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SUMMARY 
 
Nonlinear finite element analyses on the RC beam-column joint specimens failing in shear tested under 
cyclic lateral loading were conducted to investigate their failure modes and post peak behaviors such as 
cyclic deterioration and shear resistance mechanism. The analyses were performed especially by paying 
attention to spatial discretization (2-D or 3-D), modeling of bond behavior (bond-slip model or bond 
locking model) and type of loading (monotonic or cyclic). Consequently, 2-D analysis with bond slip 
model gives comparable story shear-story drift angle relation to the one obtained under the monotonic 
loading condition. However, it provides different hysteresis loop from the one observed in the test under 
the cyclic loading condition. On the other hand, 3-D analysis with bond-locking model is able to 
reproduce cyclic deterioration and hysteresis loop after the peak load fairly well. It seems that 3-D analysis 
gives better representation of the failure mode than 2-D analysis. Furthermore, a macroscopic model for 
predicting the joint capacity proposed by Shiohara is reviewed and validity of his hypotheses is rigorously 
investigated through comparison of the observed and calculated results. 
 

INTRODUCTION 
 
Beam-column joint assemblage in the RC moment-resisting framed structures is a critical seismic element 
because its behavior under severe earthquake motions has a significant effect on failure mode and strength 
and deformation capacity of the building structures. Thus, many experimental studies have been 
conducted to understand failure and resistant mechanisms of the beam-column joints so far. 
 
Concerning shear failure of the joint, the current seismic codes [1][2][3] provides the upper limit of input 
shear to the joint; that is, degradation of the story shear and localization of the shear deformation to the 
joint. Permissible limit of the input shear is expressed by a simple empirical formula in terms of the 
compressive strength of concrete. On the other hand, Kitayama et al. [4] conducted the cyclic lateral 
loading test on the interior beam-column joint specimens with different bond properties of longitudinal 
rebars in the beam through the joint. In addition, the earthquake response analyses by the simplified 
framed model were performed using two kind of hysteresis models; one is a regular Takeda model and the 
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other is a modified Takeda model characterized by a significant effect of the bond slip on a shape of the 
hysteresis loop. Consequently, they derived several recommendations on the limitation by the so-called 
bond index indicating bond deterioration of rebars, the limitation of the ratio of rebar diameter in the beam 
to width of the column expressed in terms of the yielding strength of rebar and the compressive strength of 
concrete, the limitation of the input shear for avoiding shear failure of the joint after flexural yielding of 
the beam, and the minimum amount of lateral reinforcement in the joint. 
 
Shear transfer mechanism in the joint has been explained by the macroscopic model based on the strut 
failure mechanism by Paulay et al.[5]. On the other hand, from reappraisal of the existing test data and 
verification test, Shiohara et al. [6][7] indicated that the joint shear does not decrease or it may increase 
although the story shear degrades. They also pointed out that the above phenomena could not be explained 
by the macroscopic model based on the strut failure mechanism. Furthermore, they proposed a new macro-
scopic model for the joint shear failure including anchorage capacity of the beam rebars and investigated 
an effect of the anchorage capacity on failure mode and strength of the joint. 
 
Shear failure in the joints is extremely complicated, and thus no consensus among researchers may be 
obtained on failure mode and resistant mechanism of the joints. On the other hand, a numerical procedure 
such as FEM is a very promising tool, because it provides detailed information such as internal stresses 
and strains for understanding failure mode, resistant mechanism and deformation capability of the joint. It 
is also easy to investigate effect of various parameters, provided that an analytical procedure used is 
shown to be reliable. 
 
The RC interior beam-column joint specimens failing in shear in the joint tested by Kitayama et al.[8] are 
selected as a benchmark for the analysis. The nonlinear FE analyses are carried out especially by paying 
attention to: (1) spatial discretization; 2-D or 3-D, (2) type of the bond models; bond-slip or bond-locking 
model, and (3) type of the loading; monotonic or cyclic. The predicted failure modes and load-deflection 
curves are compared with the observed ones. Furthermore, Shiohara’s macroscopic model [9], which is 
representative of the macroscopic models for describing the shear failure and resistant mechanism of the 
joint, is reviewed and validity of their hypotheses is rigorously investigated using the numerical results.  
 

TEST PROGRAM 
 
Kitayama et al. [8] conducted the cyclic lateral loading test on four scaled 1/2 interior beam-column joint 
assemblages. The major test variable was bond properties of longitudinal bars in the beam and column 
through the joint. The configuration and reinforcement detail are shown in Fig. 1. The test variables are 
listed in Table 1. The configuration is common to all specimens; a cross section of the columns is 350 mm 
x 350 mm and a cross section of the beams is 250 mm x 380 mm. Sixteen D22 rebars; deformed bar with 
a nominal diameter of 22 mm, are used in the column and four D25 rebars are used for both the top and 
bottom parts in the beam. The specimen referred to as “PBU-4” is a major target for this numerical study. 
Note that the amount of beam rebars in the joint was increased double of the beam rebars outside the joint. 
Besides PBU-4, the specimen referred to as “PNB-2”, in which bond between the beam rebar in the joint 
and concrete is isolated, is also analyzed to investigate an effect of bond properties. The mechanical 
properties of concrete and reinforcing bars are indicated in Tables 2 and 3, respectively. The top and 
bottom ends of the column were pin-supported and both the ends of beam were roller-supported as the 
boundary condition. First, a constant axial load of 883 kN was applied to the top of the column, and then 
alternative cyclic lateral load was applied to the top of the column in an incremental fashion while keeping 
the axial load constant. 
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Figure 1  Configuration and reinforcement detail of beam-column joint specimen  

 
 

Table 1  Test variables of beam-column joint specimens 
Name of Specimen PB-1 PNB-2 PNB-3 PBU-4 
Applied Axial Force Constant Compressive Force: 833 kN 

Rebar in Column 16-D22 
Rebar in Beam Top Rebar: 4-D25  Bottom Rebar: 4-D25 

Reinforcement in Joint 2-D10@60  3 sets 
Anchorage Plate used used used not used 

Bond  Beam Rebar with bond no bond no bond with bond 
in Joint Column Rebar with bond with bond no bond with bond 

 
Table 2  Mechanical properties of concrete 

Name of 
Specimen 

Compressive Strength 
(MPa) 

Tensile Strength 
(MPa) 

Young's Modulus 
(GPa) 

PB-1 21.0 2.1 25.1 
PNB-2 21.0 2.4 25.7 
PNB-3 21.9 2.1 26.0 
PBU-4 22.2 2.4 25.8 

 
Table 3  Mechanical properties of reinforcing bars 

Reinforcing 
Bar 

Yield Strength 
(MPa) 

Tensile Strength 
(MPa) 

Young's Modulus 
(GPa) 

D10 404 629 175 
D22 517 674 196 
D25 534 685 191 



FINITE ELEMENT MODELING OF SPECIMEN 
 
Finite Element Discretization of Specimen 
In order to investigate an effect of the spatial discretization, the beam-column joint specimen is divided by 
either 2-D mesh assuming plane stress state or 3-D mesh as shown in Fig. 2. Note that the mesh divisions 
for 2-D and 3-D are same in X-Y plane. Concrete is modeled by the four-node isoparametric quadrilateral 
element in 2-D discretization, and it is modeld by the eight-node solid element in 3-D discretization. 
Longitudinal bars in the beam and column are modeled by the discrete truss element to include an 
interaction between reinforcing bar and concrete. This interaction is modeled by introducing interface 
and/or linkage element(s) in the interface between truss element and concrete element. All other 
reinforcing bars are modeled by an embedded element, assuming perfect bond. 
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Figure 2  Finite element mesh division 

 
Constitutive Modeling of Reinforced Concrete 
 
 Modeling of concrete 
Concrete is assumed to be a linear elastic continuum until crack occurs under tension or inelastic behavior 
starts with under compression. Cracking is judged according to the tension cut-off criterion. Constitutive 
law for cracked concrete is formulated based on the concept of so-called “decomposed-strain smeared 
crack model” by de Borst and Nauta [10]. Total strain, ε, is given as the sum of strain in the cracking part 
(refers to as “crack strain”), εcr, and strain in the solid part between cracks (refers to as “solid strain”), εco, 
as follows: 

ε = εcr + εco = εcr + εce + εcp         (1) 

where εce and εcr are the elastic and plastic components of the solid strain, respectively. This strain 
decomposition allows us to apply plasticity-based constitutive law for describing nonlinear behavior under 
compressive stresses. Elasto-plastic model based on Drucker-Prager criterion along with with an 
associated flow rule is used in the present study.  
 
First, consider concrete with a single crack in a certain orientation. Here, 2-D constitutive law is 
formulated, since an extension of this to 3-D is straightforward. Provided that stress and deformation 
states in the cracking interface is given as shown in Fig. 3, relation between stresses and relative 
displacements is written as follows: 
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Figure 3  Sates in crack interface 
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where c
nnσ and c

ntσ  are the normal and shear stresses, Bnn, Bnt, Btn and Btt are the material stiffness 

coefficients in the cracking part, and δ n and δ t are the crack width and slip displacement. Defining cr
nndε = 

dδ n/S and cr
ntdγ = dδ n/S with an average crack spacing S, then Eq.(2) can be rewritten in a form applicable 

to the constitutive law for the smeared crack model as follows: 
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For simplicity, the off-diagonal terms in Eq.(3) is ignored; that is, 0== cr
tn

cr
nt DD . Finally, relation between 

the total stress increment { }σd  and the total strain increment { }εd  in the total coordinate system for 
cracked concrete can be written as follows according to de Borst and Nauta[9] and Rots[11]: 

{ } [ ] [ ][ ] [ ] [ ] [ ][ ][ ] [ ] [ ][ ]{ }εσ dDNNDNDNDDd ep
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ep
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+−=    (4) 

where [Dep] is the elastic or elasto-plastic material stiffness of the solid concrete, and [N] is the 
transformation matrix of crack. Multiple cracks with different directions may occur in RC structures 
subjected to cyclic loading. To cope with this difficulty, concept of the so-called “multi-directional fixed 
smeared crack model” by de Borst and Nauta[10] and Rots[11] is applied in this study.  
 

In a specific application, it is important how the stiffness coefficients cr
nnD  and cr

ttD  in Eq.(3) are 

determined. cr
nnD  is defined by the secant stiffness normal to crack and cr

ttD  by the secant shear stiffness 

in the cracking part; that is, the former is determined on the basis of the tension softening curve and the 
latter is determined on the basis of the shear retention factor as follows: 
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where E and G are the Young’s modulus and the elastic shear modulus of concrete, µ and β are the 
reduction factor of Young’s modulus and the shear reduction factor.  
 
 



Modeling of interaction between reinforcing bar and concrete 
It is known that stresses in the interface between reinforcing bar and concrete are transferred by cohesive 
action, frictional action and locking action between protrusion of deformed bar and concrete. Many past 
studies simply modeled bond behavior induced by these interactions as bond stress (τ b) - slip (∆s) relation. 
Trilinear τ s - ∆s model constructed by modifying the so-called “Kaku model” has been frequently used in 
FE applications of the beam-column joints by Sugaya and Owada[12] and Noguchi et al.[13]. The 
modified Kaku model and CEB model [14] as shown in Fig. 4 are used as τ b - ∆s relation and they are 
represented by the interface element. In order to include the locking action of protrusion in 3-D analysis, 
bond behavior of the steel part between protrusions is represented by τ b - ∆s model for the round smooth 
bar provided by the CEB model code and the locking action is modeled by the linkage element consisting 
of a set of inclined orthogonal springs as shown in Fig. 5. The inclined springs have compressive 
resistance but no tensile resistance. The axial compressive stiffness of spring, Kw, is determined according 
to the following equation by Fujii[15]: 
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l θπ 2cos⋅⋅⋅+⋅
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w
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where d is the diameter of reinforcing bar, L is the bar length covered by a set of springs, l  is the length 
of local deformation zone and is assumed to be equal to d/20, θ is the angle between the bar axis and the 
spring direction and is assumed to be °45 , and Ec is the Young’s modulus of concrete. Note that the 
linkage element for the beam or column rebar is allocated in the X-Z or Y-Z plane of the beam-column 
joint. 

Bond stress 
τb (MPa) 

Slip 
∆s (mm) 1 3 6 

-1 -3 -6 

5.9 

2.4 
1.25 

-1.25 
-2.4 

-5.9 

Deformed bar 

Round bar 

Bond stress 
τb (MPa) 

Slip 
∆s (mm) 0.05 0.1 

-0.05 -0.1 

5 

2.5 
1.25 

-1.25 
-2.5 

-5 

Outside joint 

Inside joint 

(a) CEB Model (b) Modified Kaku Model 
 

Figure 4  Assumed bond stress-slip models for deformed and round bars 
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Figure 5  Bond-locking Model 



Material Modeling 
Uniaxial stress-strain relation for concrete under tension is assumed to be linear elastic up to its tensile 
strength, ft. Descending branch after cracking is represented by a tril-inear tension softening curve with 
fracture energy as shown in Fig. 6. The fracture energy of concrete, GF (N/mm2), is determined by the  
formula by Oh-oka et al.[16]: 
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 where fc is the compressive strength of concrete (N/mm2). In order to minimize localization of the 
fracture, the crack strain, εcr, is defined by dividing the crack width, W, by characteristic element length, Lc 
for regularization: εcr = W/Lc. The characteristic length for 2-D problem is defined as a diameter of a circle 
with an equivalent area to the element area, A, and Lc for 3-D problem is defined as a diameter of a sphere 
with an equivalent volume to the element volume, V. Note that the origin-oriented secant stiffness is 
assumed for unloading and reloading.  
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Figure 6  Uniaxial tensile stress-strain relationship for concrete 

 
Uniaxial stress-strain relation of concrete under compression up to the compressive strength, fc, is 
represented by a bilinear model with an intersection point at fc /3 as shown in Fig. 7. The descending 
branch after the peak is represented by a linear compressive strain softening model with compressive 
fracture energy, GFC (N/mm). The compressive fracture energy is determined according to the formula by 
Nakamura and Higai[17]: 

fc /3 

λ fc 
fc 

σ c (MPa) 

Compressive strain ε  
ε p ε u = ε 0 +δ pu / Lc 

Compressive stress 

fc 

δ pu 
Plastic deformation δ p 

σ c (MPa) 

λ = 0.85 

Compressive stress 

GFC 

λ fc 

ε 0 

GFC/Lc 

σ c (MPa) 

Compressive strain ε  
ε p 

fc 

Compressive stress 

fc /3 

λ fc 

ε 0 

Ec Ec 

Cracked Concrete 

ε 0 = ε p - fc /Ec 

 
Figure 7  Uniaxial compressive stress-strain relationship for concrete 



cFC fG 8.8=           (8) 

The plastic strain in the solid concrete, εcp, is defined by dividing the plastic deformation, δp, by the 
characteristic element length, Lc, for regularization. The definition of characteristic element length for 
compression is similar to that for tension. Compressive strength reduction factor, λ, is introduced to take 
compressive softening of the cracked concrete into consideration, and λ is assumed to be 0.85 in this 
study. The shear retention factor for the cracked concrete, β, is determined as a ratio of the shear stiffness 
of the cracked concrete, Gcr, to the elastic shear modulus of concrete, Gco, according to the formula by 
Walraven and Kauser[18]: 
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The assumed uniaxial stress-strain relations of concrete and reinforcing bar are shown in Fig. 8. 
Reinforcing bar is treated as an elasto-plastic material and its constitutive law is derived on the basis of 
the von-Mises yield criterion. Gradient after yielding is 1/100 of the initial stiffness, Es. 
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Figure 8  Uniaxial stress-strain relation of concrete and reinforcing bar 
 
 

RESULTS AND DISSCUSSION 
 
Numerical Results 
 
 Analytical model and parameters 
Adopted analytical models are listed in Table 4. The numerical analyses of the beam-column joint 
specimens are performed using four kinds of models with a different combination of parameters: spatial 
discretization (2-D or 3-D), bond model (bond slip model or bond locking model) and compressive 
strength reduction factor of concrete (λ = 1.0 or 0.85). First, constant axial load is applied to the top of the 
column, and then lateral load is applied to the top of the column incrementally by the displacement 
control. An internal friction angle of concrete, φ, was set equal to °10  in 3-D analysis. On the other hand, 
φ for 2-D analysis was set equal to 35o, which gives comparable response to 3-D response. DIANA-7.2 
[19] was used as the computer code in the present study. 
 
 
 
 



Table 4  Analytical models and parameter 
Type of Model Discretization Bond Model Comp. Strength Reduction Factor 

Model-I 2-D CEB Model λ = 1.00 
Model-II (2) 2-D CEB Model  
Model-II (3) 3-D CEB Model  
Model-III (2) 2-D Modified Kaku Model λ = 0.85 
Model-IV (3) 3-D Bond Locking Model  
Model-V (3) 3-D No Bond  

 
Story shear versus story drift angle relations by monotonic loading analysis 
Fig. 9 compares the calculated story shear (V)-story drift angle (R) relation with the test one for the 
specimen of PBU-4. First, Fig. 9(a) shows effect of the compressive strength reduction factor on response 
by 2-D analysis. Model-I(2) gives a similar initial stiffness to the test, but it overestimates the ultimate 
strength. On the other hand, Model-II(2) and Model-III(2) give relatively good predictions to the observed 
initial stiffness and ultimate strength. As far as PBU-4 is concerned, effect of the compressive softening of 
the cracked concrete is more significant than that of the bond model on capacity of the specimen. Fig. 9(b) 
compares the calculated V–R relations by 2-D analysis using Model-II(2) and 3-D analyses using Model-
II(3) and Model-IV(3) with the observed one for PBU-4. The calculated results by all the analyses are in 
good agreement with the test one until the story drift angle, R, reaches R = 1/50, which corresponds to the 
ultimate strength of the specimen. 2-D analysis can simulate the observed post-peak behavior. On the 
other hand, both the 3-D analyses slightly overestimate the post-peak shear resistance of the beam-column 
joint. It seems that 2-D analysis gives better response prediction of the beam-column joint than 3-D 
analysis. However, it must be noted that these results are obtained under the condition of the monotonic 
loading and thus cyclic deterioration is not taken into account.  
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Figure 9  Story shear-story drift angle relation 
 
Story shear versus story drift angle relations by cyclic loading analysis 
Fig. 10 compares the calculated cyclic story shear-story drift angle relations obtained by 2-D analysis 
using Model-II(2) and 3-D analysis using Model-IV(3) with the observed one for PBU-4. Although 2-D 
analysis could well simulate V-R response under the monotonic loading, it gives the hysteresis loop of 
spindle-type, which is quite different from the observed hysteresis loop of slip-type. On the other hand, 3-
D analysis gives much better prediction than 2-D analysis, because it can reproduce cyclic deterioration 
after the peak and the hysteresis loop of slip-type as observed in the test. Thus, the bond-locking model is 
effective to investigate failure mode and post-peak behavior of the beam-column joint. 
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Figure 10  Story shear versus story drift angle relation 
 
Damage distributions in terms of principal strains in concrete 
Fig. 11 shows the maximum and minimum principal strain distributions in concrete at R = 1/50 for PBU-4 
obtained by using Model-II(2) and Model- IV(3) under cyclic loading. Darker a color, larger tensile strain; 
that is, dark region indicates crack-induced damage zone and light region indicates zone with compressive 
or smaller tensile strain. The damage zones by 2-D are observed in the joint and at the ends of beams and 
columns. On the other hand, the damage zones by 3-D are observed only in the joint and at the ends of 
beams. The damage in the joint obtained by 2-D is larger in magnitude and wider in area than that by 3-
D. The minimum principal strains in the joint by 2-D are in a compressive state and are widely distributed 
over the joint; forming a mechanism of diagonal compression strut. On the other hand, magnitude of the 
minimum principal strains in the joint by 3-D is small and they are almost in a tensile state; forming a 
weak diagonal tension strut. 
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Figure 11  Maximum and minimum principal strain distributions 

 
Shear Resistant Mechanism of Joint 
 
Shiohara’s macrscopic model 
Fig. 12 demonstrates a schematic diagram of the resistant mechanism for the joint failing in shear 
proposed by shiohara et al. The hypotheses made by Shiohara[6][7] for constructing a macroscopic model 
are summarized as follows: 
(1) Even if story shear of the beam-column joint assemblage decreases after the peak, shear taken by the 

joint may not decrease but even increase. 
(2) Transition of the compressive axial force in the beam rebar in the compression side at the beam end 

section to the tensile axial force may occur due to bond deterioration. Now, this compressive force in 
the beam rebar will be taken by concrete in the compression side and this leads to an expansion of the 
compressive region, resulting in shift of position of the compressive stress resultant of concrete toward 
center of the beam section; that is, flexural resistance will be reduced because lever arm between the 
stress resultants in the beam section is reduced.  

(3) Post-peak degradation in the story shear V will be not caused by failure of the shear resistant 
mechanism but by failure of the moment resistant mechanism in the joint. 

M = C j = T j j 

Tension 

 Tension 

M 
T 

T 
C C

 (Effect of  bond deterioration) 

 (Effect of  bond deterioration) 

 
Figure 12  Shear resistant mechanism 



Joint shear stress versus story drift angle relation 
Fig. 13 compares the calculated joint shear stress (τ j)-story drift angle (R) relation by Model-IV(3) with 
the test one for PBU-4. For comparison, the calculated τ j - R relation by Model-V(3) for PNB-2 is also 
shown in the figure. The joint shear stress, τ j, is determined by dividing the joint shear, Vj , by an effective 
area of the joint, Aeff [20]. The joint shear, Vj, is calculated by the following equation: 

VaaV ststj −′′+= ∑∑ σσ         (10) 

where  at and a't are the areas of tensile steel bars in the beam at both sides of the joint, σt and σ't are the 
tensile steel stresses, and V is the story shear. It is seen from Fig. 13 that the calculated shear stresses in 
the joint for PBU-4 and PNB-2 do not decrease with an increase in R as well as the observed results. This 
supports validity of the hypothesis (1) by Shiohara et al. 
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Figure 13  Joint shear stress versus story drift angle relation 

 
Stress distribution of concrete and reinforcing bars at beam end 
Figures 14 and 15 show the longitudinal stress distributions of concrete and beam rebars along the cross 
section at the beam end obtained by using Model-II(2) and Model-IV(3) under cyclic loading when R = 
1/50. The stress distributions of concrete by 3-D analysis are different from that by 2-D analysis. 
Compressive stresses by 2-D analysis are gradually decreasing from the maximum value at the top to zero 
value nearby the bottom bar, except for the region just below the top bar with a sudden stress drop. In case 
of 3-D analysis, the maximum compressive stress for the central section is located at the top part and it 
exceeds the compressive strength of concrete due to the confinement effect of reinforcing bars. On the 
other hand, the maximum compressive stress for the section along side cover concrete is located in the 
lower part of the top rebar and strain softening occurs in the top cover concrete. Compressive stresses are 
abruptly decreasing zero value nearby a center of the beam section. Now, look at the stress distribution of 
reinforcing bars. Magnitudes of the tensile stresses in the top and bottom rebars by 2-D analysis are larger 
than those by 3-D analysis. It is interesting to note that stresses in the top by 2-D and 3-D analyses turn out 
to be tension instead of compression. Fig. 16 shows the observed and calculated strain distribution of the 
bottom bar through the joint when R = 1/50. It is seen that the tensile stresses are caused in the bottom bar 
in the compression side at the beam end, although a complete agreement in the strain distributions along 
the bar for the test and analysis is not attained. These stress and strain distributions support validity of the 
hypothesis of (2) by Shiohara et al. 
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Figure 14  Longitudinal stress distributions of concrete along beam height 
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Figure 15  Stress distributions of reinforcing bar along beam height 
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Figure 16  Strain distributions of bottom bar in beam along beam axis 

 



Variation in lever arm between stress resultants 
Fig. 17 compares the calculated lever arm (j) versus story drift angle (R) relation obtained using Model-
IV(3) with the observed one. The lever arm j for Case-1 is calculated by dividing the beam end moment by 
the axial force in the tension bar, and j for Case-2 is determined with all stress resultants of concrete and 
bar elements located at the beam end. The calculated values for Case-1 and Case-2 show a similar 
tendency to the test one; j decreases with an increase in R, supporting validity of the hypothesis of (3) by 
Shiohara et al. 
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Figure 17  Variation in lever arm with increase in story drift angle 

 
CONCLUSIONS 

 
In the present study, the RC beam-column joint specimens failing in joint shear were analyzed by the 
nonlinear FEM, especially paying attention to the spatial discretization, the bond model and the loading 
type. The failure mode and post-peak behaviors including shear resistant mechanism and cyclic 
deterioration of the joint were investigated and the following findings were obtained: 
(1) 2-D analysis, which takes the compression softening and bond-slip behavior into account, gives 

comparable story shear-story drift angle relation to the observed ones under the monotonic loading 
condition. However, it provides the hysteresis loop of spindle-type under the cyclic loading, which is 
different from that of slip-type observed in the test. 

(2) 3-D analysis, which takes the bond-locking action into account as well as the compression softening, is 
able to reproduce cyclic deterioration and hysteresis loop after the peak load fairly well, although it 
slightly overestimates the shear capacity of the joint. 

(3) It is possible to understand damage distribution in the joint by examining the maximum and minimum 
principal strain distributions. It seems that 3-D analysis gives better representation of the failure mode 
than the 2-D analysis. 

(4) The present analysis can demonstrate validity of the Shiohara’s hypotheses that reduction of the story 
shear after the peak load may come from failure of the moment-resistant mechanism. 
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