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SUMMARY 
 
As advanced earthquake analysis/design methods are developed, it is required to estimate precisely the 
cyclic behavior of reinforced concrete members that is characterized by strength, deformability, and 
energy dissipation capacity. However, presently, energy dissipation capacity is estimated by either 
empirical equations which are not sufficiently accurate, or experiments and sophisticated numerical 
analysis which are difficult to use in practice. In the present study, nonlinear finite element analysis was 
performed to investigate the behavioral characteristics of flexure-dominated RC members under cyclic 
load. Based on the investigation, a simplified method to estimate the energy dissipation capacity of 
flexure-dominated member was developed, and was verified by the comparisons with existing 
experiments on beams, columns, and structural wall. The proposed method can accurately estimate the 
energy dissipation capacity of the member considering various design variables such as reinforcement 
ratio and arrangement, axial compression, and sectional shape, though the overall cyclic curve 
complicated by the stiffness degradation and pinching is not known. An example of nonlinear static and 
dynamic analysis using the proposed method was presented. 
 

INTRODUCTION 
 
Recently, performance-based methods for earthquake design were developed. [1, 2] To use such advanced 
methods, it is necessary to estimate precisely the cyclic behavior of structural members which is 
represented by three primary ingredients: strength, deformability, and energy dissipation capacity (per load 
cycle) (Fig. 1). Generally, reinforced concrete members show complex cyclic behavior with stiffness 
degradation and pinching. Therefore, the evaluation of seismic performance of RC members is usually 
limited to strength and deformability. The estimation of energy dissipation capacity depends on empirical 
equations that are not sufficiently accurate, or on nonlinear numerical analysis that is difficult to use. 
 
For example, in the Capacity-Spectrum-Method of ATC-40 [1], a nonlinear static analytical method, 
structures are classified into three categories according to their expected capacity of energy dissipation. 
The energy dissipation capacity khE  is obtained by assuming that the structure displays a linearized 

kinematic hardening behavior (Fig. 2). Then, the actual energy dissipation capacity DE  is calculated by 
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multiplying the empirical ratios of 0.33, 0.67, or 1.0 to khE  which is prescribed by the category of the 
structure. Generally, energy dissipation capacity depends on various parameters such as reinforcement 
ratio, arrangement of reinforcing bars, and shape and size of the members’ cross-sections. Therefore, such 
empirical methods cannot precisely estimate the energy dissipation capacity, and as a result, they reduce 
the overall accuracy of the evaluation method. For economical and safe seismic design, simple but 
sufficiently accurate methods for estimating energy dissipation capacity are needed. 
 

 

Fig. 1 Cyclic behavior of R/C members; strength, deformability, and energy dissipation 

 

 

Fig. 2 Definition of energy dissipation by ATC-40 [1] 

 
ENERGY DISSIPATION CAPACITY OF REINFORCED CONCRETE MEMEBRS 

 
A reinforced concrete member dissipates energy by experiencing inelastic behavior during cyclic loading. 
Since the reinforced concrete member is composed of concrete and reinforcing steel, its energy dissipation 
can be defined by the sum of the energy dissipated by concrete and reinforcing steel.   
 

D concrete steelE E E= +                                                                 (1) 
 
where DE  = total energy dissipated by the reinforced concrete member during cyclic loading, concreteE , steelE  
= the energy dissipated by concrete and reinforcing steel, respectively. 
Fig. 3 shows the cyclic behavior of plain concrete and reinforcing steel. [3, 5] Concrete is a brittle material 
composed of aggregates and matrix. Therefore, if cyclic loading is repeated at a specific displacement, 
concrete dissipates considerably less energy than reinforcing steel exhibiting plastic behavior does, as 
observed in many experiments.(see Fig. 3 (a)) [3, 4] For the reason, the overall dissipated energy of the 
member is equivalent to the sum of the energy dissipated by flexural re-bars arranged in the member.  
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D steelE E≅                                                                       (2) 
 
However, it should be noted that for the member subjected to excessively high axial compressive load, 
concrete dissipates considerable energy because a large volume of concrete contributes to resist the axial 
load. 
 

 

Fig. 3 Cyclic behavior of concrete and re-bar 

 
If Eq. (2) is acceptable, the overall energy dissipation capacity of the reinforced concrete member can be 
evaluated using the energy dissipated by re-bars without knowing the complex cyclic behavior. The 
energy dissipated by re-bars can be calculated with the amount of re-bars and the differential strains which 
the re-bars experience during cyclic loading. 
 

STRAIN HISTORY OF RE-BARS 
 
To evaluate the energy dissipated by re-bars, the differential strains that the re-bars experience during 
cyclic loading must be estimated. Nonlinear FE analyses for reinforced concrete members subject to cyclic 
loading were performed to investigate the hysteretic behavior of re-bars. The computer program developed 
by Park and Klingner [6] was used in the numerical study. 
 
As shown in Fig. 4, in flexure-dominated members, most of the inelastic deformation is developed in the 
plastic hinges during cyclic loading, and the contribution of shear force can be neglected. Therefore, the 
wall-column model subject to uniform bending moment and axial compression as shown in Fig. 4 were 
selected. 
 
Table 1 presents dimensions and properties of W1 and W2. No shear force was applied to the specimens. 
Therefore, the behaviors of the specimens were not affected by shear force. W1 was subject to uniform 
bending moment without axial compression force applied. W3 had the same number of re-bars as W1 and 
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was subject to axial compressive force 0.1 c gf A′ . Since the axial force increases the moment-carrying 

capacity for the member subject to low compressive force, the moment carrying capacity of W3 is larger 
than that of W1. 
 

 

Fig. 4 Finite element model for plastic hinge of wall-column 

 

Table 1 Dimension and properties of models for numerical analysis 

Reinforcement 
Ratio (%) 

Specimen 
Length 

l  
 mm 

Depth 
h  

mm 

Width 
b  

mm Total 
ρ  

Ends 
eρ  

Middle 
wρ  

Axial 
Force 

g cP A f ′  

Compressive 
Strength of 
Concrete 

cf ′  MPa 

Yield Strength 
of Re-bar 

yf  MPa 

Dissipated 
Energy 

De  kN 

W1 4400 4000 160 1.02 4.30 0.2 0.00 24 400 22.3 
W2 4400 4000 160 1.02 4.30 0.2 0.10 24 400 24.2 

 
Fig. 5 compares the cyclic moment-curvature curves of the specimens. W1 that was not subject to axial 
compression does not show pinching. On the other hand, W2 show the complicated behavior due to 
stiffness degradation and pinching. In this figure, the reference points where the cyclic curves are 
characterized by changes in strength and stiffness were marked A through H. 
 
Fig. 6 shows the cyclic stress-strain relations of re-bars at the ends and the middle of the cross-section 
obtained at reference points A through H. Approximately, the maximum and minimum strains for the two 
specimens occurred at A, C(or G), and E. As shown in Fig. 6, the boundaries of the cross-section have the 
maximum and the minimum strains at A and E, and during one load cycle, one cycle of energy dissipation 
occurs. On the other hand, the web of the cross-section experiences two cycles of energy dissipation, 
which have the maximum and the minimum at A and C, and at E and G, respectively. As shown in the 
figure, the differential strains of the boundary re-bars for W1 and W2 are the same, regardless of whether 
axial force is applied to the member or not. On the other hand, due to the effect of the axial force, the 
differential strains of the webs are different.  
 
However, generally, both the amount of re-bars and the differential strains in the webs are less than those 
in the boundaries. Furthermore, if the differential strain is less than two times the yield strain, the re-bars 
remain elastically, and do not dissipate energy. For the reasons, conservatively, the contribution of the re-
bars in the web can be neglected, which means that the effect of axial force on the energy dissipation 
capacity can be neglected. This is confirmed by the fact that the energy dissipation capacities of W1 and 
W2 presented in Table 1 are almost identical. Therefore, the energy dissipation capacity of a flexure-
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dominated member can be calculated using the hypothetical cross-section subject to pure bending, 
neglecting the compressive force actually applied.  
 

 

Fig. 5 Cyclic curves of wall-column Models  

 

 

Fig. 6 Hysteretic stress-strain relation of re-bars at the ends and the middle of the section: (a) W1 
not subject to axial compression; (b) W2 subject to axial compression 

 
EVALUATION OF ENERGY DISSIPATION CAPACITY 

 
As shown in Fig. 7, energy dissipated by a unit volume of re-bar for maximum and minimum strains can 
be calculated as follows.  
 

( )1 22 2D B y yU R f ε ε ε= − −                                                       (3) 
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where, ,y yf ε = yield stress and strain of reinforcing steel, 1 2,ε ε = maximum and minimum strains, BR = 

reduction factor representing the Bauschinger effect, which is approximately set to 0.75. [5] Since the re-
bar does not dissipate energy in the elastic range, DU  is equal to zero if 1 2 2 0yε ε ε− − < . 

 

 

Fig. 7 Strain energy density of re-bars 

 

Energy Dissipated during Cyclic Loading 
 
Fig. 8 shows profiles of maximum and minimum strains for a rectangular cross-section with symmetric re-
bar arrangement, developed during cyclic loading. For convenience in calculation, the strain profiles were 
simplified, neglecting the complex behavior occurring in the web, which did not significantly affect the 
overall energy dissipation capacity as explained in STRAIN HISTORY OF RE-BARS. To develop a 
simple equation, as shown in the figure, the re-bars were idealized as uniformly distributed re-bars with 
reinforcement ratio wρ  and boundary re-bars with cross-sectional area sA  arranged at both ends. For the 
distributed re-bars, the differential strain at a distance x  from the centroid of the cross section is 2 u xφ , and 

DU  is calculated by substituting 2 u xφ  for 1 2ε ε−  in Eq. (3).  
 
However, the re-bars located in 0 y ux ε φ≤ ≤ remain elastically and do not dissipate energy: DU  should be 

zero for 0 y ux ε φ≤ ≤ . DU  of the boundary re-bars is obtained by substituting ( )( )2 2u shφ  for 1 2ε ε−  in 

Eq. (3). The dissipated energy De  of a rectangular cross-section can be calculated by integrating the 
energy density DU  over the entire cross-section. 
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where ρ = reinforcement ratio for total re-bars, ,b h = width and depth of the rectangular cross-section, 

uφ = maximum curvature, and sh = distance between the re-bar layers located at the boundaries. In Eq. (4), 
the first and second terms represent the energy dissipated by the distributed re-bars and the boundary re-
bars, respectively. Eq. (4) can be redefined with p = wρ ρ  (see Fig. 8): 
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Fig. 8 Evaluation of energy dissipation capacity for the cross-section 

 
Eq. (5) was derived assuming symmetric cyclic behavior in positive and negative directions. If the 
member is subjected to asymmetric cyclic behavior, the energy dissipation capacity can be obtained using 
the average curvature in two opposite directions.  
 
Like the rectangular section, for the circular section and for the beam or T-beam with asymmetric re-bar 
arrangement, the energy dissipation capacity can be estimated using the differential strains of re-bars. 
 
The energy dissipation capacity DE  of a plastic hinge is calculated as (Fig. 9) 
 

D D pE e l=                                                                     (6) 

 

 

Fig. 9 Evaluation of energy dissipation capacity for R/C member 

 
where pl = length of the plastic hinge. The length of a plastic hinge at the base is approximately 2h . [2] 

When plastic hinges are developed at both ends of a member, the energy dissipation capacity of the 
member is the sum of energy dissipated at the both hinges. 
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Damping Modification Factor 
 
In the present study, equations for estimating the damping modification factor of a member was developed 
to compare with the empirical ones used in the CSM, though actually in the Capacity-Spectrum-Method 
damping modification factor is used to estimate the energy dissipation capacity of a structure. 
 
Fig. 10 shows the idealized cyclic curves developed by the elasto-plastic. According to Priestley [7], yield 
curvature yφ  of a cross-section can be approximately estimated, regardless of the amount and arrangement 

type of re-bars:  
 

y
y ST h

ε
φ α=                                                                  (7) 

 
where h  = depth or diameter of the cross-section, STα  = modification factor accounting for variations of 
the yield curvature with the type of member and the shape of cross-section: STα  = 2.00 for structural walls, 
2.12 for columns with rectangular cross-section, 2.35 for columns with circular cross-section, and 1.70 for 
beams with rectangular cross-section. 
 
The energy dissipation capacity khe  based on the kinematic hardening behavior is calculated as  
 

( ) ( )4 4 1kh u y ye M M φφ φ φ µ= − = −                                               (8) 

 
where M  = moment-carrying capacity, φµ  = curvature ductility (= uφ / yφ ). 

 

 

Fig. 10 Cyclic curves by elasto-plastic behavior of R/C members 

 
The damping modification factor of reinforced concrete members can be defined as 
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By using Eq. (5), (8), and (9), the damping modification factor is defined as  
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Verification of the Proposed Method 
 
Table 2 compares the results of a variety of experiments and the values predicted by the proposed method. 
The dimensions and material properties for each specimen are presented in references.[8~13] The energy 
dissipation capacities and the damping modification factors are presented in the table. In the Capacity-
Spectrum-Method, the damping modification factor is fixed to prescribed values in accordance with the 
expected energy dissipation capacity (Fig. 2), but in the proposed method it varies ranging from 0.314 to 
0.693, depending on the design parameters. The average and the standard deviation of the ratio of energy 
dissipation capacity are 0.984 and 0.084, respectively. The values for ratio of the damping modification 
factor are 0.991and 0.085. In the present study, as mentioned, several simplifications were used to develop 
a practical method: Energy dissipated by concrete was neglected, and the strain profiles in the web of the 
cross-section were simplified. Furthermore, deformations due to shear-action, bond-slip, and pedestal 
rotation that might affect the energy dissipation capacity were not included. However, the comparisons 
presented in Table 2 showed that despite of such negative effects of the simplification, the proposed 
method predicts well the dissipated energy and the damping modification factor. 
 

Table 2 Comparisons between experimental and analytical results 

Prediction Experiments 
Ratios of prediction 

to experiment Specimen 
Re-

searchers 
Type 

Section 
shape** 

Shear 
span 
ratio 

Axial 
comp. 

g cP A f ′
 ED***(1) κ (2) ED (3) κ (4) (1)/(3) (2)/(4) 

88-32-RV10-60* Beam R 5.00 0.00 13940 0.691 12710 0.693 1.097 0.997 
88-35-RV10-60* Beam R 5.00 0.00 18430 0.693 16850 0.752 1.094 0.922 
66-35-RV10-60* 

Brown & 
Jirsa [8] 

Beam R 5.00 0.00 8115 0.654 8086 0.751 1.004 0.871 
OIN Han&Lee[9] Col. R 4.55 0.28 1511 0.314 1500 0.322 1.007 0.975 
N4 Col. C 3.00 0.10 4179 0.510 4546 0.498 0.916 1.024 
N5 Col. C 3.00 0.20 4044 0.439 4784 0.460 0.845 0.954 
N6 

Cheok & 
Stone [10] 

Col. C 6.00 0.10 2760 0.503 3220 0.536 0.857 0.938 
A1 Col. R 3.83 0.10 57070 0.434 53880 0.450 1.056 0.964 
A2 Col. R 3.83 0.24 45900 0.405 46000 0.404 0.998 1.000 
B1 Col. R 3.83 0.09 66000 0.452 66940 0.489 0.986 0.924 
B2 

Wehbe et. 
Al. [11] 

Col. R 3.83 0.23 62090 0.404 66770 0.426 0.930 0.948 
BG-3 Col. R 4.70 0.20 10600 0.348 11810 0.345 0.898 1.009 
BG-5 Col. R 4.70 0.47 16110 0.433 17040 0.413 0.945 1.048 
BG-6 Col. R 4.70 0.46 15860 0.435 15860 0.359 1.000 1.212 
BG-7 Col. R 4.70 0.47 16420 0.434 17910 0.418 0.917 1.038 
BG-8 

Saatchioglu 
& Grira [12] 

Col. R 4.70 0.24 16260 0.424 13390 0.361 1.178 1.175 
RW1 Wall R 3.12 0.10 11860 0.384 12490 0.424 0.950 0.906 
RW2 

Thomsen & 
Wallace [13] Wall R 3.12 0.07 11860 0.378 11560 0.402 1.026 0.940 

*Asymmetric cyclic tests   **R: rectangular C: circular        ***kN-mm 

 
In the proposed equations, contribution of the lateral re-bars confining the core concrete was not included 
in the estimation of the energy dissipation capacity (per load cycle). Since the stress and strain of ties and 
stirrups are developed only by the concrete in compression, the stress and strain of the lateral re-bars 
remain in tension during repeated cyclic loadings. Therefore, the confining re-bars do not experience full 
cycles of strain history during cyclic loading repeated at specific displacements, and as the result, they 
dissipate little energy. For the reason, the effect of the confining re-bars on the energy dissipation capacity 
(per load cycle) was neglected in the present study. However, both the lateral re-bars and the confined 
concrete dissipate energy during loading increasing displacements. 
 
 



APPLICATION OF THE PROPOSED METHOD 
 
The simplified method to estimate the energy dissipation capacity of the flexure-dominated R/C member 
was applied to the nonlinear static and dynamic analysis. Fig. 11 and Table 3 present the configuration of 
the R/C frame, dimensions of each member, and material properties. Two lateral load profiles of triangular 
distribution and uniform distribution for the nonlinear static analysis were used as shown in Fig. 11. El 
Centro 1940(PGA=0.319g) and Northridge CA 1994(PGA=0.412g) were used as the earthquake record 
for the analysis.  
 

 

Fig. 11 10-story R/C frame for the nonlinear static and dynamic analysis 

 

Table 3 Dimension and properties of beams and columns 

Flexural reinforcement near the 
beam-column joints Member 

Width 
b  

 mm 

Depth 
h  

mm 

Distance 
between re-bars 

sh  mm tρ  % bρ  % 

1~3 Floors 700 700 610 1.00 1.00 
4~6 Floors 600 600 510 1.00 1.00 Columns 
7~10 Floors 500 500 410 1.00 1.00 

Beams All floors 400 600 520 1.00 0.75 
 
The Capacity-Spectrum-Method was used for nonlinear static analysis. The proposed method and the 
empirical method proposed in ATC-40 were used to estimate the energy dissipation capacity. In the 
proposed method, as shown in Fig. 12, the energy capacity curve presenting the relation of the top 
displacement of the structure and the energy dissipated by complete cyclic behavior was constructed. In 
the energy capacity curve, the variation of energy dissipation capacity is defined by the function of 
displacement. In the CSM, the damping modification factor is fixed to a prescribed value. On the other 
hand, in the proposed method, the energy dissipation capacity varies depending on the design parameters 
and the displacement.  
 
For time-history nonlinear analysis, energy-based bilinear cyclic model was developed. (Fig. 12) The 
model was devised so as to dissipate the same energy as the actual behavior during complete load cycle 
though the unloading- reloading behavior is different from the actual one. 
 
The top displacements and base shears obtained by the CSM and dynamic analysis were presented in 
Table 4. For the dynamic analysis, the maximum responses during seismic behavior were presented. As 
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presented in the table, the proposed method using the simplified method predicts better those of the 
nonlinear dynamic analysis, regardless of the lateral load profiles and earthquake records.  
 

 

Fig. 12 Energy capacity curve for the capacity spectrum method 

 

Table 4 Results by nonlinear static and dynamic analysis 

Proposed analysis ATC-40’s method* 
 

Load case 1 Load case 2 Load case 1 Load case 2 

Nonlinear 
dynamic 
analysis 

Top disp.(mm) 242 240 223 202 248 El Centro 
1940 Base shear(kN) 886 1106 873 1057 1191 

Top disp. (mm) 298 328 279 290 357 Northridge 
CA 1994 Base shear(kN) 919 1189 909 1156 1394 

* κ  was used as 0.67 
 

CONCLUSIONS 
 
Nonlinear numerical analysis was performed to study the energy dissipation capacity of flexure-dominated 
reinforced concrete members. The behavioral characteristics of the members were studied, and the 
variations of the stress and strain profiles of re-bars occurring during cyclic loading were investigated. The 
major findings of the present study are summarized as follows. 
 
1) Concrete which is a brittle material does not dissipate energy significantly during repeated cyclic 

loading. Therefore, the energy dissipation of the reinforced concrete member is almost the same as 
the energy dissipated by flexural re-bars arranged in the member. 

 
2) Energy dissipation capacity of RC members can be determined by the amount of re-bars and the 

differential stains that the re-bars experience during cyclic loading. 
 
3) The members with the same amount and arrangement of re-bars have almost the same energy 

dissipation capacity, regardless of the magnitude of the axial force applied to the member.  
 
4) Therefore, the energy dissipation capacity of a flexure-dominated member can be calculated using the 

hypothetical cross-section subject to pure bending, neglecting the compressive force actually applied. 
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Based on the findings, a practical method for estimating the energy dissipation capacity and the damping 
modification factor was developed and verified by the comparisons with existing experiments. The 
proposed method can accurately estimate the energy dissipation capacity considering the reinforcement 
ratio and arrangement, axial compression, and ductility, without knowing the overall cyclic curve 
complicated by stiffness degradation and pinching. The proposed method is applicable to the existing 
nonlinear static and dynamic analysis.  
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