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BIOT DYNAMIC CONSOLIDATION FINITE ELEMENT ANALYSIS
USING A HYPO-PLASTICITY MODEL

Cheng ZHOU ', Zhu-Jiang SHEN? and Jian-Hua YIN *

SUMMARY

Equivalent viscous elastic models, which are not very realistic for soils, have been proposed and
implemented into dynamic consolidation analyses for several decades. Elastic plastic models are better for
soils. However these models have not been used successfully in the analyses of dynamic Biot
consolidation. The main reason is that a great amount of work must be done by formulating the inverse
stiffness matrix [K]™' in each small At step if using an implicit finite difference scheme. In order to save

work of calculation, an explicit finite difference scheme may be used for elastic plastic analyses of the
dynamic response of a soil foundation. But, due to the ill condition for solution to the permeability matrix

by using a small Afsuch as 10°to 107" second, the uncoupling between dynamic equilibrium and
permeability equations in Biot dynamic consolidation theory is difficult to fulfill. Therefore, an
asynchronous staggered iteration method with an explicit difference scheme is suggested. In this paper, a
hypo-plasticity model is first presented and verified using triaxial tests on silty clays. The algorithm using
a hypo-plasticity model is implemented in a finite element (FE) code based on Biot dynamic consolidation
theory. The dynamic solid-liquid coupling elastic plastic responses of a saturated sand foundation are
analyzed and reasonable results are achieved.

INTRODUCTION

Equivalent viscous elastic models and linear methods have been proposed and implemented into dynamic
nonlinear consolidation analyses of soils for several decades [1-2]. However, the equivalent viscous elastic
models are not very realistic for soils, although the average shear modulus, damp ratio and empirical
formulas for permanent volumetric and deviatoric strains and porewater pressure can be easily derived
using these models when they are implemented in the equivalent linear dynamic consolidaiton analysis.
Under complex loading and variable stress path, soils exhibit complicated stress-strain characteristics,
which can not be modelled by the viscous elastic models. Sometimes the post-earthquake deformations of
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geotechnical structures are larger than the results predicted using equivalent viscous elastic models and
methods, for example, in San Francisco earthquake in 1971 [3]. Elastic plastic models are better for soils
and can capture the complicated behavior of soils under complex loading and variable stress path.
However these models have not been used successfully in the analyses of dynamic Biot consolidation. The
main reason is that a great amount of work must be done by formulating the inverse stiffness matrix in
each small At step when elastic plastic models and implicit finite difference scheme are used; while only
one inverse stiffness matrix is needed to be formulated in each Af step if equivalent viscous elastic
models and equivalent linear method are used. In order to save work of calculation, an explicit finite
difference scheme may be used for elastic plastic analyses of the dynamic response of a soil foundation.

But, due to the ill condition for solution to the permeability matrix by using a small Az such as 10~ to

10~ second, the uncoupling between dynamic equilibrium and permeability equations in Biot dynamic
consolidation theory is difficult to fulfill [4-6]. Therefore, an asynchronous staggered iteration method
with an explicit difference scheme is suggested in this paper. A hypo-plasticity model is proposed. The
staggered iteration between an elastic model and the hypo-plasticity model makes it possible to determine
the stress increment in the proposed algorithm based on Biot dynamic consolidation theory [7]. Using the
hypo-plasticity model and asynchronous staggered iteration method, the dynamic solid-liquid coupling
elastic plastic responses of a saturated sand foundation are analyzed and reasonable results are achieved.

THE HYPOPLASTICITY MODEL

A good reasonable model should be able to model not only the stress-strain behaviour of soils under
simple loading, but also the stress-strain behaviour of soils under complicated loading. The model
parameters should also be easily determined using conventional tests. In this section, a model is first
developed for stress-strain behaviour of soils under simple loading, then the model is extended to model
the complicated stress-strain behaviour of soils using the hypo-plasticity theory [8-9].

The incremental effective stress tensor is divided into two parts, i.e., dO';,- Zp'd}/lj +O't_.'/.dp' /p, so

that the mutual effects of spherical and deviator stress on the stress-strain behaviour of soils can be
modelled. The deviator stress tensor is defined as 7, = s, / p and the scalar deviator stress ratio is defined

as 11 =y,Q,; . & is a tensor in the same direction as the incremental deviator stress ratio tensor d;; .

The definition of the stress tensor ¢; at the n-th step will be given in the following.

The strain can be divided into four parts: the volumetric strain £, induced by compression, the volumetric

strain £, induced by shearing, the deviatoric strain € . induced by compression and the deviatoric strain

&, induced by shearing [10-12]. In one dimensional or isotropic compression, we have
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Considering that Ag, = Ag, =0£-Ag, = Ag, = Ag, in one dimensional compression, the deviatoric

strain induced by compression is
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where 77, is the earth pressure at rest. In shearing under constant spherical stress, we have
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where a is the inverse of the initial shear modulus G, 77, is the deviator stress ratio at failure. It is
assumed that 77, increases linearly with contraction of soils, i.e.,
dn, =c,de,, 4)
where ¢, is a scaling coefficient for the increase of 77, .

The incremental of dé‘m is
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The linear dilation equation is assumed as
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where A and 77, are two dilation parameters.
Substituting Eqn. (6) into Eqn. (5), and using Eqn. (6), we can get
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By now, the stress-strain relationship under simple loading can be written as
dgv — a (nd 77) d?]
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where a ¢ C, or K, i¢C, or K j¢Ai¢c,i¢n,i¢n, ¢, are eight parameters for the model.

In order to extend the stress-strain relationship under simple loading to complex loading, the explicit
expression for ¢; should be given. ¢ is defined as the angle between the directions of the deviator stress

ratio tensor }; and the incremental deviator stress ratio dy; at the n-th time step. Obviously & is the

1
stress turning angle. Under simple loading, 7, = (y, 7@/)5 =+/2/3q/ p . Taking the elements of the



tensor ¢, all equal to cos/3, we can derive 77 =ll ; Il cos /3 under complex loading. 77 is always

positive or equal to zero. The definition of stress turning angle ¢ is given as

1
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where ¥, is the initial deviator stress ratio. In order not to make the extended model complicated, the

anisotropic hardening of Y, is not considered. The value of & can be used as the criteria for judging the

loading conditions under the complex loading. For example, when the stress turning angle o is =0,
the soil is under a simple proportional loading; when 90° < & <180° , the soil is under unloading
conditions; when 0°<a <9(° | the soil is under a variable-stress-path loading.

The strain can be divided into quasi-elastic and plastic strains. The quasi-elastic strain is induced by the
rolling or rotating of the soil skeletons, and the direction of the quasi-elastic strain is dependent on the
stress increment. The plastic strain is induced by the sliding of the soil skeletons; the direction of the

plastic strain is dependent on both the stress and the stress increment. Differentiating77 = ¥, , we can

get dn=o;dy; +y,da;. Atthe n-th time step, we have only one stress turning of ¥, and dy;. It can
be considered that d¢; = 0. Therefore we have dn=cdy; .

Base on the above assumptions of quasi-elastic strain and plastic strain, the stress-strain relationship of
soils under simple loading can be extended to the complicated loading case as

de! =Adp +Cwl(l-w)p a,dy,

de; =Bdpn,+Dw/(l-w)pn, a.dy,
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where A =1/(pK '), B=1/(pn,K.),C=af,(1-w)n, —m/(gpd), D =a(l—w)/(gp), K =KK /(K —-K),
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Ny =¥y V¥i)?%s My =Ny /3+2n, /3. [, is used for simulation of shearing induced
contraction under inverse loading. 5, =1when @, dy, 20; 5, =—1 when o, dy, <0 and n<n,. w

is used to account for the proportionality of the quasi-elastic strain in the total strain and w=g/2.

It is worthy to note that, in the above hypo-plasticity model, the Macauley symbol ‘<> is not included.
Porewater pressure or volumetric strain will still be induced due to the natural structure under the
compressive stress lower than the maximum stress in history. In the previous strain-porewater pressure

type of model Au=E  Ag,, the elastic rebounding modulus is adopted. Wang [13] rewrites the strain-

porewater pressure type of model as Au = E A€, using the compressive modulus. Shen [11] writes the

E E
model as Au =fA8W1 using a modulus value between E, and E , ie., E, SfSEw. In

ur

undrained condition, we have de, =de! +de” =0 and du =—dp’, therefore we can get the following
relationship for the porewater pressure using the present hypo-plasticity model.
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The elastic strain can be written as
1
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" (12)
de; :Ed i
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are both dependent the stress path. For convenient use, K and G are usually taken as constant values.

relationship _1_ (dl’ n_1 ﬂ}{l _ dLs_fJ . It can be seen that the elastic moduli K and G
2G y P

The elastic stress-strain stiffness matrix is given in Eqn. (13) as
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Using de/] =C ;{ld 0, » the plastic compliance matrix C, can be written as
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Eqn. (16) gives a series of elasto-plastic stress-strain relationships.
de; —DU,(, do,
de; =C; do,
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By means of the relationships in Eqn. (16), the elasto-plastic stress-strain stiffness matrix D;f; can be
written as
D'e‘p = (Iijmn + Dtjle[;mn) D:mkl (17)

ijkl



where ., are the unit matrix.

ijmn

We can also derive another expression of the elastic plastic stiffness matrix D;ﬁl using the present hypo-

plasticity model as following
D;il = Dl;kl -M, 'H (18a)
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The symbols such as A, B, C and D in Eqn. (18) are the same as those in Eqn. (10) and have been defined
and explained above.

Using the parameters in Tab. 1, the present hypo-plasticity model is used to predict the test results from
drained triaxial cyclic shear tests under constant confining pressure and under constant mean pressure.
The predicted results and the measured results are shown in Figs. 1 (a) and (b). The simple computational
example gives a preliminary verification of the present hypo-plasticity model.

Tab. 1 The parameters of the silty clay for the triaxial tests modeling

nf nd cc CS a 2 cf 770
1.0 0.9 0.15 0.015 0.025 1.0 1.5 0.65
160 )
&160 140
5140 | E120
3120 [ 7100
*f100 lé |
o ]
® 560
= 5
fs A 40|
20 I/
0Ff '
4 6 0 2 4 6 8 10 12
Axial strajn/ o Axial strain/ %

Fig. 1 The simulation of hypoplasticity model of the drained triaxial cyclic shear tests on silty clay
under (a) constant confining pressure 63=100 kPa and (b) constant mean pressure p=100kPa



THE ASYNCHRONOUS STAGGERED ITERATION METHOD WITH AN EXPLICIT
DIFFERENCE SCHEME

In the equivalent viscous elastic analysis method, the plastic strains are considered as equivalent viscous
strains and an empirical damping term is included. In the elastic plastic analysis, the tangent stiffness
matrix is formulated by using elastic plastic or hypo-plastic models, and the empirical damping term is not
used again. The finite element governing equation of the Biot dynamic consolidation theory in Eqn. (19)
can be used to solve the deformation of soil skeletons and the porewater pressure.

(b i Il ) () o
[Tk L s+ [s e b i e =P}

where [M] is the mass matrix, [K] is the stiffness matrix, [C] is the coupling matrix, [H] is the permeability
matrix, [A] and [S] are the inertial matrix and compressibility matrix of the liquid. {F,} is the loading
vector matrix, {F,} is the flowing vector matrix. If the compressibility and the empirical force of the liquid
are ignored, Eqn. (19) can be written as following

{[M Kii}+ (K Hu}+[CKP}=1{F}
[C"Wu}+[HKP}={F.}

If the frequency of the wave is very small, the inertial force of the soil skeletons can be further ignored, the
finite element governing equation of the Biot static consolidation theory can be derived as the following

[k Haut+[clph={F]

[CT]{Au}+ At[H]{P}:{E} 1)

£20£0

It is obvious that the permeability continuum equation is the same in Eqns. (20) and (21). In comparison
with the Biot static consolidation equation, the key issue of the solution of the Biot dynamic consolidation
equation is how to solve the dynamic equilibrium equation and correctly couple it with the permeability
continuum equation. We can adopt an explicit finite difference scheme and Newmark integration scheme
for elasto-plastic analyses, so that the deformation and porewater pressure in each time step Af can be
solved staggeredly. However, the explicit finite difference scheme is conditionally stable. Az should be
small enough and at least less than the period that stress wave propagates in an element. The compressive
modulus of water is larger than 2500Mpa and thus At is at least between 0.0001and 0.001second. If we
consider further the requirement of permeability of various soils and iteration convergence, At will be
smaller. Thus, Af can reach the requirement of stability of the explicit finite difference scheme in
equilibrium equation, but it can not satisfy the requirement of permeability continuum equation about At .
According to the experience of finite element analyses of the Biot static consolidation equation, if Af is
too small, Az[H] in the permeability continuum equation will be so small that the elements on the
diagonal line of the matrix corresponding to {P} vector matrix will be too small and the coefficient matrix
in the process of solution will be in ill condition. Therefore, in the Biot static consolidation analyses
At = 617 /CV(9=0-25~1’ L is the size of the mesh, and C, is the coefficient of consolidation)[2,7]. If Af is

determined for the stability of explicit finite difference scheme in equilibrium equation, the value of At
will be much smaller than that derived from Ar=4r* /C, .

In order to satisfy the different requirements of A¢ for both the explicit finite difference scheme in the
Biot dynamic equilibrium equation and the permeability continuum equation, an asynchronous staggered
iteration method with an explicit difference scheme is suggested in this paper. Assuming that the



deformation and porewater pressure at time step (n+1)-th, n-th, (n-1)-th are {un1}, {un}, {41} and {Ppny1},
{P.}, {Pn1} respectively, we can use central difference scheme in Eqn. (22) to derive the following Eqn.

(23):
{ii,. }= Mo, b= 20, 3+ {u, A% £22£0
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Due to that [M] is a symmetric matrix about the diagonal line and there are only constant elements on the
diagonal line, the inverse matrix of [M] can be derived for one time and kept constant at all time steps. We

can solve {u} from Eqn. (23), and substitute it into Eqn. (22) to derive {u} Using Newmark

n+l n+l*

integration scheme we can express {u}n 4 and {P},m as
{{d}m = a Adii},,, +1{A],
{P}nH = ;At{P}rHl + {B}n
where {A} ={i} +d-a)Ati}, and {B} ={P} + (1-7y) At{P } . Thus the permeability continuum
equation in Eqn. (20) can be written as
wiaRp)., ={F},, 1" A}, ~[HKB}, —aniC i}, (25)

Substituting the derived {u}n into Eqn. (25), we can derive {P}M . However, due to the reason that too

£724£0

small At will make At [H] in ill condition, the staggered iterative solutions of Eqns. (25) and (23) will be
asynchronous. When we use {P}, to derive {u},+1 in Eqn. (23), {P}, at this instant moment is assumed to
be constant since the time interval is very small. {u}, and {u},; at next time steps are used to derive
{u}n,, continuouslyf£—until the accumulated time interval is enough to make At [H] in Eqn. (25) not in ill

condition again and {P} .1 can be solved. Substituting derived {P}n . into Eqn. (24), we can derive

{P}n+]-

It can be found that the time interval in asynchronous staggered iteration is also related to the permeability
coefficient of soils. When the permeability coefficient is large, the asynchronous staggered iteration may
almost recover to synchronous staggered iteration. However, when the permeability coefficient is small,
the asynchronous staggered iteration method is better to be adopted. In addition, in the adopted hypo-
plasticity model, the magnitude and direction of the plastic strain is dependent not only on the magnitude
and direction of the total stress, but also on those of the stress increment. Therefore, in the solid-liquid
coupling finite element analysis, the current magnitude and direction of the stress increment should be
previously determined by elastic modelling, then the elastic plastic analysis is conducted to determine the
magnitude and direction of the stress increment in next step. The staggered iteration method is repeated
until the convergence is reached. The newly determined magnitude and direction of the total stress will be
taken as the initial values for the next step.

FINITE ELEMENT ANALYSES

The dynamic solid-liquid coupling elasto-plastic responses of a saturated sand foundation are analyzed
using the present hypo-plasticity model and asynchronous staggered iteration method with an explicit
difference scheme. The model parameters for the analysis are listed in Tab. 2. The input horizontal
acceleration is a regular sine wave with 1Hz frequency. The maximum acceleration is 0.1g. The
foundation is divided into a zone with a mesh of 20 joints and 12 four-joint isoparametric element, as
shown in Fig. 2. The mesh size is 3m X 2m . The simple left and right manual boundaries are horizontally
constrained only and closed to drainage. The simple bottom manual boundary is vertically constrained
only and also closed to drainage. The top surface is free to deformation and drainage. The asynchronous

staggered iterative time interval is 30 A = 3x 10 *second. Figs. 3 and 4 show the computed results of



lateral displacement, vertical settlement and porewater pressure of the 10-#4 joint at time t=10 seconds. It
can be found from Figs. 3 and 4 that, the lateral displacement, vertical displacement and porewater
pressure all exhibit vibrating characteristics due to the input cyclic sine wave. Although the peak values of
the porewater pressure at some time steps are negative, the most peak values are positive and the absolute
values are relatively larger than others. The horizontal displacement turns from negative values to positive
values progressively in the process of vibration, and the positive values are absolutely larger. The values
of vertical settlement are positive in general. The computed results are generally reasonable. However,
there are still some limitation of the adopted hypo-plasticity model and numerical solution methods, such as
asynchronous staggered iteration of deformation and porewater pressure, and staggered iteration of
elasticity model and hypo-plasticity model.

Tab.2 The parameters of sand for the hypo-plasticity model in finite element analysis
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Fig. 2 The grid of the sand ground in the dynamic finite
element analysis (element size: 3m x 2m)
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CONCLUSIONS



A hypo-plasticity model is presented and preliminarily verified using triaxial tests on silty clays.
An asynchronous staggered iteration method with an explicit difference scheme is suggested.
The algorithm and the hypo-plasticity model are implemented in a finite element (FE) code
based on Biot dynamic consolidation theory. The presented algorithm can make the coefficient
matrix Af[H] not in ill condition when decoupling the dynamic equilibrium equation and the
permeability continuum equation with a very small Ar. The staggered iteration between the
elastic model and the hypo-plasticity model makes it possible to determine the stress increment
previously for the hypo-plasticity model in finite element analysis. The dynamic solid-liquid
coupling elasto-plastic responses of a saturated sand foundation are analyzed and reasonable
results are achieved.
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