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SUMMARY 
 
A methodology for the optimal design of supplemental viscous dampers for framed structures is 
presented. It addresses the problem of minimizing the added damping subject to a constraint on the 
maximal interstory drift for an ensemble of realistic ground motion records while assuming linear 
behavior of the damped structure. The equivalent optimization problem of minimizing the added damping 
subject to a constraint on the maximal weighted mean square drift is solved instead. The computational 
effort is appreciably reduced by first solving the optimization problem for one “active” ground motion 
record. If the resulting optimal design fails to satisfy the constraints for other records from the original 
ensemble, additional ground motions (loading conditions) are added one by one until the optimum is 
reached. An efficient selecting process which is presented herein will usually require one or two records 
to attain an optimum design. 
 
Finally, optimal designs of supplemental dampers are attained for a 2-story shear frame and a 10-story 
industrial frame for an ensemble of one and twenty time-histories respectively. The resulting viscously 
damped structures have envelope values of interstory drifts equal or less than the target drifts. 
 

INTRODUCTION 
 
With advances in technology, it appears that the approach to the design of earthquake resisting structures 
takes a new direction, which allows engineers to design structures for a desired level of seismic 
protection. Designing structures to behave elastically or near the elastic range during strong ground 
motions is not economical, and in many cases is not feasible. Therefore enabling the structure to dissipate 
energy by means of mechanical devices appears very attractive. 

 

A rich variety of energy dissipation devices for passive control may be found in Soong and Dargush [1]. 
Viscous dampers seem more appropriate in the case of rehabilitation (Miyamoto and Scholl [2]). The 
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main advantage of viscous dampers is that the forces they produce are out of phase with the column’s 
forces due to displacements, and therefore, will not usually require column and foundation strengthening. 

 
Procedures for the design of viscous damping, i.e. their size and distribution, were proposed by several 
researchers. Constantinou and Tadjbakhsh [3] derived an optimum damping coefficient for a viscous 
damper placed on the first story of a shear building. Hahn and Sathiavageeswaran [4] investigated the 
effects of changes in the distribution of added viscoelastic dampers on the response of shear buildings. 
Zhang and Soong [5] proposed the Sequential Search Algorithm (SSA) for finding the optimal placement 
of a pre-sized viscoelastic damper based on a controllability index. Application of the SSA algorithm to 
3-D torsionally coupled structures and an examination of the effect of ground motion characteristics on 
the position of the dampers were done by Wu et al. [6] Further investigation of the effect of the  nature of 
the excitation using SSA was done by Shukla and Datta [7]. Garcia [8] simplified the SSA algorithm and 
made it attractive to practicing engineers. Fu [9] and Fu and Kazahiko [10], estimated the damping 
needed by assuming first mode behavior of the structure and compared the use of viscous and viscoelastic 
dampers. 
 
Inaudi et al. [11] suggested a procedure for minimizing the maximum mean square of steady state drifts 
under filtered white noise excitation subject to a constraint on the sum of added damping for viscoelastic 
and friction dampers. Gluck et al. [12] proposed several options for finding attained added stiffness and 
damping matrices based on Riccati’s equation. Takewaki [13], Takewaki and Yoshitomi [14] and 
Takewaki et al. [15] suggested a gradient based algorithm for optimal design of viscous damping by 
minimizing the sum of the amplitudes of the drifts’ transfer functions evaluated at the undamped 
fundamental natural frequency of the structure subject to a constraint on the total added damping. Singh 
and Moreschi [16] used a gradient based algorithm for the optimal design of viscous and viscoelastic 
dampers to achieve the best response reduction in structures. They used a non-classically damped 
response spectrum approach based on a stochastic description of the input motion to evaluate the 
structural response, and hence the gradients. Singh and Moreschi [17] also used a genetic approach for the 
optimal design of viscous and viscoelastic dampers to achieve the best response reduction in structures 
excited by a stationary stochastic input. 
 
The main advantage of using most of these algorithms is the small effort they demand, but a methodology 
that takes into consideration an optimal design for an ensemble of realistic ground motion records with a 
specified target performance index is not available. 
 

OPTIMAL PASSIVE CONTROL PROBLEM FORMULATION AND OPTIMIZATION 
METHODOLOGY 

 
This paper addresses the optimization problem of minimizing the added damping of prelocated dampers 
subject to a constraint on the maximum interstory drift for a frame excited by an ensemble of realistic 
ground motion records. 
 
The optimization methodology is based on a repeated solution of an equivalent optimization problem in 
which the constraint is on the maximum weighted mean square drift rather than the maximum drift itself. 
The weights are the ratios of the maximal drifts to mean square drifts computed from the previous 
optimization cycle. The equivalent optimization problem is solved by first deriving the constraint’s 
gradient, and then using an efficient constrained optimization algorithm. In order to reduce computational 
effort the optimization is first carried out using one “active” ground motion, to be subsequently defined, 
rather than the whole ensemble. If the optimal damping for this ground motion violates constraints of 
other records in the ensemble, additional ground motions are added one at a time until an optimum is 
reached (stage 4 below). 



 
Related to the above problem but less practical is the minimization of the maximum drift for an ensemble 
of realistic ground motion records subject to added damping that is smaller than a prescribed given value.  
 
The main stages in the methodology are as follows: 

stage 1. Select the “active” ground motion. 
stage 2. Compute: a) a first guess for the damping vector; b) the equivalent constraint for 
the equivalent optimization problem ( maxg  in Eq. 2); and c) the ratio iα , of the maximal to 
mean square drift for each story i. 
stage 3. Solve the equivalent optimization problem for the active set of records using the 
Cutting Planes Method. 
stage 4. Apply the remaining records in the ensemble on the optimal design for feasibility 
check. 
stage 5. Evaluate maxg  and the s'iα  and go to Stage 3 if stopping criteria are not met. 
Stage 6. Stop. 

 
Since the optimization method is gradient based, for the equivalent problem to represent the original 
problem exactly, the gradient of the one must be proportional to the gradient of the other. When the iα ’s 
in two consecutive optimization cycles (stages 3-5) are approximately proportional, and do not change 
drastically in the solution’s region, one can claim that the gradients of the original and equivalent 
problems are proportional as well. The examples show that these conditions are met. 
 
Stage 1: Selection of the “active” ground motion 
The selection of the “active” ground motion affects the efficiency of the whole methodology and 
therefore, one would like to get a good selection of this first guess. 
 
In this work, the record with the maximal spectral displacement is chosen to begin the process. The 
spectral displacement is evaluated for a given fundamental period (that of the structure) within the 
expected damping ratio range. Although the damping matrix is not a proportional one, the selection made 
here is justified by the examples. 
 
Stage 2: Computation of a starting point, doc  
Starting values for the dampers are achieved in two steps: 
 
Step 1: As noted, a displacement spectrum is used to determine the “active” ground motion considered. 
The same displacement spectrum can be used to evaluate a first guess for Step 2 below. In the current 
step, a damping vector, which is proportional to the drifts of the first mode, is calculated such that the 
contribution of the first mode to the maximum drift would be equal to the maximum allowable drift.  
 
Step 2: The damping vector provided in Step 1 is multiplied by a factor that is obtained using the Secant 
Method so as to satisfy 
 
 ( ) driftallowabledriftmax =i  (1) 
 
where the drifts in Eq. 1 are computed from a time history analysis of the frame excited by the “active” 
ground motion.  
 



As noted, the optimization is carried out for an equivalent problem. This stage, along with doc , provides 

maxg  and the iα ’s for the first optimization cycle. 
 
Stage 3: Solution of the equivalent optimization problem – “optimization stage” 
 
Formulation of the equivalent optimization problem 
The equivalent optimization problem is comprised of the added damping as an objective function, two 
inequality constraints and three equality constraints. The inequality constraints are the weighted average 
of mean square drifts of all the stories and size limitations on the dampers. Two equality constraints 
define the equations of motion and a third defines the mean square drifts. It may be formally described as: 
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where x = the drift vector; v = the drift velocity vector; M = mass matrix; K = stiffness matrix; C = 
inherent damping matrix; dc = added damping vector; ( )dd cC = supplemental damping matrix; b = 
location vector which defines location of the excitation; msx = drift mean square vector; ( )xD = operator 
that forms a diagonal matrix whose diagonal elements are the elements of the vector x ; 

f
g = 

performance measure; maxg = upper bound on fg ; q = an index to be determined subsequently; maxd,c = 
maximum dampers’ damping vector and “active set”= current set of ground motions. The coefficients 
matrix, A , is a diagonal matrix whose diagonal components are: 
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Here tD  is the ground motion duration and ih  is the floor height. Thus, the elements of msx  become 

∫ 
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1001α  i.e. the mean square drift of the i-th floor (%) multiplied by the weight iα . Hence 

fg  is the weighted average of the mean square drifts. When q is large, say 10, this weighted average 
approaches the value of the maximum weighted mean square drift of all the stories. 
 
Although it has no effect on the optimal solution, the ground motion duration here is taken as the 
bracketed duration (Bolt 1969 [18]), using a threshold acceleration of 0.05g.  
 



In order to use an efficient optimization scheme to solve Eq. 2 it is essential to derive the gradient of the 
inequality constraint while satisfying the equality constraints. Equation 2 has the general form of: 
 

 

( )

( ) ( )
( )( ) 0

;,,,
:tosubject

minimize

maxf

od

d

≤−

==

gtg
tt

f

y
0y0yych

c

&
 (4) 

 
where { }Tmsxvxy = . The gradient of g  is obtained by first writing the Hamiltonian of the 
following secondary optimization problem: 
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The variation of this Hamiltonian results in a set of differential equations and boundary conditions to be 
satisfied when all multipliers of the variations (except 

dcδ ) are equated to zero.  The multiplier of the 

variation 
dcδ  will yield the expression for the evaluation of the gradient ( )( )ftg

d
yc∇ . 

 
Optimization technique of the equivalent optimization problem 
The Cutting Planes Method was chosen for the solution of the optimization problem. It is appropriate to 
use because of the “flat” behavior of the constraints that may be seen in Fig. 3. Other methods that were 
used proved less efficient. 
 
Maximum step size: The step size proposed for the Cutting Planes Method is the total damping divided by 
a factor ρ. Instead of using a circle of radius r, (in the 2-dimensional space) for the step size, a square of 
side 2r/ , is used. This results in linear side constraints for the step size. In the n-dimensional space, 

nr/ is taken in place of 2r/ . Hence, the side constraint on the step size becomes: 
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where n= number of added dampers, and ρ= constant. 
 
Constraints elimination: Since the Cutting Planes Method is not appropriate for non-convex problems a 
modification is needed (although the problem seems to be convex for reasonable values of the damping 
(Fig. 3). The modification is as follows. If the nonlinear constraint is satisfied yet not active and its linear 
counterpart is satisfied and active, then that plane is removed from the next iteration. If not removed these 
linear constraints will cut the feasible region. 
 
Stage 4: applying the whole ensemble on the optimal design for feasibility check 
At this stage, a linear time history analysis is performed on the optimally damped structure for each of the 
remaining records in the ensemble, separately. A new candidate ground motion for consideration is the 
one with the largest maximum drift. It is actually added to the active set only if its maximum drift is 
larger than the maximum drift of the active set. 



 
In Example 2 only two records are active. These records are easily tracked by the algorithm, and it is 
expected that the optimization scheme is likely to use, in general only a few of the records and not whole 
ensembles. Therefore, the scheme becomes practical in the sense of the computational effort.  
 
Stage 5: Evaluation of new maxg  and iα ’s – “redesign stage” 
The iα ’s and maxg  are re-evaluated separately for each ground motion within the active set.  
 
Stage 6: Termination decision 
 
Reanalysis is terminated if all of the following three conditions are met: 

1. The changes in the iα ’s are lower than a small desired value. 
2. The changes in maxg  are lower than a small desired value. 
3. No additional ground motion is needed. 

 
NUMERICAL EXAMPLES 

 
Example 1. A 2-story shear frame 
In order to demonstrate the proposed methodology, and the characteristics of the optimization problem a 
2-story shear frame is studied (Fig. 1). A 5% Rayleigh damping was assumed for the first and second 
modes. The constraint on the maximum drift was set to 0.009 m, which is 50% of the maximum drift of 
the bare frame. For convenience, the drifts were chosen as the degrees of freedom (DOF’s). The two 
fundamental periods of the structure are 0.281 s and 0.115 s. The structure was excited by the record 
LA02 from the “LA 10% in 50 years” ground motions ensemble (Somerville et. al. [19]), which is the N-
S component of El-Centro 1940 scaled by a factor of 2.01 downloaded from [20]. 
 
The mass, damping and stiffness matrices (drifts DOF’s) to be used in Eq. 2 are: 
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The contribution of the dampers to the damping matrix is: 
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and the vector b  (Eq. 2): 
 
 { }T10=b  (9) 
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Figure 1: 2-story shear frame 

 
The example was solved for a single record. Thus the “active” ground motion in Stage 1 is LA02. Starting 
values are first computed together with maxg and the iα ’s (2nd line in Table 1). The Cutting Planes 
Method is then activated (Stage 3) to yield results given on the 3rd line of Table 1. The objective 
function, the constraint’s error ( ) maxmaxf / ggg − , and an error measure on the optimality conditions 
[21], are plotted against the number of iterations in Fig. 2 for the 1st optimization cycle. Also shown (Fig. 
3) is a contour map of the equivalent constraint, the objective function at the optimum value (straight line) 
and the iterative progress towards convergence of the Cutting Planes Method. As can be seen, the 
constraint is close to convex. Hence the problem has only one local minimum, which is the global 
minimum. The “redesign stage” 5 is then performed and a 2nd optimization cycle (Stage 3) yields results 
that differ by 2.8% (see “normalized iα ” column of Table 1) and fall within the 3% limit set for this 
example.  
 
A significant result is observed from Table 1: the maximum drift equals the maximum allowable drift in 
the 1st story and less than the allowable in the 2nd. Finally it might be worth noting that 7 iterations were 
sufficient for the first optimization cycle and only 4 were needed for the 2nd.  
 

Table 1: Analysis results 

 i,dc  max drift 
[mm] 

( )
ftimsx  

[mm2] 

normalized 
iα  

 1 2 1 2 1 2 1 2 
f

g  max 
drift J 

bare frame 0 0 18.0 17.1 10.05 9.61 1.0 0.972 10.05 18.0 0 
starting val. 1101.1 1101.1 9.1 6.7 2.08 1.11 1.0 0.998 2.08 9.1 2202.3 

1st opt. 1298.3 307.4 9.0 8.1 2.09 1.98 1.0 0.928 2.09 9.0 1605.8 
2nd opt. 1370.1 176.0 9.0 8.9 2.11 2.26 1.0 0.954 2.11 9.0 1546.1 
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Figure 2: Convergence indicators 
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Figure 3: Convergence to optimum  

 
Example 2. A 10-story industrial frame 
In order to demonstrate the applicability of the proposed methodology to more realistic structures under 
an ensemble of ground motion records, an industrial building consisting of a symmetric 10-story 3-bay 
steel frame with inherent 2% Rayleigh damping in the first and second modes is used (Levy et. al. [22]). 
Without loss of generality, the methodology was performed on the condensed matrices neglecting axial 
deformations, i.e. 10 drift DOF’s were used. For the sake of consistency, the axial deformations were also 
neglected when a full nonlinear analysis is made for verification. Design variables were assigned for each 
story and none were a priori, assumed equal. The ground motion ensemble was chosen as the “SE 10% in 
50 years” ensemble (Somerville et. al. [19]) and the allowable drift was chosen as 1.0%. The record SE01 
was chosen to start the process (Stage 1) since its spectral displacement for the fundamental period of the 
structure for all reasonable damping range had the largest value (Fig. 4). A nonlinear analysis using 
RUAUMOKO [23] was performed on the bare frame for this record. The resulting maximum drifts are 
shown in Fig 5. 
 
Starting values (Fig. 6(a)) for the dampers were obtained using the procedure given in Stage 2, together 
with maxg and the iα ’s needed for the first equivalent optimization. A linear analysis with these starting 
values and SE01 gives maximum drifts that are shown in Fig. 6(b). Proceeding with Stage 3, Fig. 7 is 



drawn for the 1st optimization cycle and Figs. 8(a) and 8(b) show the optimal damping and maximum 
drifts of the damped frame excited by SE01. Stage 4 performs a linear time history analysis of the damped 
structure for each of the remaining 19 records. The record, SE19 led to greater maximal drifts than that of 
the active record, SE01 (Fig. 8(c)). Hence, this record was added to the active set. Carrying out Stage 5 
the equivalent optimization problem (Stage 3) is now solved using records SE01 and SE19. 
 

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

damping ratio (ξ)

di
sp

la
ce

m
en

ts
 [m

] 

SE01
SE02
SE03
SE04
SE05
SE06
SE07
SE08
SE09
SE10
SE11
SE12
SE13
SE14
SE15
SE16
SE17
SE18
SE19
SE20

 
Figure 4: Spectral displacements Vs. damping ratio for the SE 10% in 50 years ensemble 
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Figure 5: Maximal drifts (%) of the bare frame 

After the optimal damping for these two records was calculated, a linear time history analysis was 
performed again on the damped structure for each of the remaining 18 records (Stage 4). This time there 
was no record to be added to the active set. Stage 5 was executed and the optimization cycle (Stage 3) 
was carried out for the third time to yield satisfactory results (within the preset tolerance of 3%). Fig. 9 
shows the optimal damping and the maximum drift envelope of the damped frame using the whole 
ensemble. 
 
A nonlinear time history analysis for all the records was finally performed. Although there was a slight 
indication of plastic hinges (maximum curvature ductility of 1.98 in several beams), the linear and 
nonlinear maximum response of the structure were almost identical. This validates the assumption that the 
damped behavior of the structure can be evaluated linearly. 
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Figure 6: a) Initial supplemental damping and b) maximal drifts for initial damping and SE01 

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

er
r

iteration number

0 2 4 6 8 10
1

1.5

2

ob
je

ct
iv

e
fu

nc
tio

n

iteration number

KKT 

Constraint 

 
Figure 7: Convergence to optimum 

It is important to emphasize that the s'iα  showed small changes in the last two optimization cycles. 
Therefore, the equivalent optimization problem does indeed represent the original optimization problem 
properly. Moreover Fig. 9 shows that two drifts are fully utilized, i.e. reached the allowable drift, and the 
rest of the drifts are smaller than the allowable. 
 
It is important to emphasize the fact that the records SE01 and SE19 affected the envelope drifts of 
different floors. Thus a design for a single record would not have been adequate. Moreover, these two 
records have extremely different characteristics (Fig. 10) and cannot be modeled by a random process.  
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  (a)   (b)   (c)   
Figure 8: a) optimal damping of the damped frame for SE01; b) maximal drifts for SE01 and  

c) drifts envelope for the SE 10 % in 50 years ensemble 
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Figure 9: a) Optimal supplemental damping and b) drifts envelope for the optimally damped frame 
excited by the SE 10 % in 50 years ensemble 

 
Fig. 9 indicates that using the weighted average of the mean squared drifts yields a close to uniform 
distribution of maximal interstory drifts, which is usually desired in structures since in this case damage 
(structural and nonstructural) is assumed to be uniformly distributed in the structure. An intuitive 
explanation is that by choosing the maximum interstory drift as a performance measure the methodology 
does not “spend” added damping in stories of relatively small inter story drift. 
 
Note that the same optimal solution was achieved by using different initial starting values, so it is 
reasonable to assume that it is the only local minimum, hence, global minimum. 
 
The optimization process for this example consisted of a total of 36 iterations and 61 time-history 
analyses. An additional 37 time-history analyses were needed to check for active records. The execution 
time of the process on a Pentium III 866 MHz personal computer lasted less than an hour using a Matlab 
code that was written for this purpose. 
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Figure 10: a) SE01 and SE19 time histories respectively and b) SE01 and SE19 Fourier spectra respectively 

 
CONCLUSIONS 

 
A methodology for the optimal design of added viscous damping for an ensemble of realistic ground 
motion records with a constraint on the maximum drift was presented. The optimization scheme allows 
for zero values of the design variables. Moreover, dampers of equal magnitude at specified locations may 
be imposed on the design process.  
 
The optimal design yields maximum drifts that are smaller than the allowable drift. For one loading 
condition (one record) at least one of the maximal drifts is equal to the maximum allowable drift. For two  
loading conditions (two “active” records), two maximal drifts will reach the allowable (Fig. 9(b)). 
 
Different earthquake records that are likely to be applicable in a given region, can lead to an extremely 
different damping distribution in the structure. Moreover, the drift envelope can be affected by more than 
a single record. Hence a design for an ensemble of records is essential and not a design for a single record 
or a design for a stochastic process. 
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