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SUMMARY 
 
The present paper examines differences between responses of single-degree-of-freedom (SDOF) systems 
with viscous and hysteretic damping to earthquake ground motions. Only responses within yield limits are 
considered. Structural behavior of SDOF systems with hysteretic damping is modeled by a generalized 
elasto-slip model of the Masing type. The model leads to a force-displacement relationship similar to that 
proposed by Ramberg and Osgood. Responses of the two systems are compared for a number of 
earthquake records. To achieve consistent comparison parameters of the linear system with viscous 
damping are determined by the secant stiffness method. In many cases significant differences in the peak 
displacement responses and energy values have been observed between the systems. This indicates that 
the prediction of the response of structures to earthquake ground motions even within elastic range by 
using linear models with viscous damping may be far from accurate and further research on this issue is 
needed. 
 

INTRODUCTION 
 
Performance-based seismic design implies the consideration of several performance levels, which are 
associated with damage suffered by structures as a result of earthquake ground motions (e.g., SEAOC [1]). 
At higher performance levels (such as fully operational and operational) very limited damage is allowed 
that means that values of structural response parameters (e.g., deflections, internal forces) should mainly 
stay within their elastic range. Usually, it is presumed that in such cases structural response can be 
predicted accurately by using well-known techniques of elastic analysis based on a linear structural model 
with viscous damping. However, this presumption is not necessarily correct since for traditional structural 
materials (e.g., steel, concrete, masonry) dissipated energy depends mainly on the amplitude of vibrations 
and not their frequency, i.e., damping is not viscous but hysteretic (e.g., Newmark [2]). 
 
The present paper examines differences between responses of single-degree-of-freedom (SDOF) systems 
with viscous and hysteretic damping to earthquake ground motions. Only responses within elastic range 
are considered (i.e., the ductility ratio does not exceed unity). Behavior of SDOF systems with hysteretic 
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damping is modeled by a generalized elasto-slip model of the Masing type (e.g., Lazan [3]). The model 
leads to a force-displacement relationship which can be described in terms of the Ramberg-Osgood 
expression (Ramberg [4]). Based on the model formulas, which allow to compute recoverable strain 
energy and energy dissipated by hysteretic damping at any point in time, have been derived. 
 
Responses of SDOF systems with viscous and hysteretic damping and natural periods between 0.05 and 3 
s are compared for a number of recorded earthquake ground motions. To achieve consistent comparison 
parameters of a linear system with viscous damping are determined by the secant stiffness method (e.g., 
Chopra [5]), i.e., its stiffness is set equal to the secant stiffness of the corresponding system with hysteretic 
damping and the damping ratio is obtained by equating the energy dissipated per cycle by the two systems. 
Methods employed in earthquake resistant design can be divided into (i) strength-based methods, (ii) 
displacement-based methods, and (iii) energy-based methods. Performance-based design puts emphasis on 
damage in structures, which is mainly associated with displacements and not strength. Thus, in this study 
responses of SDOF systems with viscous and hysteretic damping are compared in terms of peak 
displacement and energy values. 
 

HYSTERETIC MODEL 
 
Generalized elasto-slip model 
Hysteretic behavior of a SDOF system is modeled using a generalized elasto-slip model (e.g., Lazan [3]). 
The model can be represented as two thin elastic bars having the same modulus of elasticity, E, and cross-
sectional areas of A1 and A2 (see Figure 1). At their ends the bars can be loaded by axial forces, fS. The 
interaction between the bars along the contact zone of length Lc is described by Coulomb friction; there 
are also non-contact zones of length Ln. The maximum friction force between the bars determines the 
ultimate axial force which can be applied to the system, i.e., it can be treated as the yield strength of the 
system and it is denoted herein as fy. 

 
 

Figure 1. Generalized elasto-slip model 
 
Load-deformation curves 
 
Skeleton curve 
When the system is first loaded by forces fS<fy it causes slip between the bars at the ends of the contact 
zone. Diagrams of the axial forces forming in the bars as a result of this loading are shown in Figure 2, 
where a1=A1/(A1+A2), a2=A2/(A1+A2), Lsl1=a2LcfS/fy and Lsl2=a1LcfS/fy  are the lengths of the slip zones, and 
Lst=Lc(1-fS/fy) is the length of the stick zone. 
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Figure 2. Diagrams of axial forces in the bars - loading 

 
Generally, the deformation between the opposite ends of the bars, u, can be calculated as 
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where N(x) is the axial force along the length of the bars. Substituting values of the axial force from the 
diagrams in Figure 2 with the corresponding lengths and cross-sectional areas into Eq. (1) and integrating 
gives (for both tension and compression) 
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where l=Ln/Lc. Introducing  
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which can be considered as the initial stiffness of the system, and 
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reduces Eq. (2) to 
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This equation of the skeleton curve represents a particular case of the relationship proposed by Ramberg 
and Osgood (Ramberg [4]) for modeling nonlinear structural behavior. 
 
Unloading/reloading curves 
It is known that systems which represent different combinations of Coulomb friction and linear elastic 
elements exhibit the Masing type of behavior (Newmark [2]). Thus, for the system shown in Figure 1 
unloading/reloading curves should be described by the following equation 
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where (u*,fS*) is the last point at which the loading process was reversed. This can be shown using the 
approach that has been employed to derive Eq. (5) for the skeleton curve. As the applied load drops from 
its peak value fS* to fS the length of the stick zone increases from Lst*=Lc(1-fS*/fy) at fS* to Lst= 
Lst*+Lst1+Lst2, where Lst1=a2Lc(fS*+fS)/(2fy) and Lst2=a1Lc(fS*+fS)/(2fy). Correspondingly, the lengths of the 
slip zones at the ends of the bars decrease from Lsl1*=a2LcfS*/fy and Lsl2*=a1LcfS*/fy to Lsl1= a2Lc(fS*-
fS)/(2fy) and Lsl2= a1Lc(fS*-fS)/(2fy) so that Lst1+ Lsl1= Lsl1* and Lst2+ Lsl2= Lsl2*. Diagrams of the axial forces 
forming in the bars after unloading are shown in Figure 3. Note that all inclined parts of the diagrams have 
the same absolute value of the slope equal to fy/Lc, i.e., the maximum value of the friction force between 
the bars per unit length. Eq. (6) can be derived by substituting values of the axial force from the diagrams 
in Figure 3 with the corresponding lengths and cross-sectional areas into Eq. (1). 

 
Figure 3. Diagrams of axial forces in the bars – unloading/reloading 

 
Energy evaluation 
Relationships of the type defined by Eqs. (5) and (6) are employed quite often to describe hysteretic 
behavior of nonlinear structural systems. Usually, they are used to formulate empirical models since with 
the proper selection of the parameters they provide a good approximation to experimentally obtained 
force-displacement (or stress-strain) curves. However, such an approach creates difficulties in evaluation 
of energy of a structural system. Although energy absorbed by the system (i.e., work performed by force fS 
on displacements u) can be easily calculated by integration of Eqs. (5) and (6) it cannot be decomposed 
into two essential parts - recoverable elastic strain energy, ES, and irrecoverable hysteretic energy, EH, 
without additional assumptions (of course, except of extreme points at the end of loading cycles when EH 
equals the area of completed hysteretic loops). A different approach is chosen in the present paper where 
formulas for the evaluation of ES are EH are directly derived using the generalized elasto-slip model 
(Figure 1) that allows calculating these energies at any point of cyclic loading. 
 
Skeleton curve 
The sum of the recoverable strain energy and the dissipated hysteretic energy equals work, W, performed 
by the force fS as the displacement increases from 0 to u along the skeleton curve, i.e., 

HS EEW +=                 (7) 
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The work can be calculated as 
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Substituting Eq. (5) into Eq. (8) and integrating results in 
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The recoverable strain energy of the system shown in Figure 1 can be evaluated as 
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Substituting values of the axial force from the diagrams in Figure 2 with the corresponding lengths and 
cross-sectional areas into Eq. (10) and integrating leads to 
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Then using Eqs. (7), (9) and (11) the following formula for the dissipated hysteretic energy is obtained 
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Unloading/reloading curves 
The recoverable strain energy of the system after unloading (the applied force decreases from its peak 
value fS* to fS, see Figure 4) is calculated using Eq. (10) and the axial force diagrams presented in Figure 3 
that gives 
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where ES* is the recoverable strain energy at (u*,fS*). 

 
Figure 4. Force-displacement curves 

 
In order to evaluate hysteretic energy dissipated during unloading introduce a new coordinate system u'-fS' 
with the origin at (u*,fS*). The transformation of the coordinates between the two coordinate systems is 
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According to Eq. (13) in the new coordinate system the change in the recoverable strain energy during 
unloading will be equal to 
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At the same time in the new coordinate system (ES-ES*) should also be equal to the sum of the work done 
by the force fS* on the displacement increasing from 0 to u' and the recoverable strain energy, ES', supplied 
to the system due to the work, W', done by fS' on the same displacement. The work done by fS* is negative 
(the direction of fS* is opposite to the direction of u') and its absolute value equals fS* times u' (fS* remains 
constant while the displacement changes) so that 
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The recoverable strain energy ES' can be calculated as 
 ''' HS EWE −=               (17) 

where EH' is the hysteretic energy dissipated during unloading. From Eqs. (15), (16) and (17) follows that 
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According to Eq. (6) 
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while W' can be calculated using Eq. (8) with fS and u replaced by fS' and u', respectively (see Figure 4)  
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Finally, substituting Eqs. (19) and (20) into Eq. (18) gives 
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EQUIVALENT LINEAR SYSTEM 

 
The equation of motion of a nonlinear SDOF system with hysteretic damping subjected to earthquake 
ground motion is 

( ) )(tumufum gS &&&& −=+              (22) 

where m is the mass of the system, u the relative displacement, fS(u) the restoring force, and üg (t) the 
ground motion acceleration. The equation does not include a term representing viscous damping since for 
a structural system built from traditional construction materials (e.g., steel, concrete) and without specially 
installed viscous dampers the contribution of viscous damping to energy dissipation is negligible (e.g., 
Newark [2]). For the model considered above the relationship between the restoring force and the 
displacement can be derived for the skeleton curve from Eq. (5) 
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and for an unloading/reloading curve from Eq. (6) 
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The equation of motion of a linear SDOF system with viscous damping can be written as 
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where c is the viscous damping coefficient and k the elastic stiffness of the system. To be able to compare 
responses of the two systems to an earthquake ground motion "equivalence" between the systems needs to 
be established, i.e., it should be defined how to select parameters of one of the systems when parameters 
of the other system are given. A number of methods have been proposed for the replacement of a 
nonlinear system with an "equivalent" linear system. The methods differ by the determination of two 
fundamental parameters of the equivalent linear system – the equivalent damping ratio, ζe=ce/(2meωe), and 
the natural frequency of vibrations, ωe=√ke/me (or the natural period of vibrations, Te=2π/ωe), where ce, me 
and ke denote the viscous damping coefficient, mass and elastic stiffness of the equivalent linear system, 
respectively. The methods can be divided into two groups – analytical methods based on harmonic loading 
(e.g., Iwan [6]) and empirical methods (e.g., Gulkan [7], Iwan [8]).   
 
In this study responses of the two systems are compared within elastic range, i.e., when the ductility ratio 
µ=um/uy does not exceed unity (um denotes the maximum displacement of the system and uy a yield 
displacement, i.e., the displacement corresponding to fy). The empirical methods have been developed for 
yielding systems and equations of these methods to estimate Te and ζe are only applicable when µ>1. The 
analytical methods can be used for equivalent linearization within the whole range of deformations. There 
have been a number of studies on the performance of the different analytical methods for the linearization 
of nonlinear systems subjected to earthquake loading. However, these comparative studies were limited to 
the case of nonlinearity associated with yielding so that a nonlinear system was usually presented by a 
simple bilinear model (e.g., Jennings [9], Iwan [6], Hadjian [10]). Thus, no data are currently available 
which could give a clear indication what of the analytical linearization methods is the most suitable for the 
purpose of the present study.  
 
The secant stiffness method is the most commonly used among the analytical linearization methods (e.g., 
Miranda [11], Kwan [12]) and will be used herein. In this method the mass of the equivalent linear system 
is taken as the mass of the original nonlinear system. The stiffness of the linearized system is determined 
as the secant stiffness of the nonlinear system at the maximum displacement. Since in this study the 
systems are compared only within elastic range, the maximum displacement is equal to the yield 
displacement (i.e., um=uy). The secant stiffness at uy can be found from Eq. (5) 
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The natural frequency of vibration of the equivalent linear system is then 
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where ω0=√k0/m can be considered as the initial instant natural frequency of the nonlinear system. The 
equivalent damping ratio is found by equating the energy dissipated per cycle of harmonic vibrations with 
amplitude of uy by the equivalent linear system with viscous damping and by the nonlinear system with 
hysteretic damping. The energy dissipated per cycle by the equivalent linear system, ∆ED, is (e.g., Chopra 
[5]) 
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where ω is the exciting frequency. The energy dissipated per cycle by the nonlinear system (i.e., the area 
enclosed by a hysteretic loop), ∆EH , can be obtained using Eq. (21) 
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Substituting Eqs. (5), (26) and (27) into Eq. (28) and equating it to Eq. (29) gives 
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In Eq. (30) damping of the nonlinear system is represented by the parameter α. However, damping is 
usually measured by the loss factor, ξ, which is defined as fractional part of the strain energy, ESm (i.e., 
strain energy at the maximum displacement which herein equals uy), dissipated during one cycle of motion 
and divided by 2π 
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Finding ESm from Eq. (11) (when fS=fy), ∆EH from Eq. (29) and substituting that into Eq. (31) allows to 
obtain the following relationship between α and ξ 
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Substituting Eq. (32) into Eq. (30) results in 
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As can be seen the equivalent damping ratio depends on the exciting frequency. Thus, in order to evaluate 
the equivalent damping ratio for a nonlinear system subjected to an earthquake ground motion the 
frequency content of this motion should be characterize with a single parameter. Several frequency 
content parameters have been proposed (see Rathje [13]). In this study the frequency content will be 
represented by the average period, Tav, which is defined using a fast Fourier transformation (FFT) of the 
ground motion accelerogram as 
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where Ci's are the Fourier amplitudes of the accelerogram, and fi's the discrete Fourier transform 
frequencies. Eq. (33) then becomes 
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where T0=2π/ω0. 
 

COMPARISON OF THE SYSTEMS 
 
Responses of the two systems are compared for three earthquake records: (1) Pacoima, USA, 196o, 
02/09/1971, Tav=0.3420 s; (2) El Centro, USA, 270o, 05/18/1940, Tav=0.4623 s; and (3) Mexico City – 
Station 1, Mexico, 270o, 09/19/1985, Tav=1.6312 s (source of the records: NISEE, U.C. Berkeley, CA, 
USA; the average periods were computed in this study). Parameters of the system response being 
compared are: the maximum displacement, the maximum input energy, the dissipated energy, and the 
maximum sum of the elastic strain energy and the kinetic energy. The maximum displacement obtained 
for the nonlinear system is always equal to uy. This is achieved by adjusting the yield strength of the 
system. For both of the systems the input energy, EI, is evaluated as 
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and the kinetic energy, EK, as 
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For the nonlinear system the energy dissipated in hysteretic damping, EH, is estimated using Eqs. (12) and 
(21), and the elastic strain energy, ES, by Eqs. (11) and (13). For the linear system the energy dissipated in 
viscous damping, ED, is defined as 
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where ce=2ζemωe, and the elastic strain energy as 
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When the same symbol is used to denote a parameter, for example, like EI for the input energy, in order to 
distinguish between the two systems in the following subscripts h and v will be used for the symbols 
associated with the nonlinear system with hysteretic damping and the linear system with viscous damping, 
respectively. For each of the earthquake records responses of the systems are compared for the initial 
period of vibration of the nonlinear system, T0, ranging from 0.05 s to 3.0 s with period increments of 0.05 
s. 
 
In the first series of analyses the loss factor, ξ, representing damping of the nonlinear system, is set equal 
to 0.05 which is a typical value for steel elements subjected to cyclic loading with the amplitude of fy (e.g., 
Lazan [3]). The equivalent damping ratio of the linear system is defined by Eq. (35), i.e., ζe changes 
depending on T0. Results of the analyses are shown in Figure 5. 
 

 
 

 
 

Figure 5. Ratios between response parameters of linear and hysteretic systems (ζe variable) 
 
In the second series of analyses the damping ratio of the linear system, ζe, is assumed to be constant and 
equal to 0.02. The corresponding value of the loss factor for the nonlinear system, ξ, found from Eq. (35) 
for Tav/T0=1 is 0.0436 (α=0.1102). The aim of these analyses is to check if it is possible using a single 
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value of the damping factor (i.e., independent of the system period of vibration) to obtain a good 
approximation of the response of a nonlinear hysteretic system to an earthquake ground motion. Results of 
the analyses are presented in Figure 6. 
 

 
 

 
 

Figure 6. Ratios between response parameters of linear and hysteretic systems (ζe constant) 
 

According to the results presented in Figures 5 and 6 better agreement between responses of the systems is 
observed when the damping ratio of the linear system was taken as a constant value, independent of the 
period of vibration. Especially, this concerns the prediction of the maximum displacement. However, even 
in this case at certain values of T0 the difference between the maximum displacements obtained for the 
two systems exceeds 20%. Moreover, as can be seen in Figure 6 the ratios between the responses of the 
systems fluctuate without any pattern. This shows that no matter what value of the damping ratio is 
selected if it is constant (i.e., ζe, does not depend on the period of a nonlinear system) there are always 
periods at which differences between the responses of the systems are significant. It can be also noted that 
the largest differences are observed between the responses of the systems to the Mexico City earthquake 
record, which has a very long average period. 

 
CONCLUSIONS 

 
Responses within yield limits (the ductility ratio did not exceed unity) of SDOF systems with viscous and 
hysteretic damping to earthquake ground motions were compared. In many cases significant differences 
between the peak displacements and energy values obtained for the hysteretic system and the equivalent 
linear system were observed. This indicates that the prediction of the response of structures to earthquake 
ground motions even within elastic range by using linear models with viscous damping may be far from 
accurate and further research on this issue is needed. 
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