21= ), where jqP 
is the j-th modal component of plastic deformation compatible with the before-mentioned plastic hinge 
rotations. 
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where r,M jiP  are mean values and jrM ,
iP

σσ  are standard deviation of resistance capacity and random 

load model, respectively. 
 
As the mean values of seismic action is taken zero if we adopt the equivalent-static model in the previous 
section, the FOSM reliability index, denoted by β  corresponding to the failure mechanism is given by: 
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A lower reliability index indicates higher probability of failure. In our view, failure mechanisms with 
probability less than about 10% of the most likely ( minβ ) failure mechanism can excluded from further 
analysis. Alternatively, failure mechanisms with ∆+≥ minββ  can be neglected. In case of a normal 
distribution and 41.min ≥β , ∆  equal to unity would be adequate. In addition, the maximum number of 
failure mechanisms considered should preferably be limited to the number of vibration degrees of 
freedom, to avoid possibility of ill conditioning during dynamic analysis (Fig.4). 
 
For structures with very large numbers of potential failure mechanisms, mutual correlation between the 
failure mechanisms should be considered, as many of them may be partially correlated. PNET (Ang [6]), 
which stands for probabilistic network evaluation technique, can be applied for such a situation. The 
correlation coefficient between the two failure modes, a and b, can be written as: 

( )( ) ( )( )[ ]
bgag

bbaa
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gEggEgE
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−−
=                                                                                                             (12) 

where these performance functions are determined by Eq.(8) with jqP, ja and jb, corresponding to each 
mechanism shape. 
 
If we ignore the uncertainty of moment capacities, they can be written as: 
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Failure mechanisms with correlation coefficients more than a demarcating correlation are unified and 
represented by a single failure mechanism having lowest reliability index among them, as shown in Fig.4. 
 

 
Fig.4 Reduction of failure modes based on first-order second-moment reliability method 

 
Ellipsoidal yield surface model 
Another much simpler approach is proposed by use of an ellipsoidal approximation of global safety 
domain against plastic collapse. From general view of exact safety domain, an ellipsoidal body can outline 
a convex figure of exact yield polyhedron. Such a hyper-ellipsoid in n’-dimensional force space can be 
determined so that it shares different reference points on the exact yield surface. Then pushover limit 
analysis on a frame under different load patterns is performed to obtain these reference points, and the 
safety domain is approximated by an n’-dimensional hyper-ellipsoidal body. 
 
Pushover limit analysis to obtain reference points 
As for the limit analysis of the frames by computer, the following problem is solved: 
Maximize: λ  

Subject to equilibrium equation: { } [ ] { }M.ConP ⋅=0λ                                                                      (14) 

                 and yield condition of members: iPi MM ≤  

where λ  is load factor, {P0} is load pattern vector, [ Con. ] is connectivity matrix, {M} is element 
moment vector, MP i is element moment capacity of Mi. 
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It is convenient to represent the load pattern vector as a linear combination of modal load patterns 
corresponding to elastic seismic load effects as adopted in the previous section. In a general form, it is 
expressed by: 

{ } [ ] { } { } { } { }ψλψλψλλλ nn rrrrP +++=⋅Ψ= L22110                                                                         (15) 

 
Load pattern used in pushover limit analysis 
When each peak value of modal force component is given beforehand as shown in Fig.5, it is the most 
conservative condition to consider that each modal force reaches its peak value at the same time. In this 
assumption the locus of modal force may spread over a rectangular area as shown in Fig.5. In an 
alternative condition, when one component reaches its peak value, other modal forces may be assumed to 
remain their averages according to Turkstra’s rule. This assumes that the locus of modal force exists 
within a diamond area as shown in Fig.5. These two conditions are extreme assumptions of modal force 
combination. Square Root of Sum of Square (SRSS) is another intermediate condition sometimes adopted, 
and it corresponds to an elliptical area. Thus, a few different assumptions are possible about the area in 
which the modal force point likely exists. In this paper, the following two kinds of load patterns are 
adopted to represent the locus of modal load effect: (1) A load pattern aiming at the sharpest corner of the 
diamond area (the most predominant mode pattern only), (2) combined load patterns aiming at corners 
around the most far side of the rectangular are (the most predominate mode pattern plus and minus other 
mode patterns). This selection includes 2n’-1 different load patterns. 
 

 
Fig.5 Load pattern used in pushover limit analysis 

 
If we choose two dominant load patterns denoted by { }ψi  and { }ψj  instead of considering all the 

vibration modes, and if we consider the ratio of dominancy based on the magnitude of elastic seismic load 
effect, then a simplified load pattern may take the following form: 
Load pattern 1: { } { }ψλλ ii rP =0                                                                                                             (16) 
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Load pattern 2: { } { } { }ψαλψλλ jjijii rrP ±=0                                                                                     (17) 
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Determination of hyper-ellipsoidal body 
After the load is determined, the limit analysis of the structure is performed to obtain the reference points. 
These reference points are supposed to satisfy the following equation: 

{ } [ ] { } 1=⋅⋅ ∗∗
k

T
k rAr , 1221 −= 'n,,,k L                                                                                                         (18) 

where [A] is a symmetrical matrix that controls the shape and the inclination of the n’-th dimensional 
hyper-ellipsoidal body. The number of indeterminate maximum but we assumed the following simplified 
form and reduce it to 2n’-1, and then they can be determined by solving the simultaneous equation (19). 
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EXAMPLE OF LOW-RISE STEEL MOMENT-RESISTING FRAME 
 
Pseudo-dynamic response test is applied for low-rise steel moment-resisting frame to check the validity of 
the response analysis proposed in the previous sections. 
 
Pseudo-dynamic response test of 2-story 1-bay steel moment-resisting frame specimen 
Fig.6 illustrates the test specimen of 2-story 1-bay steel frame. A specimen consists of H-shaped column 
and beam (H-125 × 125 × 6.5 × 9, JIS SS400 grade steel) and mechanical properties of material are 
summarized in Table 1. The connections of beam and column fastened by high-strength pre-tensioned 
bolts with cover plates and splice plates are considered as rigid zone. All the H-shaped members are 
placed in a so unusual way to be bent about the weak axis. This arrangement prevents lateral and local 
buckling of members and out-of-plane instability of the specimen frame, and then only a single-plane 
frame can be loaded by two electro-hydraulic actuators. 
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Fig.6 Test specimen of 2-story 1-bay steel moment-resisting frame 



Table 1 Mechanical properties of material 
Yield stress Tensile strength Elongation 
348 N/mm2 461 N/mm2 21% 

 
Sum of fictitious inertial mass of 2nd floor and roof of the frame is 20,000kg. As for the mass distribution, 
two ratios of the 2nd floor to roof are taken herein: one (or uniform mass), three (or three times larger mass 
at the 2nd floor). Of course the basic load modes depend on these mass ratios. Fictitious damping is 2.0% 
in 1st and 2nd modes, and the base shear coefficient of the structure is estimated 0.62, 0.79. 
 

Table 2 Properties of pseudo-dynamic test and completely numerical response analysis  
Mass distribution M1/M2=1 M1/M2=3 

Mode 1st 2nd 1st 2nd 
Natural period 0.27 sec 0.09 sec 0.21 sec 0.10 sec 
Effective mass 14,700 kg 5,300 kg 13,700 kg 6,300 kg 

Participation vector { }uβ  0.29 
1.17 

0.71 
-0.17 

0.42 
1.49 

0.58 
-0.49 

Shear strength coefficient 0.62 0.79 

 
Pseudo-dynamic response tests were performed on the above-mentioned structure subjected to the ground 
acceleration record of El Centro 1940 NS and also an acceleration impulse. The peak ground acceleration 
of El Centro 1940 NS was scaled to 10m/sec2, and the initial velocity induced by the impulse to the frame 
is set 0.7m/sec. Simulated time were 10sec for El Centro 1940 NS and 3sec for the impulse, respectively. 
And the time increment t∆  was taken 0.005sec commonly for response calculation. Fig.7 (a) and Fig.8 
(a) show the loci of modal restoring force during the pseudo-dynamic response tests. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.7 Loci of modal restoring force (mass distribution, M1/M2=1) 
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Fig.8 Loci of modal restoring force (mass distribution, M1/M2=3) 
 
Response analysis based on an elliptic plastic failure surface model 
Fig.9 shows the elliptic yield surface model of 2-story 1-bay steel frame (Fig.6) in case of M1/M2=1. The 
load pattern vector used in the pushover limit analysis and the reference points obtained on the yield 
surface are shown in Fig.9. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.9 Elliptic yield surface model of 2-story 1-bay steel frame (M1/M2=1) 
 
Fig.7 (b), (c) and Fig.8 (b), (c) show the loci of modal restoring force of the numerical response results 
with yield polyhedron model and elliptic yield surface model, respectively. Three loci for the test and the 
two analyses look very similar basically, and this supports the validity of the yield surface models 
proposed. 
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As for the results of the impulse cases shown in Fig.7 and Fig.8, the initial behavior of modal restoring 
force point simulated by the numerical response analysis shows a good agreement with that of pseudo-
dynamic response test, especially for initial behavior immediately after the impact is given. As for the 
elastic free vibration loci, which follow after the point leaves the boundary of failure surface, a 
discrepancy between the test and the two analyses is observed. 
 
 

EXAMPLE OF MIDDLE-RISE STEEL MOMENT-RESISTING FRAME 
 
In this section, 9-story 3-bay steel moment-resisting frame is taken for the comparison and is analyzed by 
member-hysteresis based detailed analysis. 
 
Member-hysteresis based detailed analysis of 9-story 3-bay frame 
A 9-story 3-bay steel moment-resisting frame shown in Fig.10 is studied hereafter. The member properties 
and floor weight are shown in Table 3 and Table 4, respectively. A constant modal-damping ratio of 2% 
of critical damping is considered for all the vibration modes. The elastic vibration periods are shown in 
Table 5. The base shear coefficient is 0.266. 
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Fig.10 9-story 3-bay steel moment-resisting frame 

 
Table 3 Member properties 

(Column) 
Story Moment of inertia (cm4) Plastic moment capacity(kN 

m) 
1st  141,000 1,840 

2nd~3rd 128,000 1,680 
4th~6th 115,000 1,510 
7th~9th 102,000 1,330 

(Beam) 
Story Moment of inertia(cm4) Plastic moment capacity(kN m) 

2nd~4th 59,800 713 
5th~6th 53,800 643 

7th~Roof 45,700 545 

 



Table 4 Floor weight 
Story 2nd  3rd  4th  5th  6th  7th  8th  9th  Roof 
Mass 0.107M 0.106M 0.106M 0.106M 0.106M 0.106M 0.106M 0.106M 0.152M 

 
Table 5 Elastic vibration periods 

Mode 1st  2nd  3rd  4th  5th  6th  7th  8th  9th  
Period 1.98sec 0.65sec 0.35sec 0.22sec 0.15sec 0.11sec 0.09sec 0.07sec 0.06sec 
 
This frame is analyzed for the ground acceleration records of El Centro 1940 NS (PGA=7.0m/sec2), Fukiai 
1995 NS (PGA=8.5m/sec2), Hachinohe 1968 EW (PGA=4.5m/sec2), and an acceleration impulse (initial 
velocity=1.0m/sec). The details of the ground motions are shown in Table 6. The acceleration response 
spectra are shown in Fig.11. 
 

Table 6 Details of ground motions 
Ground motion Earthquake Peak ground acceleration Duration 
El Centro 1940 NS Imperial valley 7.0 m/sec2 10sec 
Hachinohe 1968 EW Tokachi-oki 4.5 m/sec2 20sec 
Fukiai 1995 NS Hyogoken-nanbu 8.5 m/sec2 20sec 
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Fig.11 Acceleration response spectra (Damping=2%) 

 
Member-hysteresis based response analysis is performed based on the ordinary plastic-hinge forming 
method. Fig.12 shows the time histories of story angles at the 1st story and also at the 9th story of the frame 
in case of El Centro 1940 NS. Fig.13 shows the loci of modal restoring force of 1st and 2nd mode 
components in case of El Centro 1940 NS. Fig.14 shows the distribution of maximum story drift angles. 

 
Fig.12 Time histories of story drift angles (El Centro 1940 NS) 
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Fig.13 Loci of modal restoring force of 1st and 2nd mode components (El Centro 1940 NS) 

 
Fig.14 Distribution of maximum story drift angles 

 
Simplified plastic failure surface models of 9-story 3-bay frame 
As mentioned in the previous sections, a plastic failure surface against the plastic collapse is 
approximated by a simplified yield polyhedron model with a reduced number of failure modes. Relevant 
failure modes selected by the FOSM and PNET procedure described in the previous section, Eqs. (11) and 
(13), are shown in Fig.15. The safety domain is given as the yield polyhedron in 9-dimentional modal 
force space, which is bounded by the pairs of parallel hyper-planes corresponding to the failure modes as 
shown in Fig.15. 
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Fig.15 Relevant failure modes selected by FOSM and PNET 
 

 
 

 
Fig.16 Yield ellipse arranged from reference points 

 
As for the yield ellipse model in 2-dimensional modal restoring force space, the vibration modes are 
reduced to only two vibration modes, the 1st and the 2nd vibration modes. Pushover limit analysis is 
performed on the frame by using only three load patterns, the 1st mode pattern, the 1st mode plus the 2nd 
mode pattern, and the 1st mode minus the 2nd mode pattern. Such a pushover analysis determines three 
reference points or collapse states on the 1st and 2nd modal restoring force space as shown in Fig.16, and a 
yield ellipse model is arranged to include these three reference points. The yield ellipse determined is also 
shown in Fig.16. 
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Response analysis with simplified plastic failure surface model of 9-story 3-bay frame 
The response analyses with simplified plastic surface models for the ground motions as shown in Table 6 
are performed. Following two cases are studied: 
1) Full vibration mode analysis with a yield polyhedron model with the relevant failure modes as shown 

in Fig.15 
2) Partial vibration mode analysis with a yield ellipse model (2-degree-of-freedom, one element or one 

elliptic function checked) 
These two cased are compared with the member-hysteresis based detailed analysis (9-degree-of-freedom, 
63 elements, 126 plastic hinges checked). 
 
The result of time history of story drift angle in case of El Centro 1940 NS is shown in Fig.12. The result 
of loci of modal restoring force in case of El Centro 1940 NS is shown in Fig.13. The results of 
distribution of maximum story drift angle are shown in Fig.14. 
 
The maxima of story drift angle in 2) are slightly larger than case 1) and the detailed analysis. The case 1) 
yield polyhedron analysis seems to provide a sufficiently good prediction for practical purpose. Even the 
partial mode response analysis with a yield ellipse approximation provides an acceptable result, and it can 
trace the member-hysteresis based detailed analysis in outline. 
 
 

CONCLUDING REMARKS 
 
A simplified method of non-linear dynamic response analysis on a steel moment-resisting frame to a 
seismic action is proposed in this paper. The method is based on the two kinds of models for a safety 
domain against plastic collapse or a global yield surface of a frame. One is a yield polyhedron model with 
reduced number of failure modes by the first-order second-moment reliability method, and the other is a 
hyper-ellipsoidal model arranged to share some exact reference points on the yield surface obtained from 
pushover limit analysis. The validity of these two models are checked by comparison with member-
hysteresis based detailed analysis of 9-story 3-bay frame and a pseudo-dynamic response test on a 2-story 
1-bay steel moment-resisting frame specimen as well, and they are commonly found to provide 
consistently good predictions of global inelastic responses. 
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