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SUMMARY 
 
Equivalent viscous elastic models, which are not very realistic for soils, have been proposed and 
implemented into dynamic consolidation analyses for several decades. Elastic plastic models are better for 
soils. However these models have not been used successfully in the analyses of dynamic Biot 
consolidation. The main reason is that a great amount of work must be done by formulating the inverse 
stiffness matrix  1][ −K  in each small t∆ step if using an implicit finite difference scheme. In order to save 
work of calculation, an explicit finite difference scheme may be used for elastic plastic analyses of the 
dynamic response of a soil foundation. But, due to the ill condition for solution to the permeability matrix 

by using a small t∆ such as 610− to 510− second, the uncoupling between dynamic equilibrium and 
permeability equations in Biot dynamic consolidation theory is difficult to fulfill. Therefore, an 
asynchronous staggered iteration method with an explicit difference scheme is suggested.  In this paper, a 
hypo-plasticity model is first presented and verified using triaxial tests on silty clays. The algorithm using 
a hypo-plasticity model is implemented in a finite element (FE) code based on Biot dynamic consolidation 
theory. The dynamic solid-liquid coupling elastic plastic responses of a saturated sand foundation are 
analyzed and reasonable results are achieved.  
 
 

INTRODUCTION 
 
Equivalent viscous elastic models and linear methods have been proposed and implemented into dynamic 
nonlinear consolidation analyses of soils for several decades [1-2]. However, the equivalent viscous elastic 
models are not very realistic for soils, although the average shear modulus, damp ratio and empirical 
formulas for permanent volumetric and deviatoric strains and porewater pressure can be easily derived 
using these models when they are implemented in the equivalent linear dynamic consolidaiton analysis. 
Under complex loading and variable stress path, soils exhibit complicated stress-strain 1characteristics, 
which can not be modelled by the viscous elastic models. Sometimes the post-earthquake deformations of 
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geotechnical structures are larger than the results predicted using equivalent viscous elastic models and 
methods, for example, in San Francisco earthquake in 1971 [3]. Elastic plastic models are better for soils 
and can capture the complicated behavior of soils under complex loading and variable stress path. 
However these models have not been used successfully in the analyses of dynamic Biot consolidation. The 
main reason is that a great amount of work must be done by formulating the inverse stiffness matrix in 
each small t∆ step when elastic plastic models and implicit finite difference scheme are used; while only 
one inverse stiffness matrix is needed to be formulated in each t∆  step if equivalent viscous elastic 
models and equivalent linear method are used. In order to save work of calculation, an explicit finite 
difference scheme may be used for elastic plastic analyses of the dynamic response of a soil foundation. 

But, due to the ill condition for solution to the permeability matrix by using a small t∆ such as 610− to 
510− second, the uncoupling between dynamic equilibrium and permeability equations in Biot dynamic 

consolidation theory is difficult to fulfill [4-6]. Therefore, an asynchronous staggered iteration method 
with an explicit difference scheme is suggested in this paper. A hypo-plasticity model is proposed. The 
staggered iteration between an elastic model and the hypo-plasticity model makes it possible to determine 
the stress increment in the proposed algorithm based on Biot dynamic consolidation theory [7]. Using the 
hypo-plasticity model and asynchronous staggered iteration method, the dynamic solid-liquid coupling 
elastic plastic responses of a saturated sand foundation are analyzed and reasonable results are achieved. 
 

THE HYPOPLASTICITY MODEL 
 
A good reasonable model should be able to model not only the stress-strain behaviour of soils under 
simple loading, but also the stress-strain behaviour of soils under complicated loading. The model 
parameters should also be easily determined using conventional tests. In this section, a model is first 
developed for stress-strain behaviour of soils under simple loading, then the model is extended to model 
the complicated stress-strain behaviour of soils using the hypo-plasticity theory [8-9]. 
 
The incremental effective stress tensor is divided into two parts, i.e., '

ijdσ = ijdp γ' ''' / pdpijσ+ , so 

that the mutual effects of spherical and deviator stress on the stress-strain behaviour of soils can be 
modelled. The deviator stress tensor is defined as '/ psijij =γ and the scalar deviator stress ratio is defined 

as ijijαγη = . ijα  is a tensor in the same direction as the incremental deviator stress ratio tensor ijdγ . 

The definition of the stress tensor ijα  at the n-th step will be given in the following.  

 
The strain can be divided into four parts: the volumetric strain vcε induced by compression, the volumetric 

strain vsε  induced by shearing, the deviatoric strain scε  induced by compression and the deviatoric strain 

ssε  induced by shearing [10-12]. In one dimensional or isotropic compression, we have 
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Considering that =∆=∆ 32 εε 0£¬ 1εεε ∆=∆=∆ sv  in one dimensional compression, the deviatoric 

strain induced by compression is 
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where oη  is the earth pressure at rest. In shearing under constant spherical stress, we have 
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where a  is the inverse of the initial shear modulus G, fη  is the deviator stress ratio at failure. It is 

assumed that fη  increases linearly with contraction of soils, i.e., 

                                                   vsff dcd εη =                                                                                         (4) 

where fc  is a scaling coefficient for the increase of fη .  

The incremental of ssdε  is 
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The linear dilation equation is assumed as  
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where λ  and dη  are two dilation parameters.  

Substituting Eqn. (6) into Eqn. (5), and using Eqn. (6), we can get 
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By now, the stress-strain relationship under simple loading can be written as 
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where a ¡¢ cC  or cK ¡¢ sC  or sK ¡¢ λ ¡¢ fc ¡¢ oη ¡¢ dη ¡¢ fη  are eight parameters for the model. 

 
In order to extend the stress-strain relationship under simple loading to complex loading, the explicit 
expression for ijα  should be given. α  is defined as the angle between the directions of the deviator stress 

ratio tensor ijγ and the incremental deviator stress ratio ijdγ  at the n-th time step. Obviously α  is the 

stress turning angle. Under simple loading, pqijij /3/2)( 2

1

== γγη . Taking the elements of the 



tensor ijα  all equal to 3/cosα , we can derive 3/cos|||| αγη ij=  under complex loading. η  is always 

positive or equal to zero.  The definition of stress turning angleα  is given as 
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where  ijoγ  is the initial deviator stress ratio. In order not to make the extended model complicated, the 

anisotropic hardening of 0ijγ  is not considered. The value of α  can be used as the criteria for judging the 

loading conditions under the complex loading. For example, when the stress turning angle α  is   0°=α , 
the soil is under a simple proportional loading; when  18090 °≤<° α , the soil is under unloading 
conditions; when   900 °<<° α , the soil is under a variable-stress-path loading.  
 
The strain can be divided into quasi-elastic and plastic strains. The quasi-elastic strain is induced by the 
rolling or rotating of the soil skeletons, and the direction of the quasi-elastic strain is dependent on the 
stress increment. The plastic strain is induced by the sliding of the soil skeletons; the direction of the 
plastic strain is dependent on both the stress and the stress increment. Differentiating ijijαγη = , we can 

get  ijijijij ddd αγγαη += . At the n-th time step, we have only one stress turning of ijγ  and ijdγ . It can 

be considered that  0=ijdα . Therefore we have  ijij dd γαη =  .  

 
Base on the above assumptions of quasi-elastic strain and plastic strain, the stress-strain relationship of 
soils under simple loading can be extended to the complicated loading case as 
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where )/(1 '
cpKA = , )/( '

co KpB ηη= , ))/(()1( d2 ληηβ gpwaC −−= , )/()1( gpwaD −= , )/('
csscc KKKKK −= ,

sKA /1' = )/('
so KB ηη= , )/()(/)( 2

d
22 ληηηηηηη ffff acg −+−= , 2

1

1 )/( ijijijij dddn γγγ= ,

2

1

2 )/( ijijijijn γγγ= , 3/23/ 12 ijijij nnn += . 2β  is used for simulation of shearing induced 

contraction under inverse loading. 12 =β when 0≥ijij dγα ; 12 −=β  when dijij andd ηηγα << 0 . w  

is used to account for the proportionality of the quasi-elastic strain in the total strain and 2/gw = . 
 
It is worthy to note that, in the above hypo-plasticity model, the Macauley symbol ‘ <> ’ is not included. 
Porewater pressure or volumetric strain will still be induced due to the natural structure under the 
compressive stress lower than the maximum stress in history. In the previous strain-porewater pressure 
type of model vurEu ε∆=∆ , the elastic rebounding modulus is adopted. Wang [13] rewrites the strain-

porewater pressure type of model as vcEu ε∆=∆  using the compressive modulus. Shen [11] writes the 

model as vd
ur

b

E
u ε∆=∆  using a modulus value between cE  and urE , i.e., ur

ur
c E

b

E
E ≤≤ . In 

undrained condition, we have 0=+= p
v

e
vv ddd εεε  and 'dpdu −= , therefore we can get the following 

relationship for the porewater pressure using the present hypo-plasticity model. 
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The elastic strain can be written as 
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. It can be seen that the elastic moduli K  and G  

are both dependent the stress path. For convenient use, K  and G  are usually taken as constant values. 
 
The elastic stress-strain stiffness matrix is given in Eqn. (13) as 
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Using kl
P
ijkl

p
ij dCd σε = , the plastic compliance matrix p

ijklC  can be written as 
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Eqn. (16) gives a series of elasto-plastic stress-strain relationships. 
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By means of the relationships in Eqn. (16), the elasto-plastic stress-strain stiffness matrix ep
ijklD  can be 

written as 

                                           ( ) e
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where ijmnI  are the unit matrix. 
 

We can also derive another expression of the elastic plastic stiffness matrix ep
ijklD  using the present hypo-

plasticity model as following 
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The symbols such as A, B, C and D in Eqn. (18) are the same as those in Eqn. (10) and have been defined 
and explained above. 
 
Using the parameters in Tab. 1, the present hypo-plasticity model is used to predict the test results from 
drained triaxial cyclic shear tests under constant confining pressure and under constant mean pressure. 
The predicted results and the measured results are shown in Figs. 1 (a) and (b). The simple computational 
example gives a preliminary verification of the present hypo-plasticity model. 
 

Tab. 1 The parameters of the silty clay for the triaxial tests modeling 
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Fig. 1 The simulation of hypoplasticity model of the drained triaxial cyclic shear tests on silty clay 
under (a) constant confining pressure σ3=100 kPa and (b) constant mean pressure p=100kPa 



 
THE ASYNCHRONOUS STAGGERED ITERATION METHOD WITH AN EXPLICIT 

DIFFERENCE SCHEME 
 
In the equivalent viscous elastic analysis method, the plastic strains are considered as equivalent viscous 
strains and an empirical damping term is included. In the elastic plastic analysis, the tangent stiffness 
matrix is formulated by using elastic plastic or hypo-plastic models, and the empirical damping term is not 
used again. The finite element governing equation of the Biot dynamic consolidation theory in Eqn. (19) 
can be used to solve the deformation of soil skeletons and the porewater pressure.  
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where [M] is the mass matrix, [K] is the stiffness matrix, [C] is the coupling matrix, [H] is the permeability 
matrix, [A] and [S] are the inertial matrix and compressibility matrix of the liquid. {F1} is the loading 
vector matrix, {F2} is the flowing vector matrix. If the compressibility and the empirical force of the liquid 
are ignored, Eqn. (19) can be written as following  
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If the frequency of the wave is very small, the inertial force of the soil skeletons can be further ignored, the 
finite element governing equation of the Biot static consolidation theory can be derived as the following 
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It is obvious that the permeability continuum equation is the same in Eqns. (20) and (21).  In comparison 
with the Biot static consolidation equation, the key issue of the solution of the Biot dynamic consolidation 
equation is how to solve the dynamic equilibrium equation and correctly couple it with the permeability 
continuum equation. We can adopt an explicit finite difference scheme and Newmark integration scheme 
for elasto-plastic analyses, so that the deformation and porewater pressure in each time step t∆ can be 
solved staggeredly. However, the explicit finite difference scheme is conditionally stable. t∆  should be 
small enough and at least less than the period that stress wave propagates in an element. The compressive 
modulus of water is larger than 2500Mpa and thus t∆  is at least between 0.0001and 0.001second. If we 
consider further the requirement of permeability of various soils and iteration convergence, t∆ will be 
smaller. Thus, t∆  can reach the requirement of stability of the explicit finite difference scheme in 
equilibrium equation, but it can not satisfy the requirement of permeability continuum equation about t∆ . 
According to the experience of finite element analyses of the Biot static consolidation equation, if t∆  is 
too small, t∆ [H] in the permeability continuum equation will be so small that the elements on the 
diagonal line of the matrix corresponding to {P} vector matrix will be too small and the coefficient matrix 
in the process of solution will be in ill condition. Therefore, in the Biot static consolidation analyses 

vCLt /2θ=∆ (θ =0.25~1, L is the size of the mesh, and Cv is the coefficient of consolidation)[2,7]. If t∆  is 

determined for the stability of explicit finite difference scheme in equilibrium equation, the value of t∆  
will be much smaller than that derived from 

vCLt /2θ=∆ . 

 
In order to satisfy the different requirements of t∆  for both the explicit finite difference scheme in the 
Biot dynamic equilibrium equation and the permeability continuum equation, an asynchronous staggered 
iteration method with an explicit difference scheme is suggested in this paper. Assuming that the 



deformation and porewater pressure at time step (n+1)-th, n-th, (n-1)-th are {un+1}, {un}, {un-1} and {Pn+1}, 
{Pn}, {Pn-1} respectively, we can use central difference scheme in Eqn. (22) to derive the following Eqn. 
(23): 
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Due to that [M] is a symmetric matrix about the diagonal line and there are only constant elements on the 
diagonal line, the inverse matrix of [M] can be derived for one time and kept constant at all time steps. We 
can solve { } 1+nu  from Eqn. (23), and substitute it into Eqn. (22) to derive { } 1+nu&& . Using Newmark 

integration scheme we can express { } 1+nu&  and { } 1+nP  as 
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where { } { } { }nnn utuA &&& ∆−+= )1( α  and { } { } { }nnn PtPB &∆−+= )1( γ . Thus the permeability continuum 

equation in Eqn. (20) can be written as  
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Substituting the derived { } 1+nu&& into Eqn. (25), we can derive { } 1+nP& . However, due to the reason that too 

small t∆  will make t∆ [H] in ill condition, the staggered iterative solutions of Eqns. (25) and (23) will be 
asynchronous. When we use {P}n to derive {u}n+1 in Eqn. (23), {P}n at this instant moment is assumed to 
be constant since the time interval is very small. {u}n and {u}n-1 at next time steps are used to derive 
{u}n+1  continuously£¬until the accumulated time interval is enough to make t∆ [H] in Eqn. (25) not in ill 

condition again and { } 1+nP&  can be solved. Substituting derived { } 1+nP&  into Eqn. (24), we can derive 

{P}n+1.  
 
It can be found that the time interval in asynchronous staggered iteration is also related to the permeability 
coefficient of soils. When the permeability coefficient is large, the asynchronous staggered iteration may 
almost recover to synchronous staggered iteration. However, when the permeability coefficient is small, 
the asynchronous staggered iteration method is better to be adopted. In addition, in the adopted hypo-
plasticity model, the magnitude and direction of the plastic strain is dependent not only on the magnitude 
and direction of the total stress, but also on those of the stress increment. Therefore, in the solid-liquid 
coupling finite element analysis, the current magnitude and direction of the stress increment should be 
previously determined by elastic modelling, then the elastic plastic analysis is conducted to determine the 
magnitude and direction of the stress increment in next step. The staggered iteration method is repeated 
until the convergence is reached. The newly determined magnitude and direction of the total stress will be 
taken as the initial values for the next step. 
 

FINITE ELEMENT ANALYSES 
 
The dynamic solid-liquid coupling elasto-plastic responses of a saturated sand foundation are analyzed 
using the present hypo-plasticity model and asynchronous staggered iteration method with an explicit 
difference scheme. The model parameters for the analysis are listed in Tab. 2. The input horizontal 
acceleration is a regular sine wave with 1Hz frequency. The maximum acceleration is 0.1g. The 
foundation is divided into a zone with a mesh of 20 joints and 12 four-joint isoparametric element, as 
shown in Fig. 2. The mesh size is mm 23 × . The simple left and right manual boundaries are horizontally 
constrained only and closed to drainage. The simple bottom manual boundary is vertically constrained 
only and also closed to drainage. The top surface is free to deformation and drainage. The asynchronous 
staggered iterative time interval is 30 4103 −×=∆t second. Figs. 3 and 4 show the computed results of 



lateral displacement, vertical settlement and porewater pressure of the 10-th joint at time t=10 seconds. It 
can be found from Figs. 3 and 4 that, the lateral displacement, vertical displacement and porewater 
pressure all exhibit vibrating characteristics due to the input cyclic sine wave. Although the peak values of 
the porewater pressure at some time steps are negative, the most peak values are positive and the absolute 
values are relatively larger than others. The horizontal displacement turns from negative values to positive 
values progressively in the process of vibration, and the positive values are absolutely larger. The values 
of vertical settlement are positive in general. The computed results are generally reasonable. However, 
there are still some limitation of the adopted hypo-plasticity model and numerical solution methods, such as 
asynchronous staggered iteration of deformation and porewater pressure, and staggered iteration of 
elasticity model and hypo-plasticity model.  
 

Tab.2 The parameters of sand for the hypo-plasticity model in finite element analysis 
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CONCLUSIONS 
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Fig. 2 The grid of the sand ground in the dynamic finite 
element analysis (element size: 3m x 2m) 

Fig. 4 Porewater pressure of 10-th joint 
vs. time in vibration 

Fig. 3 Horizontal displacement and vertical 
settlement of 10-th joint vs. time in vibration 



A hypo-plasticity model is presented and preliminarily verified using triaxial tests on silty clays. 
An asynchronous staggered iteration method with an explicit difference scheme is suggested. 
The algorithm and the hypo-plasticity model are implemented in a finite element (FE) code 
based on Biot dynamic consolidation theory. The presented algorithm can make the coefficient 
matrix t∆ [H] not in ill condition when decoupling the dynamic equilibrium equation and the 
permeability continuum equation with a very small t∆ . The staggered iteration between the 
elastic model and the hypo-plasticity model makes it possible to determine the stress increment 
previously for the hypo-plasticity model in finite element analysis. The dynamic solid-liquid 
coupling elasto-plastic responses of a saturated sand foundation are analyzed and reasonable 
results are achieved. 
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