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SUMMARY 
 
It is necessary to formulate tri-axial non-linear restoring force characteristics for examination of tri-axial 
earthquake responses of buildings. Nishimura and Takiguchi presented modeling method of the 
characteristics of R/C structures in 2003, which was based on the theory of plasticity. In this paper, tri-
axial multi-linear restoring force models of R/C structures presented by Nishimura and Takiguchi, which 
were flexural type model and shear type model, were modified in evaluation of rigidity. These models 
were used for earthquake response analyses of one-mass-system. As a result, comparison of numerical 
results between tri-axial and bi-axial response analyses showed that it was enough to consider two-
directional input of earthquake motion to estimate lateral external force and maximum displacement in 
seismic design, the maximum vertical absolute acceleration responses were obtained in the range of 300 to 
1,100 cm/sec2, and then evaluation of total energy input were carried out. 
 

INTRODUCTION 
 
An earthquake response analysis is one of the effective techniques to estimate seismic safety of building 
subjected to earthquake excitation. It is necessary to formulate restoring force characteristics of the 
structures for the response analysis. A modeling method used an analogy to the theory of plasticity is one 
of the macro modeling methods. Regarding this method, Takizawa [1] presented bi-axial model of R/C 
structures in 1976. Yoshimura [2] modified the model presented by Takizawa in 1985. Isozaki [3] 
presented tri-axial model in 1992. One of the problems of tri-axial model is how to describe axial 
deformation behavior, which direct to compressive side on unloading stage [4][5]. Nishimura and 
Takiguchi presented tri-axial modeling method in 2001 that resolved above-mentioned problem [6]. 
 
In this paper, tri-axial multi-linear restoring force models of R/C structures presented by Nishimura and 
Takiguchi [6], which were flexural type model and shear type model, were modified in evaluation of 
rigidity. The flexural type has large area in hysterisis loop, and the shear type has small area in the loop, 
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where the area means energy dissipation. The former one can be seen in rigid frame structures, and the 
later one can be seen in R/C box wall structures. These two types of one-axial restoring force 
characteristics were modeled in tri-linear curves, and those one-axial restoring force models were 
expanded to tri-axial. Tri-axial non-linear earthquake response analyses of one-mass-system were carried 
out with these two types of restoring force model.  
 
 

RESTORING FORCE MODEL 
 
One-axial restoring force model 
Restoring force characteristics can be represented with skeleton curve and hysterisis loop. Both of flexural 
and shear types were modeled in tri-linear skeleton curves as shown in Figure 1. Two lateral directions 
and vertical direction are corresponded to X-axis, Y-axis, and Z-axis, respectively. Z-axis takes 
compressive side as positive direction. One-axial restoring force model of Y-axis is assumed to be equal to 
that of X-axis in this paper. QX-δX relationships shown in Figure 1 are expressed when N=CN, which CN is 
axial force of 0.5 axial force ratio. The models of flexural and shear types are called F-model and S-model 
hereinafter, respectively. First, second and third inclinations of the skeleton curve express rigidities of 
elastic state, cracking state, and yield state, respectively. A point beyond the maximum deformation 
experienced moves on the skeleton curve until unloading, and the point direct toward the point of the 
maximum deformation experienced after unloading, as shown in Figure 2(a). After yielding, as shown in 
Figure 1, loops of F-model and S-model were modeled in a parallelogram and a straight line, respectively. 
Condition shown in Figure 2(b) that inclination of a-b’ is larger than inclination of a-b may occur. In a 
case like this, a rule to take a-b is applied in this model. 
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(a)  F-model     (b)  S-model 

Figure 1  One-axial restoring force model 
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Figure 2  Rule of shift 
 
Yield surface and cracking surface 
Surfaces 
Figure 3 shows cracking surface and yield surface those are corresponded to first and second corners of 
the skeleton curve, respectively. The F-model has parabola surfaces and the S-model has ellipse, and 
cracking condition and yield condition are expressed as follows.  
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(a)  F-model     (b)  S-model 

Figure 3 Cracking surface and yield surface 



A force point and a deformation point are expressed as {P}=(QX, QY, N)T and {δ}=(δX, δY, δZ) T, 
respectively. Center of cracking and yield surfaces are expressed as {CPc}=(CQc

X, CQc
Y, CNc)T and 

{CPy}=(CQy
X, CQy

Y, CNy)T, which initial values are {CPc}={CPy}=(0, 0, CN)T, respectively. The one-axial 
restoring force models shown in Figure 1 were expressed when N=CN.  
 
Hardening rule 
The yield and cracking surfaces of F-model and S-model obey mixed hardening rule that consist of 
isotropic hardening rule and Prager's kinematic hardening rule [7]. These surfaces translate and expand 
according to the mixed hardening rule. Translation and expansion of the yield and cracking surfaces are 
calculated in the same way. Figure 4(a) shows bound expressing cracking condition in one-axial case, 
which the range is 2mQc

X and its center is CQc
X. When force increment dQX is given at a point A, the 

bound expressing cracking condition widens dQX /2 and the center translates dQX /2. This rule is extended 
to tri-axial case as shown in Figure 4(b). Then the following relationships are given, where {CPc} and hc 
are center and expanding ratio of the cracking surface, which details of leading equation were shown by 
Nishimura and Takiguchi [6]. 
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Figure 4  Mixed hardening 
 
Modeling of behavior on unloading stage 
Corn in deformation space 
Figure 5(a) shows QX-δX and δX-δZ relationship curves of a R/C column under a constant axial force. It 
can be said that force-deformation behaviors on loading stage are analogous to the theory of plasticity [5]. 
However it is difficult to describe a behavior on unloading stage by using the theory of plasticity, which 
behaviors that axial deformation directs toward compressive side on unloading stage as shown in Figure 
5(a) can be often seen on R/C structures. Nishimura and Takiguchi presented elastic rigidity that 
considered interaction between lateral and vertical components and loading surface to describe the 
behavior on unloading stage [6]. The behavior on unloading stage was modeled as shown in Figure 5(b) 
that the deformation directed to point T. This modeling method was extended to tri-axial space shown in 
Figure 5(c), which the deformation point moves on a cone under a constant axial force. The point T shown 
in Figure 5(c) is expressed as {Tδ}=(TδX, TδY, TδZ)T. The cone is expressed as follows, where rX, rY, and rZ 
are axis length of ellipse in X and Y direction and height of cone, respectively. 
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rY is assumed to be equal to rX in this paper. rX, and rZ can be given by {δ} and {Tδ}. In this paper, 
translation of the corn is assumed as follows, where [Ke] is elastic rigidity. 
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Figure 5  Modeling of behavior on unloading stage 
 
Elastic rigidity 
Elastic rigidity was assumed to be able to express the behavior that the deformation increment vector {dδ} 
lays on the cone under a constant axial force as follows [6]. 
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Loading surface 
The loading surface is corresponded to corner of the parallelogram loop of F-model. The loading surface 
and its center is expressed as Fl=0 and {CPl}=(CQX

l, CQY
l, CNl). As shown in Figure 6, loading surfaces are 

assumed on a virtual plane and Z-axis those are expressed as bF
l=0 and ZFl=0, respectively. bF

l=0 is 
represented as an ellipse, where circle is used in this model, and ZFl=0 decides the range of Z component 
of a force point. Those conditions are expressed as follows. 
 

1
22

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −=
l
Ym

l
YCbYb

l
Xm

l
XCbXbl

b Q

QQ

Q

QQ
F  [ On virtual plane ]          (11) 

1
2

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −=
l

m

l
Cl

Z N

NN
F     [ On Z axis ]           (12) 

 



{bP}=(bQX, bQY)T and {CbP
l}=(CbQ

l
X, CbQ

l
Y)T are a force point and a center of loading surface on virtual 

plane. Initial values in Equation (11) and (12) are given as CbQ
l
X=CbQ

l
Y=0, CNl=CN, mQl

X=mQc
X, 

mQl
Y=mQc

Y, and mNl=mNc. Judgments of relationship between a force point and loading surface in tri-axial 
space are assumed as follows. 
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A plastic flow associated with loading surface is expressed as follows by using the flow rule. 
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{ ∂ Fl/ ∂ P} is assumed to lie in direction along the corn shown in Figure 5(c) when bF

l(bP)=0, and to lie in 
direction along Z-axis when ZFl(N)=0. Those are expressed as follows, where wX and wY are equal to 
those in Equation (10). 
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The loading surface obeys Prager's kinematic hardening rule, and the following equation can be given. 
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Figure 6  Loading surface 
 
Transformation of force point 
A force point {P} in tri-axial force space is transformed to a point {bP} on the virtual plane. {P} is 
projected on the virtual plane, and coefficient of influence of axial force modifies projected vector as 
follows, where {P'}=(bQX, bQY, 0)T and kn is the coefficient. 
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[I] is unit matrix, {l} is normal vector of the corn shown in Figure 5(c), and {n} is a unit vector lies in 
positive direction of Z-axis. A center of loading surface {CPl} is also transformed to a point on virtual 
plane in the same way. In this paper, kn is assumed to consider difference in cracking strength under 
different axial force as follows. 
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Top of corn 
As shown in Figure 7, a top of the corn shown in Figure 5(c) is made smooth by parabola in small range to 
have no corner because the corner make calculation difficult. In this paper, the range of parabola is 
mδy

X/50 in X-direction. mδy
X, which is shown in Table 2, is explain later. The range in Y- directions are 

calculated the same as X-direction. 
T
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Figure 7  Top of corn 

 
Force-deformation relationship 
Force and deformation increment relationship can be written as follows. 
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In this paper, elastic state is named E-state, and elastic-plastic state associated with cracking surface is 
named EC-state. Elastic-plastic state associated with loading, cracking and yield surfaces is named ELCY-
state in the same rule. According to the total number of surfaces, F-model has eight states, and S-model 
has four states. [K] shown in Equation (22) is rigidity on each state. [K] is equal to [Ke] in E-state. 
Rigidities in the other state can be obtained based on the theory of elasticity and plasticity [8], and rigidity 
in ECY-state can be obtained as follows for example. 
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 [kl] , [kc] and [ky] are plastic rigidities associated with loading, cracking and yield surfaces, respectively. 
Those are written as follows.  
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These rigidities are given by one-axial restoring force model. Figure 8 shows plastic rigidities on X-axis of 
F-model. The rigidities on the other axis and the rigidities of S-model can be obtained in the same way. 
γX

l, γX
c and γX

y of F-model and S-model are expressed as follows. 
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Figure 8  Plastic rigidity of F-model 

 
Rigidity degradation 
Rigidity degradation of restoring force model presented by Nishimura and Takiguchi [5] is modified in 
this paper. This paragraph shows rigidity of X-axis, and rigidities of Y and Z axes can be calculated as 
those of X-axis. As shown in Figure 9, αc

X of F-model and S-model are given as follows. 
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Increments of mδc

X are assumed as shown in Table 1. Coefficients shown in Table 1, which are γec
X  and 

γecy
X for example, are given in the same way shown in Figure 8 by substituting dmQc

X for dQX. 
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Elastic rigidity degradation of F-model is assumed as shown in Figure 10. The elastic rigidity before 
yielding is degraded as a point direct to the point of maximum deformation experienced. The rigidity after 
yielding is degraded according to ratio between maximum yield deformation mδy

X and initial yield 
deformation YδX [9]. The following equation is given to express this rule. 
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αX is the lower value between αc
X and imQy

X/YδX, where imQy
X is initial value of mQy

X. An increment of 
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X is assumed as shown in Table 2. CαX
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elKX is rigidity of EL-state when N=CN, 
can be calculated with αX
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Figure 9  Rigidity of loop   Figure 10  Elastic rigidity degradation of F-model 

 
Table 2  An Increment of mδy

X of F-model 
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Regarding one-axial force-deformation relationship under a constant axial force that is equal to CN, a point 
directs toward a point of the maximum deformation experienced if αe

X, Cαel
X and αc

X are used. However, 
if axial force is different from CN, a point may not direct toward the point of the maximum deformation 
experienced because of difference in lateral strength depending on axial force as shown in Figure 11. The 
model presented by Nishimura and Takiguchi [6] used Cαel

X for αel
X of F-model and αc

X αe
X of S-model in 

every axial force. The restoring force models in this paper are modified this problem. αel
X of F-model and 

αe
X of S-model are assumed as axial force effects can be considered, as follows. 

 
el
XCn

el
X k αα ⋅=  for F-model, where kn is equal to Equation (20).           (30) 

c
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e
X k αα ⋅=  for S-model, where kn is equal to Equation (21).           (31) 
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(a)  F-model      (b)  S-model 

Figure 11  Effect of axial force 
 



EARTHQUAKE RESPONSE ANALYSIS 
 
Numerical program 
Earthquake responses of R/C structures were examined with the one-mass-system and the two types of 
restoring force model those were F-model and S-model. Newmark method [β=1/4] was used for the 
response analysis, and three earthquake ground motions those were Chi Chi 1999, Kobe 1995, and El 
Centro 1940 were inputted. Constants of the F-model and the S-model were decided based on 
experimental results of R/C columns [5] and R/C box wall structures [10], as shown in Table 3. 
Coefficient of damping was calculated with damping factor and instant stiffness of the system on each 
step. Parameters of the analysis were natural period ranged from 0.1 to 0.6sec and types of analysis those 
were tri-axial and lateral bi-axial analyses. The natural period corresponds to initial elastic stiffness of the 
model. The restoring force model of bi-axial analysis is the same to the model of tri-axial analysis except 
for having no Z-directional components. 
 
A total plastic deformation can be given as shown in Figure 12. A total plastic deformation ratio η in one-
axial case can be estimated by ∆h, p, β, and ξ. The equation shown in Figure 12 was adopted in tri-axial 
and bi-axial analyses. In this paper, earthquake response analyses were carried out as η got to 20.0 in F-
model and 0.5 in S-model those were decided based on the past experimental study [5][10]. ∆h 
corresponded to η was calculated, and then analyses were made by controlling yield strength as ∆h got to 
the calculated values. 
 

Table 3  Constants of the system 
 F-model S-model 

βX (=βY=βZ) 0.27 0.21 
pX (=pY=pZ) 0.001 0.001 

Axial force ratio 0.25 0.1 
Ratio of yield strength to cracking strength 2.2 3.3 

Axial yield strength ratio of tension to compression 0.25 0.25 
Axial cracking strength ratio of tension to compression 0.1 0.1 

γ shown in Equation (28) -0.5 - 
Damping factor 0.02 0.05 

Ratio of vertical natural period to lateral natural period 0.3 0.3 
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Figure 12  Total plastic deformation 

 
Numerical results 
Figure 13 shows responses in case of inputting Kobe ground motion. Initial natural periods of the system 
are 0.2sec for F-model and 0.1sec for S-model. Mg in Figure 13 is gravitation acting on the system. UD-
axis takes compressive side as positive direction. As shown in Figure 13, the restoring force model shown 



in this paper could represent behaviors on unloading stage, which UD-directional deformation direct to 
compressive side. 
 

 
(a)  F-model with 0.2sec initial natural period 

 
(a)  S-model with 0.1sec initial natural period 

Figure 13  Reponses inputted Kobe ground motion 
 
Figure 14 shows numerical results when Chi Chi, Kobe, and El Centro ground motions were inputted. 
Circle and diamond marks represent the results of F-model and S-model, respectively. White and black 
marks represent tri-axial and bi-axial analyses, respectively. D, A, AV, VE, and T express maximum lateral 
deformation response, maximum lateral absolute acceleration response, maximum vertical absolute 
acceleration response, equivalent velocity of total energy input [11], and initial natural period of the 
system, respectively. D is equal to a square root of sum of δNS

2 and δEW
2. A is calculated in the same way 

as D. VE can be given as follows, where E and M are total energy input and mass of the system, 
respectively. 
 

MEVE 2=                  (32) 

 
D-T, A-T, and VE-T relationships of tri-axial analysis almost agreed with the relationships of bi-axial 
analysis as shown in Figure 14(a) to (c). These results indicate possibility that it is enough to consider 
lateral two directional input of earthquake motion when we estimate lateral external force and maximum 
deformation in seismic design. It is important to know the maximum deformation to judge whether non-
structural claddings of buildings can follow the deformation. 
 
The maximum and the minimum vertical absolute acceleration responses are both plotted in Figure 14(d). 
As shown in this figure, absolute values of the responses of positive and negative side were almost equal. 
The largest values were about 940 cm/sec2 on the F-model of 0.3sec period inputted Kobe ground motion, 
and about 1,090 cm/sec2 on the S-model of 0.5sec period inputted Kobe ground motion. It can be said that 



AV were obtained in the range of 300 to 1,100 cm/sec2. Although these results may not be serious from the 
viewpoint of collapse of structures, it is necessary to consider these results from the viewpoint of 
influence on inside of buildings. 
 

 
(a)  Maximum lateral deformation responses 

 
(b)  Maximum lateral acceleration responses 

 
(c)  Equivalent velocity of total energy input 

 
(d) Maximum vertical absolute acceleration responses 

Figure 14  Earthquake responses 
 



Evaluation of total energy input 
An evaluation of the total energy input of tri-axial non-linear earthquake response was examined with a 
result of elastic response analysis, which damping factor is 0.1sec [11]. Figure 15 shows VE-T 
relationships where a solid curve express a result of tri-axial elastic response analysis, which damping 
factor is 0.1sec. Circle and diamond marks are represented the results of F-model and S-model, 
respectively. The results are plotted by averaged periods those were averages of two periods associated 
with initial elastic stiffness and last value of αc

X shown in Figure 1. VE of F-model and S-model show 
good agreement with the elastic analysis results. There are some differences between the results of elastic 
analysis and non-linear analysis in the range of longer period, however those are safety side and those 
differences aren't large. Therefore, it can be said a result of tri-axial elastic response analysis with 0.1 
damping factor has possibility to be able to evaluate total energy input of tri-axial non-linear earthquake 
response of R/C structures by using the averaged periods. 
 

 
Figure 15  Evaluation of total energy input 

 
 

CONCLUSIONS 
 
Tri-axial multi-linear restoring force models of R/C structures, which were based on the theory of 
plasticity, were shown in this paper. The model presented by Nishimura and Takiguchi in 2003 [6] were 
modified, and flexural and shear types of R/C structure were modeled. The flexural type can be seen in 
rigid frame structures that have large area in hysterisis loop, and the shear type can be seen in R/C box 
wall structures that have small area in the loop. Tri-axial non-linear earthquake responses of R/C 
structures were examined with one-mass system and these two types of restoring force model. Parameters 
of the analyses were natural period ranged from 0.1 to 0.6sec and types of analysis those were tri-axial and 
bi-axial analyses. The natural period corresponds to initial elastic stiffness of the model. Chi Chi, Kobe, 
and El Centro earthquakes were employed for input data. As a result, the following conclusions were 
found. 
1) The tri-axial multi-linear restoring force model of R/C structures shown in this paper could 

describe behaviors that axial deformation directed toward compressive side on unloading stage, 
which representation of these behaviors were one of the problems of restoring force models based 
on the theory of plasticity. 

2) Maximum lateral deformation response, maximum lateral absolute acceleration response, and 
total energy input of tri-axial analysis were almost equal to the responses of lateral bi-axial 
analysis. These results indicate possibility that it is enough to consider two directional input of 
earthquake motion to estimate lateral external force and maximum deformation in seismic design. 

3) Maximum vertical absolute acceleration responses of tri-axial analyses were obtained in the range 
of 300 to 1,100 cm/sec2. Although these results may not be serious from the viewpoint of collapse 
of structures, it is necessary to consider these results from the viewpoint of influence on inside of 
buildings. 



4) Total energy input of tri-axial elastic response analysis with 0.1 damping factor showed good 
agreement with result of tri-axial non-linear response at an averaged period that was an average of 
two periods associated with initial elastic stiffness and last stiffness that connected a point of 
maximum deformation experienced and a point of minimum deformation experienced diagonally. 
It can be said that the result of tri-axial elastic response analysis with 0.1 damping factor has 
possibility to be able to evaluate the total energy input of tri-axial non-linear earthquake response 
of R/C structures by using the averaged periods. 
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