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SUMMARY 

 
This paper presents the applicability of neural networks trained on the compiled experimental database to 
predict the seismic capacity of reinforced concrete walls and columns. The best built network is used for 
prediction of the behavior of new elements. 
Use of neural networks enables dependence analysis of observed behavior on different variables and 
simplifies behavior prediction of building elements under seismic loadings. It could be used for 
comparison with other methods for performance prediction of critical horizontal load carrying elements.  
For the seismic capacity evaluation required input for walls and columns is: type of loading, dimension 
and type of cross section, material properties and reinforcement. They are fed to the neural network 
trained on the experimental database and as output variables we get prognosis of: shear strength, failure 
type, critical loads and displacements. The whole procedure, input data, optimized neural network model 
and output variables are implemented in one worksheet. 
 

INTRODUCTION 
 

The quantitative determination of strength and performance capability of structural elements is of vital 
importance for the vulnerability assessment of existing buildings as well as for effective design of 
earthquake resistant new buildings.  
 
The work was motivated due to a great deal of uncertainty in the estimation of the seismic capacity of wall 
and column structures. In spite of extensive experimental studies there is still a lack of understanding 
about the dependence of observed behavior on variables such as cross-sectional shape, amount of vertical 
and horizontal reinforcement, axial compression, loading histories, etc.  
Evaluation of performance capability of walls and columns based on the stress-strain properties of 
material does not easily represent true behavior due to many unknown parameters (bond-slip of 
reinforcement, crushing and spalling of concrete, etc.). Empirical approach seems to be more appropriate, 
as many unpredictable parameters are included in the closed form empirical expressions. This empirical 
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approach is commonly used in Japan but its applicability to the walls and columns used in other part of 
the world is questionable. 
 
The main goal of this paper is to make a contribution towards the quantitative determination of the 
performance capability of specific vertical structural elements, which have a very favorable lateral load 
resistance. Their performance, expressed in terms of shear strength and deformation capacity is of vital 
importance for the evaluation of the seismic performance of existing buildings as well as for the design of 
new earthquake resistant reinforced concrete buildings [3].  

 
NEURAL NETWORKS 

 
Neural networks, as part of the field of artificial intelligence, have nowadays quite extensive usage in 
scientific research as well as in a broad range of practical applications, including classification, pattern 
recognition, function approximation, optimization, prediction, evaluation of state and automatic control. 
Applied software package was “NeuroShell2” Ward System Co [1]. Using NeuroShell2 software program, 
we created operable problem solving application called neural network (NN) without programming in 
order to predict the behavior of reinforced concrete structural walls subjected to horizontal loading. The 
neural network has been trained through learning on the example patterns. 
 
Neural network architecture 
Experimental data base used in the study was compiled from the available literature and includes data 
from laboratory tests carried out on reinforced concrete walls and columns. Work on that database 
considers devising a protocol of presenting the research data in the performance form. Relationship 
between qualitative performance description and engineering parameters that can be considered in design 
is established. The inputs of the created neural networks are geometrical and material properties, 
reinforcement ratios and loading. Output variables are those, which have an important role in performance 
evaluation, like drift (δ), displacements (d), shear strength (V) and mode of failure. A set of neural 
networks were devised and tested until the output results satisfied the set up quality criteria, and the one 
that gave best overall results was used later on.   
Analyzing the various training patterns, we have selected the type and neural network architecture that 
gave the best estimation results. We also analyzed the influence of database arrangement on the estimation 
of results. Finally, backpropagation network architecture with multiple hidden slabs and different 
activation functions was chosen (Figure 1).  
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Figure 1. Neural network architecture scheme  
 



PREDICTION OF WALL SEISMIC PERFORMANCE 
 
The experimental database 
The database used in this study includes data from laboratory tests carried out on 285 reinforced concrete 
walls. All test specimens were isolated walls fixed at the base. Test walls with rectangular (R), barbell (B) 
and flanged cross-sections (F) were subjected to either monotonic or various cyclic horizontal loading 
regimes. The measured response variables are maximum shear force (Vmax), drift index (ratio of maximum 
top displacement to the height of the wall) and failure type (S-shear and F-flexural failure). It should be 
pointed out that for a number of tests the available data were incomplete – so, the original database had to 
be reduced and rearranged in form suitable for the neural network.  
 
Input variables 
Based on theoretical background and available database, the following variables were chosen as input 
variables influencing structural wall behavior subjected to horizontal loading: 
1.) L-type of loading:  A (1) - alternating, 

R (2) - repeated: specimen is loaded in one direction, unloaded, and reloaded in 
the same direction, 
M (3) - monotonic: specimen is loaded in one direction to failure, 
C (4) - cyclic: alternating or repeated, 

2.) S-cross section type: R(1) - rectangular 
B (2) - barbell 
F (3) – flanged, 

3.) rhos (ρs) - ratio of effective volume of confinement reinforcement in boundary element to the volume 
of the core,  
4.) fys - yield stress of confinement reinforcement in boundary element, 
5.) rhobe (ρb) - ratio of longitudinal reinforcement in boundary element, 
6.) fybe  - yield stress of longitudinal reinforcement in boundary element, 
7.) rhov (ρv) - ratio of distributed vertical web reinforcement in wall,  
8.) fyv  - yield stress of distributed vertical web reinforcement, 
9.) rhoh (ρh) - ratio of distributed horizontal web reinforcement in wall, 
10. fyh  - yield stress of distributed horizontal web reinforcement, 
11.) be - thickness of the wall web, 
12.) bf - width of boundary element, 
13.) hf - length of boundary element, 
14.) Lw - length of the wall, 
15.) fc - concrete cylinder compressive strength, 
16.) I - moment of inertia,  
17.) P/A - axial stress in the wall. 
Particular input variables having some kind of functional interdependence have been left out in order to 
increase the effectiveness of neural networks to be trained: Abe - cross-section area of boundary element, 
Aweb - cross-section area of wall web, Acw - cross-section area of wall, and steel areas Asbe i Aswv , hw - 
height of the walls.  
 
Output variables  
The following variables were chosen as output variables describing structural walls behavior subjected to 
horizontal loading: 
1.) Vmax (maximum shear force), 
2.) u max / hw (drift index), 
3.) Failure type (F – flexure 1; S - shear 2). 



Neural networks training models 
First, test walls with too many missing input variables were left out, reducing the database to 197 
examples. Secondly, we have reduced the number of input variables to 17 by leaving out the variables 
showing no significant influence on output results as well as variables having functional interdependence. 
Thus, number of input variables was reduced to 17. Using backpropagation network architecture, the 
results were better with only one output variable. So, for every and each output variable, we created one 
neural network.  Overview of the created networks regarding wall types, number of examples and data 
completeness is given in Table 1. 
 

Table1.  Neural network training models overview 

 
Finally, there were 17 input variables describing particular wall geometrical and material properties while 
the output variable in neural networks NN-1 to NN-8 was maximum shear force Vmax, in NN-9 output was 
failure type and in NN-10 – drift index.  

We used a regular three-layer backpropagation network with two slabs in the hidden layer. Input variables 
are in slab 1 with 17 neurons. Hidden slabs 2, 3 and 4, had 7 neurons each.  Output variables are in 
element 5. Thus, each of the 17 input variables is connected, through 21 neurons in both hidden slabs, to 
the output variables. Different activation functions were applied to hidden layer slabs in order to detect 
different features in a pattern processed through a network: Gaussian function on elements 2 and 4, tanh 
on element 3 and finally, on output layer it is a logistic function. The network learning rate (the amount of 
weight modification) was set to 0,1, momentum factor (the proportion of the last weight change that is 
added into the new weight change) was set to 0,1, while the initial weights (describing connection 
strengths between the neurons) were set to 0,3. The network randomly chooses the training patterns. 
Missing values in our data are replaced using average of the minimum and maximum values. We used a 
20% production set to test the network’s results with data the network has never “seen” before. The 
remainder of the pattern file (80%) formed a training set.  

 
Test examples 
Once the network is trained, it could be used for prediction of wall seismic performance. Network quality 
is checked against the independent data network has never seen before. The selected test walls 
geometrical and material properties are shown on Figure 2 and in Table 2. 

 
 

 

Neural Networks
Number of 
examples

Wall type
Complete input 

variables
Number of 

inputs
Outputs

NN-01-W 197 R,B,F incomplete 17 Vmax
NN-02-W 86 R,B,F complete 17 Vmax
NN-03-W 27 R incomplete 17 Vmax
NN-04-W 11 R complete 17 Vmax
NN-05-W 135 B incomplete 17 Vmax
NN-06-W 54 B complete 17 Vmax
NN-07-W 35 F incomplete 17 Vmax
NN-08-W 20 F complete 17 Vmax
NN-09-W 178 R,B,F incomplete 17 Failure type
NN-10-W 142 R,B,F incomplete 17 Drift  



Figure 2. Cross-sections of the tested structural walls 
 

Table 2.Test walls geometrical and material properties (input variables) 
1 (R) 2 (R) Camus 3 (B) 4 (B) 5 (B) 6 (F) 7 (F)

1 1 2 2 2 3 3
1 1 1 1 3 1 3

0,68 0,32 1,35 1,70 0,51 0,84 1,18

472997 547333 464034 570906 293727 275800 574354

2,40 2,01 1,97 3,52 4,70 0,82 1,13
476445 547333 442659 501267 293038 370951 574354

0,28 0,22 0,29 0,83 0,92 0,45 1,13

472997 563000 464034 506093 294417 276490 574354

0,42 0,32 0,63 0,83 0,92 0,45 0,57

472997 563000 464034 506093 294417 275800 537121
23305 39600 45645 34475 42563 23691 35626

233,05 1779,90 3925,32 2723,53 8,96 2129,87 2493,92

5853938 2456500 13880482 20378627 77878 40220618 2830788

Wall type

Shape
Loading

rhos (%)

fys ( kN/m2)

rhobe (%)
fybe (kN/m2)

rhov (%)

P/A (kN/m2)

I (cm4)

fyv (kN/m2)

rhoh (%)

fyh (kN/m2)
f'c (kN/m2)

 

 
Test results  
By comparing the experimental wall result with the estimations for maximum shear force Vmax given by 
the neural networks NN-01 to NN-08, the best match was achieved with the prediction of NN-01. The 
NN-01 is the network with incomplete input data for particular walls and uses all three (R, B, F) wall 
cross-sectional shapes. However, the networks NN-02 to NN-08 gave good predictions too, but only for 
particular wall cross-section on which the training was carried out. Therefore, the NN-01 neural network 
was used to estimate the failure type (NN-09) and drift index (NN-10) and good results were obtained. 
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Figure 3. Comparison of experimental results and NN-01-W network’s prediction for Vmax 
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Figure 4. Comparison of experimental results and NN-09-W network’s prediction for failure type 
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Figure 5. Comparison of experimental results and NN-10-W network’s prediction for drift  

 
 

PREDICTION OF COLUMN SEISMIC PERFORMANCE 
 
The experimental database 
The database used in this study includes data from the PEER Structural Performance Database.  This 
database builds on previous work at the National Institute of Standards and Technology. The original 
NIST database described 107 tests of rectangular reinforced columns and 92 tests of spiral-reinforced 
concrete columns; for this research we have used 91 rectangular columns [6]. 
 
Input variables 
Based on theoretical background and available database, the following variables were chosen as input 
variables influencing structural columns behavior subjected to horizontal loading: 
1.) fc - characteristic compressive strength of concrete (MPa),  
2.) P - axial load (kN), 
3.) B - column width (mm) 
4.) H - column Depth (mm) 
5.) L - length of equivalent cantilever 
6.) φL- diameter of longitudinal reinforcement bars (mm) 
7.) nL- number of longitudinal reinforcement bars 
8.) a - clear cover 
9.) rhol - longitudinal reinforcement ratio 
10.) fyl - yield stress of longitudinal reinforcement(MPa)  
11.) φT - bar diameter of transverse reinforcement (mm) 
12.) rhot - transverse reinforcement ratio 
13.) fyt - yield stress of transverse reinforcement 
 
 



Output variables  
The following variables were chosen as output variables describing structural columns behavior subjected 
to horizontal loading: 
1.) Fy - yield shear force 
2.) dy - yield displacement 
3.) Fu - ultimate shear force  
4.) du - ultimate displacement 
5.) Failure type (F - flexure 1; S - shear 2; flexure - shear 3). 
 
Neural networks training models 
We used a regular three-layer backpropagation network with two slabs in the hidden layer. Input variables 
are in slab 1 with 13 neurons. Hidden slabs 2, 3 and 4, had 5 neurons each.  Output variables are in 
element 5. For every output variable, we created one neural network. All other neural network training 
parameters are the same as in the neural network used for the structural walls database.  
 

Table 3. Neural network training models overview  

Neural Networks
Number of 
examples

Column 
type

Complete input 
variables

Number of 
inputs

Outputs

NN-01-C 91 R complete 13 Fy

NN-02-C 91 R complete 13 dy

NN-03-C 91 R complete 13 Fu

NN-04-C 91 R complete 13 du

NN-05-C 91 R complete 13 Failure type  
 
Test examples 
The selected test columns geometrical and material properties are shown in Table 4 and on Figure 6. 
 

Table 4. Test columns geometrical and material properties (input variables) 
Test Columns 1 (RO) 2 (RJ) 3 (R) 4 (RI) 5 (R)  6 (RI)

Specimen name 10 20 40 60 90 4

f'c (MPa) 40,00 25,60 19,80 115,80 29,20 23,50

P (kN) 1920,00 819,00 406,00 1176,00 267,00 4265,00

B (mm) 400,00 400,00 160,00 200,00 305,00 550,00

H (mm) 400,00 400,00 160,00 200,00 305,00 550,00

L (mm) 1600,00 1600,00 160,00 500,00 1676,00 1200,00

φL (mm) 16,00 20,00 9,50 12,70 22,00 24,00

nL 12,00 8,00 8,00 12,00 4,00 12,00

a (mm) 13,00 40,00 12,50 9,00 32,00 38,00

rhol 0,0151 0,0157 0,0222 0,0380 0,0163 0,0179

fyl (Mpa) 446,00 474,00 341,00 399,60 367,00 375,00

φT (mm) 6,00 12,00 5,00 6,00 9,50 12,00

rhot 0,0057 0,0255 0,0073 0,0161 0,0154 0,0350

fyt (Mpa) 255,00 333,00 559,00 328,40 363,00 294,00  
 
 
 
 
 



 
  Confinement Type R        Confinement Type RI               Confinement Type RO 

 

  
Figure 6. Test columns geometrical properties and confinement types  

 
Test results 
The quality of chosen neural network is tested on the columns left out from the original database. The 
prediction and experimental data were reasonably close, as we can see at following figure. 
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Figure 7. Comparison of experimental results and NN-01-C network’s prediction for Fy 
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Figure 8. Comparison of experimental results and NN-02-C network’s prediction for dy 
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Figure 9. Comparison of experimental results and NN-03-C network’s prediction for Fu 
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Figure 10. Comparison of experimental results and NN-04-C network’s prediction for du 
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Figure. 11. Comparison of experimental results and NN-05-C network’s prediction for failure type 

 
The figures 12 –14 show the comparison between experimentally acquired force displacement histories 
for tested columns and the force displacement primary curve obtained using neural network.    
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Figure. 12. Comparison of networks prediction and force-displacement history of column 1 and 2  
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Figure. 13.Comparison of networks prediction and force-displacement history of column 3 and 4  
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Figure. 14. Comparison of networks prediction and force-displacement history of column 5 and 6  
 

CONCLUSION 
 
Understanding of the true behavior of structural walls and columns is essential for any performance based 
design procedure. Evaluation of the structural wall and column performance can be achieved by: 
(1) Stress-strain properties of materials. This represents quite a difficult task due to the inhomogeneous, 
anisotropic nature of materials and complex interaction processes involved; 
(2) Empirical and semi-empirical methods. They are suitable tools for use in seismic assessment of 
buildings (Japan), and preliminary design (Rossetto) [4], etc.; 
(3) Neural networks, calibrated on the sufficiently big empirical database that is proposed in this paper. 
 
The advantages of neural network are that they are taught on the vast experimental database. Therefore, 
they constantly consider all variables influencing performance in real structures but are difficult to take 
numerically into account. Contribution of various variables can also be analyzed on how they influence 
the respective performance criteria. The results of performance predictions using  the neural networks are 
compared with independent experimental results. They showed good accuracy of the obtained predictions 
implying a reliable applicability of neural networks.  
The use of neural networks in seismic capacity evaluation of structural elements can be two-folded: 
1. For evaluation of the element capacity when its geometry and material data are known and performance 
behavior is required. 
2. Performance ideal is set and geometry and strength of the elements is required. 
 
The work on the collected database, that can be further enriched, enables conclusion making about the 
overall experimental results, increase understanding of elements performance depending on various 
variables at various demand levels and could be used for optimization of their design. 
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