
 

13th World Conference on Earthquake Engineering 
Vancouver, B.C., Canada 

August 1-6, 2004 
Paper No. 4009 

 
 

SEISMIC FRAGILITY ANALYSIS OF RC STRUCTURES: USE OF 
RESPONSE SURFACE FOR A REALISTIC APPLICATION 

 
 

P. FRANCHIN1, A. LUPOI1, P.E. PINTO2, M.IJ. SCHOTANUS3 
 
 

SUMMARY 
 
A statistical approach for seismic reliability problems is applied in the assessment of an RC frame 
structure. The procedure establishes a response surface, characterised by a statistical model of the mixed 
type, to represent the seismic capacity in an analytical limit-state function. The fragility function of the 
system is then calculated by FORM analysis, with the constructed empirical limit-state function as input. 
The application concentrates on the clarification of implementation issues, and confirms the versatility of 
the method in realistic problems. 
 

INTRODUCTION 
 
Reinforced concrete structures can fail according to a wide variety of modes: flexural deformation failure 
of members in bending, shear failure of columns, tensile or compressive joint failure among others. The 
capacity models for all these failure modes are characterised by a fairly high degree of (epistemic) 
uncertainty, mainly due to a yet incomplete knowledge of the underlying behaviour, especially where 
complex interaction phenomena are concerned, e.g. the one between shear, torsion and bending. This 
uncertainty adds to the one arising from the inherent randomness in the material properties. An equal level 
of uncertainty is present in the response (demand) analysis. 
A response surface approach arises as a natural choice to lighten the computational burden when these 
capacity and demand models enter in reliability analysis. In the model used, which has been already 
extensively validated (Franchin [1,2]), the failure probability is expressed, following a well-established 
format in earthquake engineering, as a function of the earthquake intensity only, i.e. as a fragility function.  
The method is here applied in the assessment of a real three-storey 3D RC structure, designed solely for 
gravity loads according to the design and construction practice of the early 70’s in southern Europe. 
Actual test data are available, and the probabilistic assessment is compared with the real behaviour of the 
structure. 
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PROBABILISTIC ASSESSMENT PROCEDURE 
 
Statement of the seismic reliability problem 
Let x  be a 1×k  random vector completely characterised by its joint probability density function ( )xf , 
whose components can be of load or resistance type. In the space of x  a limit-state function (LSF) is 
defined, usually indirectly in terms of the response of the structure ( )xr , as a scalar function ( )[ ]xx ,rg  
that takes on positive values as long as the structure is safe in the corresponding failure mode, and 

negative values when it has failed, the boundary ( )[ ]{ }0, =xxx rg  between the two conditions being 

called limit-state surface. 
For seismic problems the response, and possibly the LSF itself, need to be described as functions of time 
t . This requires that the LSF is re-written as time-dependent: ( )[ ]ttrg ,,, xx . The reliability is therefore 
also time-dependent, and can be expressed as: 
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where in 0=t  a safe state is assumed, and T  is the time interval of interest (the duration of a seismic 
event). Using Eq. 1, the fragility is defined as: 
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i.e. as the failure probability conditional to an intensity measure (IM) characterising the ground-motion. 
Following current practice, the spectral acceleration for the fundamental period of the structure, ( )1TSa , is 

used for this purpose. 
When dealing with RC structures, the response in the inelastic range, that is necessary for the evaluation 
of LSF’s representing collapse, generally requires a demanding numerical (finite element) time-history 
analysis, corresponding to a realisation of x . In order to solve Eq. 2, it is then often necessary to pass to 
the computationally expensive class of simulation methods. In that case, reduction of the effort associated 
with these latter is mandatory if realistically complex systems are to be considered. 
A factor that has large impact in decreasing the required number of simulations is the choice of the form 
of the LSF. Typically it is put in a capacity (C ) minus demand ( D ) format. The dimensionally 
homogenous quantities C  and D  then represent response values such as bending moments, 
displacements etc., as needed in the criteria defining the various failure modes. One effective formulation, 
after Veneziano [3], is obtained by expressing both capacity and demand in terms of spectral acceleration: 

( ) ( ) DaCa SSg ;; −= xx  (3) 

where ( )xCaS ;  represents the spectral acceleration for which the maximum response in time reaches the 

limit-state, and DaS ;  is the demand spectral acceleration. The fact that DaS ;  is a parameter implies that 

once an analytical expression for the capacity ( )xCaS ;  has been formulated, one can build the entire 

fragility solving the problem repeatedly, changing the value of DaS ; .  

The format is generalised to the system case by defining: 

( ) ( ){ }xx
mCa

m
Ca SS ;; min=  (4) 

i.e. taking ( )xCaS ;  as the lowest value of the m distinct failure modes that leads to system failure. This 

means that failure is assumed to be attained as soon as the structure fails according to any of the included 
failure modes, which is equivalent to considering a series system. The most important feature of using the 



formulation in Eq.s 3 and 4 is that a unique LSF is used irrespective of the number m of failure modes and 
that the interaction between the failure modes is implicitly accounted for.  
Within this framework, the response surface technique will be employed as a means to obtain an 
analytical approximation for the capacity term ( )xCaS ;  with a limited number of simulations. The 

constructed response surface is then used as input for FORM analysis to calculate fragility values. 
 
Mixed-model response surface 
Let now x  be a 1×k  vector of controllable basic variables. Let Y  be a measurable random variable, 
representing ( )xCaS ; , whose mean value is believed to depend, in an unknown fashion, on the quantities 

collected in x . Let ( )xYµ  be a model of this dependence. Let one further assume that Y  can be 
expressed in the additive form: 

( ) ( ) εµ += xx YY  (5) 

where ε  is a random deviation term with zero-mean, called error term, assumed as Gaussian distributed, 
that gives account of the random variability of Y around its true mean, as well as of the inadequacy of the 
mean model ( )xYµ  to represent the relation between the true mean and x , also due to the limited 
statistical information from which its parameters are estimated. 
Establishing an empirical/analytical model of the dependence of the response Y  on x  such as that 
represented by Eq. 5 is the aim of the response surface technique, and comprises three stages: the choice 
of the model; the collection of data in the form of { }x,Y  pairs, from carefully planned simulations (using 
notions from the branch of statistics called experimental design); the estimation of the model parameters 
(using the techniques of statistical inference). Each of these issues is addressed extensively in Franchin 
[1,2], and is briefly summarised in the following. 
As far as the choice of the model for ( )xYµ  is concerned, linear or quadratic models of Y  in x  are 

classically postulated that explicitly relate Y  to the components of x  through a number of unknown 
model parameters. Since the size of the experimental basis needed to estimate these parameters grows 
rapidly with increasing size of x , cases with more than six variables are rarely found in the applied 
statistical literature. 
As an adequate mathematical description, even in its most simplified form, requires the introduction of a 
large number of random variables (in the order of hundreds-of-thousands, e.g. random amplitudes and 
phases in a spectral representation, random pulses in a time-domain representation), it is out of the 
question to explicitly account for the dependence of Y  on all variables needed to describe earthquake 
loading. 
The alternative is to account for their effect in a global, implicit, way. To this end the vector x  is 
partitioned into two sub-vectors 1x  and 2x , collecting the few variables whose effect is modelled 

explicitly and those many whose effect is modelled globally, respectively. The 2x  sub-vector thus 
represents uncertainty related to the earthquake, and its implicit effect is modelled resorting to the concept 
of random factors (Searle [4]). These latter are physical factors that randomly affect the response, 
assumed to do so in an additive manner. The corresponding mixed type response model is: 

( ) ( ) εδ ++= βxzxx 121,Y  (6) 

where ( )βxz 1  is called the fixed-effect part of the model, while δ  is the random-effect, i.e. the effect of 

the random factor 2x . The fixed-effect part of the model defines a classical response surface, i.e a linear 

combination of p generally non-linear functions of 1x , usually referred to as explanatory functions: 
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where ( )1xz  is the p×1  row vector of explanatories, and β  collects the p  model parameters. For what 

concerns the random factor effect, making the common assumption that δ  is a zero-mean Gaussian 

variable, the only unknown is its variance 2
δσ . 

The design of experiments to provide data for the estimation of the model in Eq. 6 is a delicate issue. A 
convenient experimental plan for producing data to estimate the parameters of a quadratic surface is the 
central composite design (CCD), which consists of a complete two-level factorial design augmented with 
a star design (Box [5]). The former consists of taking two levels (low, 1−=ξ , and high, 1+=ξ ) for 

each of the basic variables and performing an experiment for every one of the k2  resulting combinations. 
The star design adds two additional points at level α±=ξ  (with 1>α , see for example Box [5]) for 

each basic variable in 1x  plus 0n  centre points (at level 0=ξ ), resulting in a total of 022 nkn k ++=  

experiments. In this case, where the basic variables are random variables with a known distribution, a 
convenient choice is to define ( ) σµξ −= x  (Cochran [6]). 
The CCD allows estimation of the parameters of the fixed effect part only, and a modification is necessary 
to also allow estimation of the random factor effects. One attractive and well-established technique, called 
blocking of the experiments, provides a solution to this problem (Box [5]). It is historically used when the 
experiments cannot be carried out in homogeneous conditions, for instance because there is some 
uncontrollable and unknown source of heterogeneity and the effect of this latter has to be determined in 
order to discount it. Here the situation is reversed, and the experiments are carried out purposely 
introducing the source of heterogeneity (different earthquake records), to be able to determine its 
contribution to the variability of Y , represented by δ . 
If the n experiments are grouped (blocked) into b blocks with in  experiments each, and to each block a 

different ground-motion record is assigned, i.e. the dynamic finite element analysis is carried out with that 
record as input, the results of the n experiments can be collectively written in matrix form as: 

εBδZβY ++=  (8) 

where δ  is a 1×b  vector that collects the block effects, i.e. the random (factor) effects, and B  is a bn ×  
matrix that collocates each random effect to the correct block of experiments: 
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where 
in1  and 

in0  are vectors of length in  made up of ones and zeroes, respectively. The block effects 

collected in δ  are a finite number of observations of the random variable δ , from which the distribution 
of the latter is estimated. All other symbols in Eq. 8 have the same meaning as before. 
While for the classical response surface the model parameters β  are obtained from Ordinary Least 
Squares estimation independent of the error term variance, for the model given in Eq. 7 this is not 

possible: the parameters β  have to be estimated together with the variances 2
δσ  and 2

εσ . This is 

necessary because the experiments are no longer uncorrelated. In fact, from the model given in Eq. 8 one 
has: 



( )( )[ ] ( )( )[ ] 22EE εδ σσ IBBεBδεBδµYµYC YYYY +=++=−−= TTT
 (10) 

where TBB  is a non-diagonal matrix. 

Estimates of β , 2
δσ  and 2

εσ  can be obtained by Maximum Likelihood estimation using the likelihood 

function: 

( ) ( ) ( ) ( )[ ]ZβYCZβYCCβYYCβ YYYYYYYY −−−== −− 12

1

exp,, TfL  (11) 

whose maximisation is a constrained optimisation problem since 2
δσ  and 2

εσ  must both be positive. 

 
APPLICATION 

 
The method described in the previous section is here applied in the fragility analysis of a real three-storey 
3D RC structure (Figs 1-2), designed solely for gravity loads according to the design and construction 
practice of the early 1970’s in southern Europe, i.e. including plan irregularity and strongly eccentric 
beam-column connections, added to overall poor local detailing, scarcity of rebars, insufficient 
confinement, weak joints and older construction practice. 
The building has been designed, studied, constructed and pseudo-dynamically tested under bi-directional 
loading within the framework of the EU funded SPEAR project (Kosmopoulos [7], Negro [8]). It has been 
purposely designed to exhibit all the failure modes typical to non-seismically designed structures, and thus 
it was expected to experience flexural yielding at the bottom and top of the square columns, in particular 
at the first floor, together with bar-slippage in the area of lap splicing at the bottom of first and second 
floor columns. 
 
 

Figure 1. Plan view of the structure with details of column cross-sections (dimensions in [mm]) 
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Figure 2. Photo of full scale model as built  
 
 
The application described here is aimed at showing the potentiality of the procedure discussed in the 
previous section in a realistic situation. The fragility analysis carried out takes into account all the 
indications of previous research concerning the random factor representing uncertainty due to earthquake 
loading (Franchin [2]). Data required for the assessment, both in terms of capacity models and section 
modelling, are taken from fib Bulletin 24, “Seismic assessment and retrofit of reinforced concrete 
buildings” [9]. At the end of this section, a comparison is made with the outcome of the tests as carried 
out at the ELSA laboratory of the Joint Research Centre in Ispra, Italy (Negro [8]). 
 
Mechanical parameters influencing the response 
Only a limited number of variables, taking account of the effect of variations in the mechanical parameters 
on the response, can be introduced as explicit variables for the construction of the response surface. It is 
therefore convenient to work in the space of basic material properties, as they enable the description of 
sectional variability with a minimum of variables. 
In this application, the variability in the response is assumed to be essentially influenced only by the 
concrete cylinder peak stress cf  and the steel yield stress yf . These two variables describe the 

randomness of the material properties for the whole structure, i.e. their spatial variability throughout the 
structure is not considered.  
In order to also account for this spatial variability, additional random-effect variables should be introduced 
(Franchin [1]). In this application a simpler approximate approach is adopted, consisting in inflating the 
variability of the steel yield strength by doubling its coefficient of variation (CoV), to account for 
variations in the amount of steel present in the section. 
Following the recommendations of fib Bulletin 24 [9], the remaining parameters describing the 
constitutive behaviour of the unconfined and confined concrete on the section level are calculated using 
well-established relationships relating them directly to cf , yf  and other section properties that are here 

considered as deterministic. A bi-linear steel model is fully determined by its yield strength yf , and 

deterministic stiffness coefficients.  
The mean values of the material properties considered are shown in Table 1, together with the values of 
the coefficient of variation typically associated with each of them. They are both assumed to be log-
normally distributed. 
 

 



Definition of capacity: failure modes of RC structures 
As the frame under consideration is likely to fail due to the loss of load-bearing capacity of one or more 
columns, two relatively well established criteria are selected for flexural and shear failure of these 
structural members. Furthermore, as the joints are not reinforced, criteria for the joint shear capacity are 
also considered. Alternative modes of failure may be introduced, without affecting the general procedure. 
 
Flexural failure 
Failure in flexure is attained when the maximum core compression strain reaches the crushing limit εcc,u. 
The capacity is related to the basic variables through the confinement model in Paulay [10]: 
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where εsu, ρs,tr and fyst are the rupture strain, volumetric ratio and yield stress of the confining steel and ccf  

is the confined concrete peak stress. A modification for old-type columns as suggested by Panagiotakos 
[11] is made, using 6.0=a  instead of the original value of 4.1=a . 
To account for uncertainty and incompleteness in Eq. 11, a model error term 

ucc ,εε  is used. It is included in 

the vector 1x  and its properties are given in Table 1. 
 
Shear failure 
A shear strength model suggested in Kowalsky [12] is used to assess the shear resistance of members. Use 
of this model is deemed appropriate, as it is one of the few that enables computation of the capacity under 
bi-axial loading. The model considers the shear capacity as the sum of three distinct components: 

( ) Vpsc VVVV ε⋅++=  (13) 

where Vc represents the strength of the concrete shear resisting mechanism, Vs the capacity attributed to 
the steel truss mechanism, and Vp a component attributed to the axial load. 
In fib Bulletin 24 [9] this model, originally calibrated to circular columns, is evaluated using an extensive 
database of columns, finding a mean value of the ratio of experimental to calculated results equal to 0.86 
for rectangular sections and a corresponding CoV of 26.1%. A model correction term, represented in Eq. 
13 by εV, is therefore adopted and included in 1x . Its properties are given in Table 1. 
 
Joint-panel shear failure 
Following the fib Bulletin 24 [9], the joint resistance is specified directly in terms of diagonal principal 
stresses at the joint centre. This approach is considered more consistent with the underlying mechanics of 
the problem, as it illustrates in a transparent manner the influence of axial load acting on beams or 
columns on joint cracking and ultimate strength. This is especially true for the connections of the test 
structure, which lack special shear reinforcement, suggesting that failure is attained when cracking or 
crushing of the panel zone occur. In that case, diagonal tension cracking or crushing in compression may 
be assumed to occur in the joint if either one of the tensile or compressive principal stresses exceeds the 
following limits, respectively: 
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where nz is the compression stress due to vertical axial forces in the adjacent columns, and ν the joint 
shear stress. 



 
Table 1: Properties of the basic random variables ( 1x ) 

  Mean Units CoV 

cf  25 [MPa] 0.20 
Material uncertainty 

yf  450 [MPa] 0.20 

ucc ,εε  1  0.20 
Model uncertainty 

Vε  0.86  0.26 

 
Further settings for the simulations 
Following the guidelines for minimum number and size of the blocking, as discussed in Franchin [2], 
results in an experimental plan requiring 90 numerical simulations divided into 9 blocks, each associated 
with a specific accelerogram. Since the 3D frame requires ground-motion input in 2 directions, 9 two-
component records are selected to be used in the analysis, given in Table 2. 
Consistent with attenuation relationships used in hazard computation (see Sabetta [13]), which use the 
larger of the two horizontal components of the motion in the regression analysis for predictive equations 
of response spectra, the fragility is expressed in terms of the larger spectral acceleration of the two 
components, at the fundamental period of the structure. As the direction of the motion cannot be 
predicted, each pair of records is applied twice, first with the strongest one along axis X, and then along 
axis Y (see Fig. 1 for axis location). The worst case scenario is used in the final computation of the risk. 
Regarding the choice of the period, a previous study (Franchin [2]) indicated that it should reflect to some 
extent the non-linear behaviour of the response. Therefore the period is determined from displacement 
time-histories for the mean structure (i.e. the structure characterised by mean material properties) 
subjected to a record scaled to lead it to incipient yielding. The characteristic period sT 8.0=  is chosen 
as the mean of the X and Y period, as collapse can occur with the stronger (and therefore characterising, 
as explained above) component in either direction. 
A second order polynomial is developed on the four basic variables of Table 1: 
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where all linear and quadratic terms are retained, but the interaction terms between concrete and steel 
strength and between the model errors are omitted. Next to the error term ε one random factor δeq is 
included, representing the earthquake. 
 

Table 2: Accelerograms used in numerical analyses 
 Name Date Station name M R PGA Td Sa (T=0.8s) 
        comp.1 comp.2 
  (m/d/y)   [km] [g] [s] [g] [g] 
1 Friuli 05/06/76 Tolmezzo 6.5 37.7 0.351 36.32 0.542 0.357 
2 Loma Prieta 10/18/89 Apeel 7 Pulgas 7.1 47.7 0.156 39.95 0.290 0.181 
3 Victoria Mexico 06/09/80 Cerro Prieto 6.4 34.8 0.621 24.45 0.477 0.305 
4 Spitak Armenia 12/07/88 Gukasian 7.0 30.0 0.199 19.90 0.436 0.166 
5 Imperial Valley 10/15/79 Cerro Prieto 6.9 26.5 0.169 63.70 0.415 0.162 
6 Coalinga 05/02/83 Parkfield - Vineyard 

Canyon 3W 
6.5 32.3 0.137 40.00 0.262 0.256 

7 Northridge 01/17/94 Sandberg - Bald Mtn. 6.7 43.4 0.098 40.00 0.255 0.123 
8 Loma Prieta 10/18/89 Palo Alto Slac Lab. 7.1 35.6 0.278 39.57 0.394 0.360 
9 Kobe 01/16/95 TOT 6.9 57.9 0.076 39.00 0.378 0.252 



Figure 3. Fragilities obtained by considering different directions of loading 
 
 
Results 
Each experiment consists in repeatedly performing a time-history analysis for a realisation of the variables 
in x  scaling the associated accelerogram until the lowest of the capacity/demand ratios representing the 
several failure modes reaches unity. Once the ( )xCaS ;  values for all the experiments are determined, the 

parameters of the response surface are computed with reference to the model described in Eq. 15, using 
Maximum Likelihood estimation. Subsequently, FORM analyses are carried out for a range of DaS ;  values 

to calculate the fragility, yielding the curves in Figure 3. Three fragilities are shown, one for the case in 
which the strongest (and characterising) component of the ground-motion is applied in the X direction, 
one when this component is applied in the Y direction, and finally one taking for each experiment the 
minimum CaS ;  of the two, indicated as upper bound fragility. This last one is used as the final fragility of 

the frame. 
That the response surface is indeed a combined surface for multiple collapse mechanisms can be seen 
from Table 3, which reports the occurrences of the main failure modes for all 90 experiments that form the 
statistical basis of the final response surface. Modes 1 to 27 represent flexural failure in the columns: the 
first 9 for each of the corresponding columns of the first floor (Fig. 1), the second 9 (from 10 to 18) for 
each of the corresponding second floor columns, etc. Similarly, modes 28 to 54 represent the 
corresponding shear failure modes. Finally, modes 55 to 72 and 73 to 90 stand for joint-panel tension and 
compression failure respectively, e.g. mode 69 corresponds to joint-panel shear failure in tension of 
column C6 on the second floor. 
 
 

Table 3: Modes determining collapse of the structure 
Failure Modes 57 58 59 60 62 65 69 70 
No. of failures 5 5 7 4 12 6 38 3 
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Figure 4. Fragility obtained considering higher joint-panel shear capacity 
 
 
Discussion of results, comparison with test data and sensitivity analysis 
Table 3 shows dominance of joint tensile failure, with the beam-column connections of column C8 (see 
Fig. 1) on the first floor and column C6 on the second floor accounting for over 50% of the failures. These 
results are apparently at difference with the results from the Pseudo Dynamic Tests, as reported in Negro 
[8], which, for a peak ground acceleration of 0.20g, showed spalling and flexural cracking at the top of the 
columns, with main damage concentrated at the top of the central column (C3) and at the flexible edge 
columns (C2, C4 and C7) of the second floor. Some damage was also detected in the beams and floor 
slabs connected to the strong column C6. 
These results may indicate that the capacity values predicted by Eq. 14 underestimate the actual strength 
of the joint-panel in tension. When discussing the capacity criterion, fib Bulletin 24 [9] indicates various 
levels for the tension cracking. These levels are related to the type of confinement that characterises the 

joint, and vary from cf2.0  for T-joints with bar end hooks and smooth bars, to cf42.0  for T-joints 

with beam bars bent into the joint. However, these models have been calibrated using data from 2D tests, 
and thus do not give any indication of the favourable (or unfavourable) effect of the 3D configuration of 
the joints in the test structure. It is also noted that the floor slab of 150mm (30% of the beam height) will 
have a confining/stiffening effect on the joint region. 
To examine the sensitivity of the results to the estimate of the joint capacity, the analyses are repeated 

using a value of cf4.0  for the joint tensile strength. For this case only the simulations in Y direction are 

performed, as Figure 3 indicates that the upper bound fragility is equal for practical purposes to the 
fragility with application of the strong component in Y direction. The resulting fragility function is shown 
in Figure 4. 
 
 

Table 4: Risk values  
  Risk 

Jpt = 0.29√fc  0.0238 
Jpt = 0.40√fc  0.0143 
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Figure 5. Distribution of Sa;C for original (left) and modified (right) joint capacity 
 
 
It appears that the relatively modest increase in the joint capacity leads to a considerably higher seismic 
resistance. This is confirmed by the CaS ; values obtained from the simulations given in Figure 5, which 

show a shift of the capacity to higher values (the median goes up from 0.243g to 0.357g). 
A more meaningful assessment of the sensitivity of the results to the changes in the model is represented 
by the value of the overall risk, given in Table 4, calculated from the convolution of the fragilities with a 
given hazard curve for a site in Southern Italy, representative of a zone with moderate to high seismic 
activity. It is noted that the influence on the risk is not such as to change its order of magnitude. 
The results after modifying the joint tensile capacity also show a significant change in the distribution of 
the damage, as reported in Table 5. Failure is now concentrated in the central column (C3) and columns 
C2 and C4 of the flexible edge. Most of the other determining failure modes (6, 42, 60, 69) are related to 
flexural, shear and joint-panel failure of column C6 on the first and second floor. This indicates the 
vulnerability of the column, as is also seen from the test results. It might be concluded that efforts towards 
an improved modelling, in spite of the relatively small influence on the risk estimate, are of critical 
importance in the identification of more vulnerable elements and hence in the planning of upgrading 
interventions. 
 

CONCLUSION 
 
A statistical approach for seismic reliability problems was applied in the assessment of an RC frame 
structure. The procedure establishes a response surface, characterised by a statistical model of the mixed 
type, to represent the seismic capacity in an analytical limit-state function. The system fragility function is 
then calculated by FORM analysis, with the constructed empirical limit-state function as input. 
 
 

Table 5: Modes determining collapse of the structure (modified joint strength) 
Failure Modes 2 3 4 6 42 60 62 69 
No. of failures 10 23 16 3 3 3 6 24 
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It was shown that the probabilistic procedure is general in the sense that it can be used in conjunction 
with state-of-the-art mechanical models, and that the variability in the response due to uncertainty in the 
input ground-motion is realistically represented. Further, variability of the mechanical parameters is 
included, and the computation of the failure probability can account for any type and number of different 
failure modes. 
The application indicates that the method can be regarded as affordable as the number of computations 
can still be considered as acceptably low. The exact number of analyses needed is a function of the 
structure under consideration and of the iterative procedure used to arrive at failure. In the presented case 
study, for 90 experiments, the total number of simulation was 432 (an approximate average of 5 iterations 
per experiment). 
Finally, the comparison made with actual test data shows the importance of representative capacity models 
and accurate FE modelling. Clearly, progress is still to be made in order to set up accurate and practical 
models that are able to reproduce the behaviour of poorly designed and detailed RC structures. 
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