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SUMMARY 
 
A shaking table test was conducted to investigate the torsional response characteristics of a reinforced 
concrete frame with asymmetric plan consisting of a shear wall and independent columns, and the shear 
collapse mechanism of the columns designed in accordance to the 1970s Japanese design practice 
resulting vulnerable to shear failures. The specimen was subjected to five different earthquake base 
motions scaled appropriately so that the response will be from elastic to inelastic, and finally to collapse. 
The observed displacement responses, which were considerably different between the stiff and flexible 
frame, were presented and the torsional response ratio magnified from linear to nonlinear range were also 
described. In the final run, the process of shear strength deterioration of the independent columns was 
illustrated with observed responses such as forces, displacements and transverse reinforcement strain, and 
finally showed shear failure followed by axial load collapse. 
 
A macro model for RC column was proposed to simulate the experimental results, which is based on the 
plane strain-plane stress state and smeared rotating crack approach. The salient features of the proposed 
model are the capability of considering strength deteriorating effect resulting from the softening behavior 
in concrete constitutive law and the bending, shear and axial force interaction formulated from the stress 
resultants. The nonlinear analysis algorithm using two iterative schemes is illustrated, both of which are 
continued till the force and the stress equilibrium condition is satisfied.  
 
Finally, the analysis result of the proposed model was verified through comparison with the observed 
response, by which  the strength softening effect on the shear collapse process was clarified. The 
limitation of the model and the future  research needs are also discussed. 

 
INTRODUCTION 

 
Among the characteristics of structures that have suffered severe damage or collapse during past 
earthquakes, the items to be investigated in this experimental and analytical study are as follows: (1) the 
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lack of shear strength in RC columns designed following 1970’s Japanese reinforcement detail practice, 
which lead to shear failure and the loss of axial load carrying capacity, (2) asymmetric plan system 
composed of independent column frame and wall frame, which induce considerable stiffness and strength 
eccentricity and hence concentrate damage on weak frame. The objectives of this experimental study, 
therefore, are to understand the collapse process of columns with poor shear capacity and to assess the 
influence of stiffness and strength eccentricities on elastic and inelastic earthquake responses. 
 
Analytical study is performed for the first objective of this study. Several nonlinear analytical models have 
been proposed for reinforced concrete column, taking into account not only complex interaction effects 
but also strength degradation. These models can be categorized into two fields in terms of the hysteretic 
model used for representing the deteriorating characteristics, although hybrid model combining two 
hysteretic models was also proposed.  
 
One is the member hysteretic model based on the force-deformation relation constructed from the 
member-level experimental studies, which usually adopted in a lumped plasticity model. This analytical 
approach is simple and economical but the way of defining strength deterioration and coupling effect 
between bending and shear is formulated using empirical formulation that entirely depend on the 
experimental data rather than based on the closed form equation. Therefore, the extensive experimental 
data are needed for improving the accuracy and reliability of the model.  
 
The other one is material model (i.e. concrete and reinforcement) that is formulated in terms of stress-
strain relation. These models are generally implemented in the finite element model, which are capable of 
representing the detailed local behavior and the more accurate description of inelastic behavior compared 
to the member hysteretic model. In addition, bending, shear and axial force interaction can be incorporated 
in an explicit way based on the stress-strain relation, and strength softening effect also formulated in a 
relatively rational manner despite this is also based on the experimental results. It is well known fact, 
however, that finite element model based on the material constitutive models requires the refined mesh 
division for the accurate estimation of the inelastic behavior in RC structures and, therefore, is not suitable 
for the nonlinear frame analysis in terms of the computation efforts.  
 
This paper, compromising between accuracy and economical requirement in analytical model, proposes 
the reinforced concrete column model composed of only three elements representing two hinge regions 
and central part between them, the inelastic properties of which are based on the two-dimensional material 
constitutive models.. 
 

TEST SPECIMEN AND EXPERIMENTAL SETUP 
 
Specimen 
A one-third scale reinforced concrete specimen was tested on the shake table, which comprises a wall and 
a column frame in the first story and wall frames only in the second story as shown in Figure 1. 
Asymmetric plan in the first floor generate considerable stiffness and strength eccentricity amount up to 
0.24 and 0.25, respectively. The stiffness eccentricity in the first story is given by: 
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Where kxe  is the distance between center of stiffness and mass, yi l  is the distance of each frame from 

center of mass, a and b are the dimension of plan in longitudinal and transverse direction, xi k  is stiffness  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
of i frame in loading direction, x, which was calculated from pushover analysis in elastic range, and 
∑ xi k is the sum of stiffness of all frames in loading direction. 
 
Each frame’s strength xi q  was calculated using material properties from concrete cylinder test and tensile 

test of sample bars, which can be found in Kim [1], and then used to calculate the strength eccentricity 
following Equation (2), where qxe  is the eccentric capacity of the frames to the mass and BC  is the base 

shear coefficient. 
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Total height of specimen is 5340mm, which is the 

summation of base (500mm), load cell (240mm), the first 
story (800mm), W1 (1100mm), the second story (800mm), 
W2 (1100mm) and steel plates (800mm) (Figure 1). Two 
concrete masses, W1 and W2 (284.6 KN ), and steel plates 
(148.3 KN ) on the specimen produced axial load stress, 
0.15 )18( MPaffA ccg = ) in the first story column, which 

correspond to that of six-story building. The first story 
independent columns were designed in accordance to 1970’s 
Japanese reinforcement detail practice as shown in Figure 3, 
which are vulnerable to shear failure after flexural yielding.  

 
 

Base Motion Input Plan and Instrumentation 
The specimen was subjected to the series of base motion with selected five levels as shown in Table 1. 
The levels of the base motions were determined on the basis of preliminary analysis results, from which 
the RC specimen was expected to collapse at the stage 5 (CHI50). The duration time of the base motions 

was scaled by 3/1  to satisfy the similitude law. The axial stresses and the shear coefficients 
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Figure 3 : Column detail 

Figure 1 : Test Specimen (unit : m) 
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Figure 2: Experimental setup and instrumentation 



corresponded approximately to those of the proto-type six-story building by imposing the additional mass 
(steel plates) on the specimen. Before and after the input of base motions, a white noise input with low 
acceleration level was run to observe the change of the natural frequency of the damaged specimens.  
 
The responses of the specimens, such as accelerations, displacements, strains in steel bars and shear and 
axial forces in the first story columns, were recorded in 1000Hz sampling rate with accelerometers (22 
channels), displacement transducers (20 channels), electrical resistance strain gages (36 channels) and 
load cells (4 channels), respectively. The experimental setup and location of measuring instruments are 
shown in Figure 2.  
 

Table 1: Base motion input plan 

Earthquake data 
Maximum target 

velocity 
Ratio to the 
prototype 

Maximum 
acceleration of 

prototype 

Maximum 
velocity  of 
prototype 

Maximum 
acceleration input 

to specimen 

Maximum 
velocity input 
to specimen 

 (kine)  (gal) (kine) (gal) (kine) 

TOH 12.5 0.3 258.2 40.9 77.5 7.2 

TOH 25 0.6 258.2 40.9 155 14.4 

ELC 37.5 1.1 341.7 34.8 375.9 21.7 

JMA 50 0.6 820.6 85.4 492.4 28.9 

CHI 50 0.7 884.4 70.6 619 28.3 
-TOH : Miyagi-ken Oki earthquake recorded at Tohoku university in 1978,      
-ELC : Imperial Valley earthquake recorded at El centro in 1940 
-JMA : Hyogo-Ken Nambu earthquake recorded at Japan Meteorological Agency in 1995      
-CHI :  Chile earthquake in 1985 

 
TEST RESULTS 

 
Damage Process of Specimen 
The damage identification of the specimens was estimated with three methods, which were observation of 
cracks generated in specimen, the number of yielded strain gage attached to reinforcing bars and the 
change of natural frequency calculated from system identification method. The details of the results are 
discussed in Kim [1]. 
 
Lateral and Torsional Responses 
Figure 4(a) shows the horizontal displacement responses of the wall and the column side during ELC37.5, 
which were measured from the displacement transducer instrumented between the base and the bottom of 
W1. The horizontal displacement response of the column side was much larger than that of the wall side, 
which resulted from the torsional response of the specimen with considerable eccentricity. The similar 
responses were observed in the other input stages although not presented here.  
 
The extent of the torsional response in elastic and inelastic range was evaluated by the index r, indicating 
the relation between lateral displacement of center and rotation angle (Figure 4(b)). For instance, the value 
of r becomes zero in case of pure torsional mode and infinite in case of parallel translation mode. Namely, 
the torsional responses become dominant as the value of r decreases. As shown in Figures 4(c), the index r 
becomes small with the specimen damaged by increased load level, which suggests that the torsional 
response became more dominant in inelastic range rather than in elastic. These results may be explained 
in terms of the fact that strength eccentricity of this specimen, governing the characteristic of torsional 
response in inelastic range, is so high that the wall side was not yielded in spite of yielding of columns. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Shear Force Distribution 

The base shear force was computed 
summing up the external forces 
calculated by multiplying masses of W1 
and W2 to the acceleration record of 
them. Subsequently, shear forces carried 
by wall was calculated by subtracting 
shear forces, recorded at the load cells 
instrumented at the base of the 
independent columns, from base shear 
force. Figure 5(a) illustrates the shear 
forces carried by the columns and the 
wall in the 1st story, and the ratio of the 
column shear force to the base one is 

shown in Figure 5(b). Note that all the shear forces presented in Figure.5 are the values at the time when 
the base shear force attained the peak in both directions. From these figures, it is seen that the shear force 
carried by the columns is relatively smaller than that of wall and degrade gradually with increasing 
inelasticity.  
 
Horizontal Displacement vs. Shear Force 
The hysteretic relations between the horizontal displacement and the shear force of the two independent 
columns are presented in Figure 6. The solid and dotted lines are calculated shear strength (112.9KN) and 
shear at calculated flexural strength (125.5KN) of two columns, respectively.  
 
In TOH12.5 and TOH25, the relation between two responses is almost linearly elastic, and as the load 
level increases, the stiffness degrades and the lateral drift becomes larger. The maximum shear forces 
were attained during JMA50, which was almost the same as that of the calculated strength. During the 
response to CHI50 input, the stiffness and strength degradations of the specimen became rapidly 
significant under reversed cyclic loadings and resulted in collapse when the elapsed time was around 20 
sec. 
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Collapse Process of Columns 
To investigate the process of RC column failure, the time-history responses and their relations observed 
for 10 seconds are illustrated in Figure. 7, which are from 12 sec. to 22 sec. after CHI50 base motion was 
run. The strain history of the transverse reinforcement shown in Figure.7 was measured at the mid-height 
of the column. Two reference times were selected to divide the responses into three parts. At first 
reference time, 16.7 sec, marked with black triangles, the large peak in shear force was recorded and then 
both the stiffness and strength degraded considerably and lateral reinforcement bar started to expand. 
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Subsequently, at 19.77sec marked with white triangle, larger lateral drift was developed comparing to the 
previous one and lateral stiffness and strength was lost entirely, and finally, the loss of axial load-carrying 
capacity led the specimen to collapse.  
 
From these figures, the process and the cause of the column axial failure may be interpreted as follow: the 
column response at the first peak induced the critical cracking associated with the yielding of the hoop, 
which caused the residual hoop strains and the shear strength decay. The second peak drift exceeded the 
previous maximum. Here, the hoop might be fractured since the residual strain fall down, and the loss of 
the interface shear transfer along the shear cracking might cause the fatal loss of the axial capacity. It 
should be noted that the inelastic strain of the hoop was accumulated with cyclic load reversals in the 
second time region and this could be the main cause of the shear and axial failure of the column. 
 

ELEMENT FORMULATION 
 
A column member in frame analysis is generally idealized by one line element with two-end nodes as 
shown in Figure 8(a). In the proposed model, however, the element is divided into three line elements by 
inserting two internal nodes (3,4) located at 

0
Lα  from two external nodes (1,2) (Figure 8(b)), which  

represent the boundaries of the plastic hinge regions. Furthermore, as shown in Figure 8(c), each line 
element is transformed to plate element with 4 nodes. The procedure of deriving member stiffness matrix 
is described below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Derivation of the member stiffness matrix 
The member stiffness matrix is derived by assembling the stiffness matrix of three line elements under the 
direct stiffness approach based on the nodal force equilibrium condition (Equation (3)). 
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The superscripts in parenthesis denote element number and the subscripts are for node number. Expressed 
using internal ( i ) and external ( e ) node notation, Equation (3) becomes 
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On the basis of the assumption that no external force is applied to the internal nodes, Equation (5) is 
obtained.  
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On substituting Equation (5) into Equation (4), finally, we can obtain the member stiffness matrix in the 
form of Equation (6), which relates only the external nodal displacements to forces.  
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The stiffness matrix deriving procedure described above is based on the direct stiffness method and the 
static condensation method, which assembles and reduces the stiffness matrix, respectively. 
 
Plate Element Formulation 
Equation (9) shows the relationship between line element and plate element, which have 6 and 8 DOF 
respectively. The line element can be transformed to plate element based on the two assumptions: one is 
plane section hypothesis and the other is the stress assumption that transverse stress is zero. The 
displacement relationship between two elements is, therefore, obtained as  Equation (8) and rewritten in 
the matrix form, Equation (9). 
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The plate element is considered as linear plane element with two nodes along an edge and based on the 
isoparametric formulation which uses the same shape functions to define the element shape as are used to 
define the displacements within element. A strain-displacement matrix [ ]

83×B  and a plane strain-stress 
relationship are shown in Equation (11) and (12), respectively. The plate nodal displacements in lateral 
direction transformed from the line element are identical, which makes the transverse incremental strain 



x
ε∆  become zero in Equation (11). Therefore, the lateral strain cannot be found in an explicit way using 

Equation (11), but evaluated from Equation (14), which is consistent with the assumption described 
above.  
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Once the incremental transverse strain is found, complete plane strain components are obtained and then 
plane stresses can be found. In this study, smeared rotating crack approach is adopted for evaluating 
stresses and material tangent stiffness matrix from given strains, which is based on averaged stress and 
strain including the effect of crack and coaxiality between principal strain and principal stress (Vecchio 
[2], Stevens [3]).  
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The integrals to obtain the force and stiffness matrix of plate element (Equation (15) and (16)) are 
numerically evaluated using the two dimensional gaussian quadrature. 
 
Constitutive Model 
 The plate element  is a basic analytical unit in the proposed model. The inelastic properties are 
determined from the material constitutive laws and therefore the accuracy of the analytical results is, to a 
great extent, dependent on the material models. The concrete model in principal compressive and tensile 
direction is shown in Figure. 10, which takes into account the compressive strength softening effect due to 
tensile strain and the tension stiffening effect, respectively. The compressive strength reduction factor 
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Figure 10: Constitutive model for concrete 
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adopted from Vecchio [2] and the descending branch representing the tension stiffening effect is from 
Isumo [4]. And the reloading and unloading rules under cyclic loading are also presented together with the 
envelope curve. The constitutive model for both longitudinal and transverse reinforcement used in this 
study is bi-linear type but incorporating the effect of bond to the concrete. Further details on the 
reinforcement constitutive model as well as the concrete model can be found in Chen [5]. 
 
Iterative Procedure for Numerical Solution 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A procedure for the nonlinear analysis of the 
proposed model is summarized in Figure 11, 
which is established by incorporating the material 
and element formulation described before. In 
addition, two iterative schemes imposing internal 
force equilibrium (Equation (17)) and transverse 
stress equilibrium (Equation (18)), which resulted 
from the assumptions made in the proposed 
element formulation, are introduced in the 
algorithm. Both of the iterative procedures are 
continued until the predefined convergence 
tolerance is satisfied, and the updated material 
and element stiffness is used for evaluating the 
residual displacement in the internal nodes 
(Equation (19)) and the transverse residual strain 
(Equation (20)), respectively. 
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However, the displacements assigned at external 
nodes should not be changed in the iteration loop 
(1), as the displacement compatible condition at 
the external nodes should be insured. In the same 
manner, explicitly calculated strains (i.e. 
longitudinal and shear strain) are not updated also 
in the iteration loop (2), in which only the lateral 
strains at each integration point are computed 
using renewed material stiffness and residual 
stress obtained by imposing the equilibrium 

between transverse steel stress and concrete stress (Equation (18)). In particular, initial values for the 
internal displacements { }

i
D∆  and transverse strain 

x
ε∆  can be found according to the Equation (5) and 

Equation (14), respectively, which correspond to the Equation (19) and (20) after initialization.  
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ANALYSIS AND RESULTS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

For the experimental results from TOH12.5 to 
JMA50 where little strength deterioration was 
occurred, three-dimensional dynamic analysis has 
already been performed with two analytical 
models such as classical fiber model and lumped 
plasticity model (i.e. one-component model) in 
Kim [6]. The fiber model showed a better 
correlation between the calculated and the 
observed data rather than one-component model. 
This is mainly because the axial-bending and the 
biaxial bending interaction were introduced in the 
former, but not in the latter. Both of the models, 
however, failed to simulate the post-peak response 
during CHI50 input. 
 
As noted previously, the proposed model is 
available only in the two-dimensional problem at 
current stage. However, the test specimen 
experienced torsional response under three-
dimensional effect despite unidirectional seismic 
load was applied, and therefore it is beyond the 
scope of this model to simulate the experimental 
results.  
 
As the alternative to the three-dimensional 
dynamic analysis of the specimen, two-
dimensional static analysis is performed on a weak 
frame depicted in Figure1. Obviously, this could 
be the source of error and the model might not be 
suitable for and even incapable of simulating the 
3-D experimental results since so many 
characteristics affecting the experimental results 
are ignored and not included in analytical 
procedure. Nonetheless, this analytical study has 
the meaning in terms of proving the stability in 
iterating nonlinear numerical solution and the 
capability of incorporating the strength 
degradation effects. Thus, the displacement 
controlled static analysis was performed with the 
application of the lateral displacement record at 
the 1st story, while the constant compression axial 
load corresponding to the self-weight was 
maintained (Figure.12). Taking into account the 
residual deformation and the stiffness degrading 
effect observed in the experimental results at the 
end of each input, the frame was subjected to the 
displacement record connected from TOH12.5 to 
CHI50 in succession.  
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Figure.13 shows the calculated force-drift ratio relationship together with the observed one. Although the 
analytical model did not provide a satisfactory accuracy in predicting the maximum shear strength, the 
model adequately represented the strength deterioration feature. The difference of strength deteriorating 
rate between the model and the experimental data might be attributed to the variable axial load 
accelerating the strength degradation in experimental case, while it was not considered in analytical one. 
In addition, biaxial effect might also be  associated with rapidly degrading strength observed in the 
experimental results. 
 
Using the strain values such as transverse, longitudinal and shear strain calculated at integration points, 
each strain distribution is illustrated in Figure.14. It should be noted that the level of the strains  developed 
in the mid-height region were significantly low compared to those of hinge regions and remained within 
elastic range throughout the whole response, and the shear strain distribution is constant along the section, 
as a consequence of the stress assumption made in the element formulation. Although these features 
resulting from the proposed element formulation are inevitable and could be apparent limitations in 
further realistic evaluation of inelastic behaviour of RC columns, these effects on the analytical results 
would not be so significant in most cases that they may be disregarded.  
 

CONCLUSIONS 
 
Based on the results of the experimental and the analytical investigation presented herein, the following 
conclusions can be drawn. 
 
Throughout all the loading stages from elastic to inelastic range, the lateral displacement responses of the 
column side (weak or flexible frame) were much lager than those of the wall side (strong or stiff frame), 
which was expected and attributed to the considerable stiffness and strength eccentricity. In particular, the 
torsional response was a little lager in inelastic responses than in elastic, which may be due to the large 
strength eccentricity.  
 
The collapse process of reinforced concrete columns during CHI50 input, shear strength deterioration 
resulting in axial load failure along with inelastic load reversals, was interpreted with the detailed local 
responses, such as transverse steel strain, lateral and vertical displacements, shear and axial forces and 
their relationships.  
 
An analytical member model of column in frame analysis is proposed based on stress-strain relation 
formulated from the material constitutive model. Static analysis of the test specimen was carried out using 
the new model, where the stress and force equilibrium condition obtained from the dynamic test was 
applied with numerical iterative procedure. A fair correlation was obtained between the test and analysis. 
The model may be used to incorporate the bending, shear and axial force interaction and the strength 
deterioration under the cyclic loading. 
 
The proposed model is limited to two-dimensional analysis and needs to be extended to three-dimensional 
model simulating including as confinement effect and multi-axial interaction. The material constitutive 
law should also be verified further to improve the accuracy of the analytical model. 
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