
 

13th World Conference on Earthquake Engineering 
Vancouver, B.C., Canada 

August 1-6, 2004 
Paper No. 4008 

 
 

SEISMIC FRAGILITY ANALYSIS OF STRUCTURAL SYSTEMS 
 

Giorgio LUPOI1, Paolo FRANCHIN2, Alessio LUPOI3, Paolo E. PINTO4 
 
 

SUMMARY 
 
A method is presented for the evaluation of the seismic fragility function of realistic structural systems. 
The method is based on a preliminary, limited, simulation involving non linear dynamic analyses 
performed to establish the probabilistic characterization of the demands on the structure, followed by the 
solution of a system reliability problem with correlated demands and capacities. The results compare 
favorably well with the fragility obtained by plain Monte Carlo simulation, while the associated 
computational effort is orders of magnitude lower. The method is demonstrated with an application to a 
RC bridge structure subjected to both rigid and spatially varying excitation. 
 

INTRODUCTION 
 
Safety assessment of structures explicitly based on probabilistic approaches is gaining wider diffusion 
both for the calibration of deterministic design procedures (Cornell [1]), as well as for direct use in design. 
The required fragility functions can be obtained through a variety of methods, that range from expert 
judgment (ATC13[2]), to data analysis on observed damages (Singhal [3], Shinozuka [4]), to fully 
analytical approaches, as for ex. in Gardoni [5], Franchin [6], Au [7]. 
A feature common to most of the approaches of the latter category is the use of a reduced number of 
simulations to compare probabilistically the maximum structural responses with the corresponding 
capacities. 
The difference among them lie essentially in their balance between cost and accuracy, i.e. in their ability 
to account economically for all the aspects entering the reliability problem. These latter include: 

a. The possibility of the structure reaching collapse in more than one failure mode (system reliability 
problem) 

b. The degree of dependence among the possible failure modes 
c. The uncertainty in the capacity of the structure (due to the approximate nature of the models) 
d. The influence on the dynamic response of the variability of the system parameters 
e. The influence of the variability of the ground motion on the dynamic responses and on their 

correlation 
In the paper a method is presented which is simple and, at the same time, able to account for all of the 
above mentioned aspects. The method takes profit of ideas and proposals that have appeared in different 
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forms in the recent literature, though not formulated in a similarly coherent framework. It is presented here 
together with an application of realistic character that offers the possibility of exploring its features, 
among which effectiveness and practicality are believed to be the most attractive ones. 
 

RELIABILITY METHOD 
 
In the basic formulation of this method, as presented in Giannini [8], the variability of the 
response/demand is assumed to be due only to that of the ground motion, i.e. the structural response, given 
the input, is deterministic. 
In case the performance of the structure can be characterised by a single failure mode, or when one mode 
is dominant over the others, denoting by kD  the maximum demand in this failure mode due to the k -th 

accelerogram and by C  the corresponding capacity, completely defined by its cumulative distribution 
function ( )⋅CF , the probability of failure conditional on the sample ground motion  k   is given by:  

 { } ( )kCkkf DFDCP =≤= Pr,  (1) 

By repeating the analysis with a number of accelerograms, the probability of failure unconditional with 
respect to sample variability can be simply obtained as:  
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where the number of samples must be large enough to ensure stable estimates of  fP . 

In general, failure may occur according to different modes of comparable importance (e.g. flexural failure, 
shear failure, joint failure, etc.) in different members of the structure. If the failure events can be 
considered as independent and arranged in series, the probability of failure of the system is easily 
evaluated as: 
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which is the generalisation of Eq.(1) for the case of m  independent modes. 
In Eq.(2) the dependence of fP  on the intensity of the seismic action is omitted: the fragility function is 

obtained by calculating fP  for a convenient number of  intensity values. The simplest version of the 

procedure is comprised in Eq.(2) and (3). Consideration of the correlation between failure modes, of the 
influence of the variability of the mechanical parameters on the demand and of possible non serial 
arrangements of the failure events are all areas where the basic procedure can be improved, as indicated in 
the following. 
In a general formulation of the problem, both the demands and the capacities should be considered as 
functions of the basic variables x , i.e. ( )xii CC =  and ( )xii DD = . In the basic procedure this 

dependence is ignored for what concerns the demand and only partially accounted for at the capacities 
level through their marginal distributions ( )⋅

iCF . Actually, a significant degree of correlation normally 

exists among the capacities iC 's. This correlation can be evaluated based on that existing among the basic 

random variables x  they have in common. 



To illustrate this last point, assume as a simplification that the ductility capacity iC  at a section i  can be 

expressed as a linear function of the ultimate deformation of concrete icu ,ε  and of the yield strength of 

steel iyf ,  at the same section: 

 iyiicuii fbaC ,, += ε  (4) 

and that a correlation exists between the ultimate deformation and the yield strength at two different 
sections i  and j . One has then: 
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where, assuming independence between concrete and steel properties, the covariance between the 
ductility capacities at sections i  and j  can be written as a function of the known covariances between the 
basic variables as: 

 ( ) ( ) ( )jyiyjijcuicujiji ffCovbbCovaaCCCov ,,,, ,,, += εε  (6) 

In practice, most formulas for the capacity of failure modes of reinforced concrete members are built upon 
a relatively weak mechanical basis, to which elements of empirical origin are added. This formulas are 
presumed to be unbiased (i.e. to provide a correct prediction of the mean value), but they are accompanied 
by a significant scatter due to modelling error. Since the capacity is generally a positive quantity, the 
general format of these formula is additive when expressed in terms of some transformation of the 
capacity: 

 ( )
ii CCiC εµ += x  (7) 

or multiplicative as in: 

 ( )
ii CCiC εµ ⋅= x  (8) 

In the former case 
iCε  is normally assumed to be a zero mean Gaussian random variable, while in the 

latter it can be assumed to be a unit mean Lognormal variable. It has to be observed that for distinct failure 
modes the corresponding random variables 

iCε  and 
jCε  are usually considered as independent and this 

reduces the correlation between the capacities iC  and jC . 

Coming now to the demands, rather than calculating the failure probability conditional on the  k-th sample 
of ground motion, as in the basic procedure, the results ikD  from the entire set of non linear structural 

analyses can be used to compute the statistics of the iD 's, which include mean values 
iDµ , standard 

deviations 
iDσ  and correlation coefficients 

ji DDρ . The i-th demand can then be expressed, similarly to the 

corresponding capacity, as: 

 ( )
ii DDiD εµ ⋅= xµ  (9) 



where the mean value 
iDµ  of the demand is evaluated at the mean value of the basic variables xµ , 

iDε  

can be assumed to be Lognormal5 with unit mean, standard deviation equal to the i-th demand coefficient 
of variation 

iii DDD µσδ /=  and correlation coefficient  with jε  equal to
ji DDij ρρ = . 

Apart from the dependence of the demands on the basic variables  x  , all the elements are in place to 
evaluate the probability of failure of a completely general system (not necessarily serial): 
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with Cn  cut-sets jC  (
j

IC  denoting the set of indexes of the failure modes belonging to the  j -th cut set). 

The system reliability problem in Eq.(10) can be evaluated either by FORM, first solving each 
component/failure mode and then using the multi-normal approximation for general systems, or by Monte 
Carlo simulation, which is simpler and in this case is comparatively inexpensive since it does not require 
any structural analysis. 
As a final step, it remains to account for the dependence of the demands on x . One simple, efficient, if 
apparently not particularly accurate way of doing this, is to consider this dependence as linear around the 
mean value of x . This involves the first order partial derivatives of the demands with respect to x   
evaluated in the mean xµ  of the basic variables. These, often called sensitivities with respect to the 
system parameters, can be computed either numerically by a finite difference scheme, i.e. repeating the 
analysis for perturbed values of the parameters, or, more efficiently, by the Direct Differentiation Method 
(Franchin [9], Kleiber [10]). In practice, the sensitivities ji xD ∂∂ /  are computed as the mean values of 

the derivatives conditional on sample accelerogram: 
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where the derivatives jik xD ∂∂ /  are calculated at the time instants where the corresponding maxima 

occur. 
The demand in failure mode i  can thus be rewritten accounting for its (linearized) dependence on x  as: 
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and the reliability problem can be written, similarly to Eq.(10), as: 
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where now it is understood that the vector x  includes, besides the basic variables, also the capacity error 
terms Cε 's and the demands variability terms Dε 's. 

 

                                                 
5 Since the demand is defined in this context as the maximum value of the response over an interval of time, one might think of 
modelling its distribution as an Extreme one. While on one hand any choice of the distribution has to be validated with a goodness-
of-fit test, on the other the use of the Lognormal one has gained wide acceptance for this type of problems. 



APPLICATION TO A BRIDGE STRUCTURE 
 
The method is demonstrated through an application to a bridge structure. The reason for choosing an 
extended in plan structure lies in the intent to show that the procedure works also if a dominant mode of 
vibration is absent. This occurs for example when a structure is subjected to a spatially distributed 
excitation such as that represented by a train of waves traveling with finite velocity in a random medium. 
The bridge is analyzed in two situations, i.e. when subjected to a “rigid” or uniform excitation and when 
instead, the input at each support differs due to waves scattering and refractions/reflections during the 
travel path.  
 
Description of the bridge 
The bridge shown in Figure 1 is composed of a pre-stressed concrete box-girder continuous over 
reinforced concrete cantilever piers with rectangular box section and heights of 14m, 21m and 14m, 
respectively. The total length of the structure is 200m, subdivided in four spans of 50m each. The piers are 
reinforced with 120 20φ  bars subdivided in 67 and 53 bars on the outer and inner perimeter, respectively. 
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Figure 1 Bridge layout and cross-sections. 

 
Failure modes and basic random variables 
The seismic performance of the bridge is evaluated in this application with reference to six failure modes. 
These include the exhaustion of deformation capacity at the base of the piers measured in terms of 
curvature φ , and the exceedance of the shear strength of the piers. Given the topology of the bridge, 
failure is assumed to occur when any of the above modes reaches failure (series system). 



The capacity formula used for the shear failure mode is the so-called “modified UCSD model”, Kowalsky 
[11],  fib [12]. To use this model, consisting of three additive contributions due to concrete cV , transverse 

steel sV  and axial force pV , respectively, an error term is used in the multiplicative form, i.e. the (random) 

shear force capacity of a pier is given by: 

 ( ) ( )[ ] VpysdccV VfVfVC εµ ++= ,  (14) 

where dµ  is the maximum displacement ductility demand on the pier. The error term Vε  is Lognormal 

with unit mean and coefficient of variation equal to 0.13, which is the dispersion of the experimental 
results around the predictive formula according to fib[12]. 
The ultimate curvature uφ , corresponding to the attainment of the ultimate concrete compressive strain 

cuε , is considered among the basic random variables. 

The basic random variables of the problem are reported in Table 1. They are all assumed to be 
Lognormally distributed and statistically independent. The mean values of the ultimate curvatures 
correspond to a curvature ductility of about 20. 
 

Table 1 Characterization of the basic random variables 

Random variable Mean value Coefficient of Variation 

cf  30 [MPa] 0.35 

yf  430 [MPa] 0.20 

1uφ  0.0040 [m-1] 0.30 

2uφ  0.0045 [m-1] 0.30 

3uφ  0.0040 [m-1] 0.30 

 
Bridge under uniform excitation 
 
Seismic action 
For the purpose of the time-history analyses necessary for the characterization of the random demands 
D’s, both recorded and artificial accelerograms can be used. In this application, for the purpose of 
comparison with the results presented later for the bridge subjected to non-uniform excitation, artificial 
accelerograms are preferred. These latter are generated as samples of a random process having power 
spectral density compatible with the elastic response spectrum specified in Eurocode 8, CEN[13], for firm 
soil (denoted in the following by the letter F). The motions have been modulated in amplitude with an 
envelope having a total duration of sec20 with initial parabolic and final exponential ramps of duration 

sec2  and sec3 , respectively. The number of generated samples, 20, is larger than strictly necessary 
based on previous experience with similar structures, but again the figure is chosen for comparison 
purposes with the case of non uniform excitation. 
 
Fragility analysis 
In order to perform the system reliability analysis according to any of Eq.(3), (10) or (13), it is first 
necessary to collect response values from a limited number of non linear dynamic analyses of the bridge 
subjected to the generated motions. These latter are then used to establish the distribution of the demand 
random variables. The results of the analyses are shown in Figure 2 where, for all piers and failure modes, 
the maximum from each analysis together with the mean and mean plus or minus one standard deviation 



are given as a function of the peak ground acceleration which is here taken as the measure of seismic 
intensity. 
Given that the choice of this measure is recognized to be consequential in reducing the variability of the 
demand due to that of the ground motion, it is noted here that since artificial spectrum-compatible 
accelerograms are used, the choice of the peak ground acceleration is equivalent to that of any other 
spectral ordinate. 
Figure 2 shows that, as expected, the deformation demands increase almost linearly with the seismic 
intensity while the shear demands tend to flatten with increasing intensity due to the attainment of the 
flexural moment capacity at the base sections of the piers. The second slope of the shear demand curves is 
determined by the hardening ratio of steel (set to 3% in this example). 

 

Figure 2 Results of the non linear analyses for the uniform excitation case. Mean demands and 
+/- one standard deviation curves for flexure and shear in the three piers. The flexural demand is 

expressed in terms of ductility. 

Figure 3 shows the evolution of the mean and of the standard deviation of one of the demands (flexural, 
pier 1) with increasing number of records, i.e. non linear analyses, used. The plots are similar for the other 
demand variables. As anticipated 20 records are more than strictly needed for the mean and variances of 
the demands to stabilize, any number above 10 being enough for all practical purposes. This favorable 
result is due to the use of artificial accelerograms coming from the same power spectrum and cannot be 
generalized to the case in which recorded accelerograms are used. Experience shows, however, that also in 
the latter case the number of records required for stabilizing the demands is of the same order of 
magnitude. 



Figure 3 Mean and standard deviation of the flexural demand (in terms of curvature ductility) in 
pier 1 as a function of the number of records used. The curves depend on the particular ordering 

of the records. 

 
The same results reported in Figure 2 can be used to numerically estimate the correlation coefficients 
between the demands. The total number of these is ( ) 152/166 =− . Nine of these are shown in Figure 4 
for increasing seismic intensity. Under a uniform excitation this symmetric “regular” bridge structure 
vibrates according to a symmetric first mode, hence the correlation coefficients between “symmetric” 
demands such as 1φ  and 3φ , or 1V  and 3V , are equal to one for all intensities. Small deviations from unity 

are observed for the correlation coefficients between the demands at the central and lateral piers around a 
PGA of g20.0 , i.e. the value where some of the accelerograms induce yielding in the lateral but not in the 
central pier. When all piers are in the inelastic range, for higher seismic intensities, the correlation 
coefficients return close to one, with minor fluctuations due to the limited data used to estimate them. 

Figure 4 Selected correlation coefficients as a function of the seismic intensity: correlation 
between flexural demands at the three piers (Left); correlation between shear demands at the 

three piers (Centre); correlation between flexural and shear demands at each pier (Right) 

 



 

Figure 5 Sensitivities for the uniform excitation case. Mean curves for derivatives of flexural 
(curvature ductility) and shear demands in the three piers with respect to steel yield stress. 

Figure 5 shows the sensitivities with respect to random variable yf  chosen among the five due to its 

higher influence on the response. As expected, the curvature ductility demands decrease with a positive 
variation of yf , and the curves show that this dependence is almost linear in the intensity. For what 

concerns the shear demand, the results show that for a given positive variation of yf  the increase of the 

shear demand is independent of the PGA value. This is also expected since the variation in shear force due 
to an increase in the yield stress remains constant along the hardening branch. An increase of the yield 
strength by one standard deviation (CoV=20%) increases the shear force of about the same quantity at 
yield. 
Before progressing further to the evaluation of the system fragility, it is of interest to check the 
approximation implied in the linearization in Eq.(12). This check is carried out by comparing the 
linearized demands from Eq.(12) with the actual demands obtained from the non linear analysis 
performed for the perturbed values of the basic random variables x . 
The results of this comparison are shown in Figure 6 with reference to the yield strength yf  and indicate 

that the linear approximation is quite good. The plots for the remaining components of x  have similar 
trends. 



 

Figure 6 Linearised versus actual non linear dependence of the six demands on the random 
variables: the results refer to random variable yf  

The final results in terms of fragility curves are illustrated in Figure 7. The three curves in the left plot 
correspond to different degrees of completeness in the reliability computation. Curve (a) is obtained 
solving the full system reliability problem in Eq.(13) by Monte Carlo simulation. It therefore accounts for 
the dependence among the failure modes due to the shared basic variables x , as well as for the 
dependence of the demands on x  and on each other. This curve represents the most accurate result 
obtainable from this procedure and is compared in the right plot with the results of a “regular” Monte 
Carlo simulation. By this latter is meant the performance of non linear analyses for random samples of x  
and records from the same power spectrum used for collecting the demand values (The target coefficient 
of variation of the probability estimate is decreasing with increasing probability, ranging from 0.05 to 
0.01, the total number of simulations for all points in the curve being above 60 000). The match between 
simulation results and those from the proposed procedure is remarkable. 
The other curves in the left plot correspond to the following cases: 

1. Curve (b), is the simplest estimate of the fragility provided by Eq.(3), i.e. considering 
independence of the failure modes. The distribution function of the shear capacity, necessary for 
the evaluation of Eq.(3), is determined starting from Eq.(14) and from the distribution of cf , yf  

and Vε .  

2. Curve (c), differs from curve (a) only in that the capacities error terms are not considered. This 
fragility curve allows to appreciate the importance of such terms. 

 



Figure 7 Fragility curves. (Left) (a) full system (b) independent components (c) full system 
without shear capacity error terms; (Right) Comparison of results obtained with the complete 

procedure (curve (a) in the Left plot) with Monte Carlo. 

Importance analysis 
The importance of the individual mechanisms in determining the fragility of the system can be evaluated 
by comparing of the fragility curves calculated for each failure mode separately with that for the whole 
bridge. These are all shown in Figure 8. It is apparent that the flexural mode of the lateral short pier 
dominates the fragility of the system, and that brittle shear failure is not a main concern for this particular 
structure.  

 

Figure 8 Fragility curves for the entire bridge and the individual components. 

 

 
Bridge under spatially varying excitation 
 
Seismic action 
As anticipated, this bridge is a good example of a spatially extended structure for which a description of 
the excitation as a non rigid motion that varies between the supports is appropriate. 
In this application this motion is described in terms of a vector of correlated random processes. The model 
used for describing the spatial variability of ground motion is that presented in Der Kiureghian [14] and 
already applied in Pinto [15] for the statistical study of its influence on the safety of a population of 
bridges. The model consists of amplitude modulated non stationary processes generated starting from a 



matrix ( )ωS  of cross- and auto-power spectral densities. This latter is obtained from the power spectra at 

all support points ( ) niSii ,,1, K=ω , consistent with the local soil conditions, and from a model for the 

so-called coherency functions, i.e. the normalised cross-power densities between the supports: 

 ( ) ( )
( ) ( )ωω

ω
ωγ

jjii

ij
ij

SS

S
=  (15) 

The diagonal of the 55×  matrix of auto- and cross-power spectral densities used in this example contains 
in positions 1, 2, 4 and 5, corresponding to the abutments and the lateral piers, an identical power spectral 
density calibrated so as to be consistent with the elastic acceleration response spectrum for firm soil 
according to Eurocode 8 (the same used for the previous case of uniform excitation); in position 3  
(central long pier) the input PSD has a different frequency content and in particular it corresponds to a 
medium (M) soil type, again according to EC8. For what concerns the coherency function in Eq.(15), the 
following expression is employed: 
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where the velocity α/sv  and appv  are parameters of the spatial variability model that account for the so-

called loss of coherence and wave-passage effects (Der Kiureghian [14]). In the application the following 
values of the parameters are used: sec/300/ mvs =α  and sec/900mvapp = . The distance ijd  is the 

distance between support points i and j (50m in this example) and L
ijd  is the distance along the travel path 

of the waves. Finally, the last factor in Eq.(16) accounts for the difference in phase angles with frequency 
due to different soil conditions at the two supports i and j. 
A set of 20  ground motion suites (each sample consisting of 5 ground acceleration, velocity and 
displacement histories) is generated so as to satisfy the local frequency content as well as the desired 
correlation structure, Shinozuka [16]. The motions have been amplitude modulated with the same 
envelope function used for the uniform excitation case. 
 
Results and comparison with the uniform excitation case 
The results in terms of maximum responses, their mean and standard deviation, or their sensitivity to the 
basic variables, such as those reported in Figures 2, 5 and 6 for the case of uniform excitation are 
qualitatively similar in this case and are not shown. The most important difference lies in the correlation 
coefficients between the demands, which are shown in Figure 9 for the same demands as in Figure 4. 
One can see how the distance- and frequency-dependent loss of correlation between the input motions has 
a strong effect in reducing the correlation between the demands. All the correlation coefficients between 
demands at different piers are close to zero. The symmetry is lost and the response of piers 1 and 3 is not 
any more perfectly correlated. In addition, both for flexure and shear 2312 ρρ ≠ : this is due to a directivity 

effect since the waves are assumed to travel from left to right. The only correlation coefficients that, apart 
from the small fluctuations around the “yield” value of the PGA, are still equal to unity are those between 
flexure and shear demands at the same pier, Figure 9 (Right). 
 



 

Figure 9 Selected correlation coefficients as a function of the seismic intensity: correlation 
between flexural demands at the three piers (Left); correlation between shear demands at the 

three piers (Centre); correlation between flexural and shear demands at each pier (Right). 

Whether the described lack of correlation between the demands, due to the so-called “break-up of the 
modes” caused by the non uniform excitation, is detrimental or favorable for the overall safety of the 
bridge depends in general on the choice of the parameters of the model of spatial variability. This problem 
is investigated in more detail with reference to a population of bridges and of non-uniformity scenarios in 
Pinto [15]. Here the interest is only in showing that the procedure yields a fragility that compares to the 
“exact” one obtained by Monte Carlo with the same accuracy as in the uniform excitation case. This is 
shown in Figure 10 (Left), where the two fragilities obtained by solving the system problem in Eq.(13) are 
plotted together with the corresponding Monte Carlo results. Also shown in Figure 10 (Right) are the 
correlation coefficients for the shear demands from Figure 4 and 9. 
The results shown indicate that, in this example, the case of uniform excitation represents a more severe 
condition for the structure than the non uniform one.  
 

Figure 10 Comparison between results for the uniform and non uniform excitation case. 

 
CONCLUSIONS 

A method for the evaluation of the seismic fragility of general structures is presented. The method belongs 
to the category of analytical approaches to the fragility estimation and can account for all sources of 
variability, all possible modes of failure and their correlation. The method is demonstrated through an 
application which clarifies all of its aspects and confirms its effectiveness and accuracy.  
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