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SUMMARY 
 
Eccentric structures, characterized by non coincident center of mass and center of stiffness, when 
subjected to dynamic excitation, develop a coupled lateral-torsional response that may increase the local 
peak dynamic response of such a structure: this behaviour becomes particularly important for seismic 
isolated structures for which large displacements are developed in the isolators. The coupled lateral-
torsional response can be estimated only through a three-dimensional analysis which is specifically carried 
out for a single structure subjected to a determined dynamic input. In this paper the authors present the 
analytical formulation of a simplified method which allows to understand, predict and govern the global 
trend of one-storey eccentric structures to develop a torsional response to dynamic inputs through the 
identification of a system key parameter named “alpha”. This parameter can be easily used to effectively 
estimate the maximum rotational response of a given eccentric system under a dynamic excitation through 
a simple linear elastic analysis of the “equivalent” non-eccentric system. Moreover, the results of the 
analysis in the non-linear field show that the linear elastic value of “alpha” acts as an upper bound for the 
corresponding value of elastic-perfectly plastic systems. In summary, this paper proposes a physically-
based general theory which frames the problem of torsional phenomena of one-storey eccentric systems 
subjected to dynamic inputs and immediately allows the quantification of the system torsional response 
and the identification of the structural parameters governing it. 
 
 

INTRODUCTION 
 
The dynamic behaviour of eccentric systems has been the object of extensive research works both in linear 
and non-linear domains. However, a number of issues remains unresolved as regarding the inelastic 
response [1] of the system and the development of a simplified, yet accurate and physically-based design 
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procedures. Actually, the research in lateral-torsional coupling performed to date can be subdivided into 
three categories: 

1. Investigation of the linear elastic response of three-dimensional laterally-torsionally coupled 
structural systems [2,3]. 

2. Investigation of the non-linear response of three-dimensional one- and multi-storey eccentric 
systems [1,4,5,6]. 

3. Evaluation of design code provisions for torsional effects in building structures [1]. 
 
As far as base-isolated buildings are concerned, the analysis of their coupled lateral-torsional dynamic 
response can be fairly simplified for the following reasons: 

1. most common seismic isolators are cylindrical elements with a well known lateral stiffness that is 
generally independent of the direction of deformation [3]; 

2. the dynamic behaviour of seismic isolated structures can be fairly well captured through a 
simplified linear analysis in spite of the inherent non-linear force-deformation relationship of most 
common seismic isolators [3]; 

3. under strong motion excitation, the deformations of a seismic isolated structure are localized 
mainly in the seismic isolators and are only marginally influenced by the dynamic interaction with 
the superstructure [3,5,6,7]. 

 
For conceptual design purposes, the dynamic analysis of seismic isolated structures can be effectively 
reduced to that of a one-storey three-dimensional linear structural system with a roof diaphragm/slab 
assumed infinitely stiff in its own plane (i.e., rigid diaphragm assumption). Since the maximum isolator 
deformation is the basic design parameter considered in design codes, it is essential to develop a simple, 
rational and reliable method to determine the local increase (as compared to non eccentric case) in the 
maximum isolator deformation due to the eccentricity-induced rotational response. 
 
Nagarajaiah et al. [6] confirmed that the superstructure has a small influence on the maximum 
deformation of base isolators and investigated the effects of selected parameters of eccentric structures on 
the dynamic coupled lateral-torsional response of base isolated systems. These results, however, are 
presented for a specific structural system and are not extended into a general purpose simplified theory. 
 
The new insight presented in this paper is based on the study of the free vibration response of linear 
elastic eccentric systems and directly derived from accurate study of the equations of motions. The 
resulting simplified dynamic analysis procedure applies to a wide range of base-isolated systems and 
provides both a qualitative understanding and an effective quantitative estimate (for practical engineering 
purposes) of their coupled lateral-torsional response both in linear and non-linear field. As immediate 
result, a simple physically-based formula is here provided to estimate the maximum rotational response of 
a given base isolated structure in terms of few identified dimensionless controlling parameters of the 
system. 
 
 

THE ECCENTRIC DYNAMIC SYSTEM AND ITS EQUATIONS OF MOTION 
 
Consider the three-dimensional one-storey system idealization with rigid in-plane diaphragm of a general 
base isolated structure with non-coincident center of mass (C.M.) and center of rigidity (C.R.) displayed in 
Figure 1 where the seismic isolators are considered axially inextensible and the degrees of freedom are 
attached to the center of mass of the system. 
 
Under the following two hypotheses: 



1. the lateral stiffness ( ik , 1,  ...,  i N= ) of each one of the N base isolators does not depend on the 
direction of deformation, 

2. the rotational response uθ  developed under dynamic (e.g. seismic) excitation is small enough 

such that ( ) ( )sin tanu u uθ θ θ≅ ≅ , 

the dynamic coupled lateral-torsional response of the system under consideration is governed by the 
following set of coupled differential equations of motion [8,9]: 
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where: 

( )xu t , ( )yu t , ( )u tθ  translations along the x- and y-directions and rotation along the z-axis, 

respectively, of the base isolated system; 
m total mass of the super-structure, i.e. total mass resting over the base isolators; 

pI  polar mass moment of inertia of the superstructure with respect to the z-axis 

which passes through the center of mass; 

pI

m
ρ =   mass radius of gyration of the superstructure with respect to the z-axis; 

[ ]C  damping matrix (note that this matrix takes into account the particular degrees of 

freedom here selected); 

ix , iy    x- and y-coordinates of the i-th isolator; 

1

N

i
i
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=

=∑   lateral stiffness (in any direction) of the total base isolation system; 

1

N

x i i
i

E k x k
=

 =  
 
∑ , 

1

N

y i i
i

E k y k
=

 =  
 
∑   eccentricities of the center of stiffness of the total base isolation 

system with respect to the center of mass in the x- and y-directions, respectively; 
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= ⋅ +∑  rotational stiffness (about the z-axis) of the total base isolation system; 

( )xp t , ( )yp t , ( )p tθ  external dynamic forces/moment applied along the x-, y- and z-directions; 

L

k

m
ω =  uncoupled lateral (longitudinal or transversal) natural circular frequency of 

vibration; 

p

k

I
θθ

θω =  natural circular frequency of rotational vibration of a fictitious non-eccentric 

structure having the same rotational stiffness and mass moment of inertia (with 
respect to the z-axis) as the eccentric system considered here; 
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⋅
 this ratio identifies the properties of the isolators mesh. 1γ >  characterises 

torsional-rigid structures, whilst 1γ <  characterises torsional-flexible systems. 



Hereafter we will refer only to the first case above mentioned ( 1γ > ). Parameter 
γ  tends to unity as the number of seismic isolators increases within the given 
planar dimensions of the base-isolated system. 

12eD ρ= ⋅   “equivalent diagonal” of the system which, for system with rectangular shape and 
uniform mass distribution, coincides with the actual length of the diagonal of the 
system; 

x
x
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= , y
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=  relative eccentricities in the x- and y-directions, respectively. 

 

 
Figure 1: Three-dimensional one-storey system idealization 

 
 

UNDAMPED FREE VIBRATIONS RESPONSE FROM A GIVEN TRANSLATIONAL 
DISPLACEMENT 

 
Solving now Eq.1 specialized for undamped free vibration systems (i.e. [ ] 0C =  and 

( ) ( ) ( ) 0x yp t p t p tθ= = = ) with initial conditions: 
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where a represents the given initial displacement along the y-direction (herein referred to as the 
longitudinal direction) and expressing the dynamic response of the system in modal coordinates, ( )iY t , 

1, 2,3i = , lead to uncoupled modal equations of motion, which can be integrated separately, and then 
recombined to form the free vibration response histories along the original degrees of freedom [8,9]: 
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where 1ω , 2ω  and 3ω  are the undamped modal circular frequencies of the system: 
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Inspection of Eq.3a through Eq.3c leads to the following considerations: 

1. when y xe e= , the maximum absolute value, 
maxyu , of the longitudinal response ( )yu t  is equal to 

the maximum absolute value, 
maxxu , of the transversal response ( )xu t , i.e. 

maxmaxy xu u= ; 

2. ( ) 0xu t ≠  only when 0ye ≠  and 0xe ≠ ; 

3. the maximum absolute value, 
max

uθ , of the rotational response ( )u tθ  is obtained when 0ye =  

and 0xe ≠ ; 
4. the longitudinal, transversal and rotational responses consist of the sum of trigonometric functions 

of various amplitudes and circular frequencies. 
Note that, as plotted in Figure 2, 1Θ  is always smaller than 3Θ . Furthermore, for the range of F values 

typical of most structures ( 210 1F− ≤ ≤ ), 1Θ  assumes relatively small values and 3Θ  assumes relatively 
large ones. As a consequence, in these cases, the third terms in Eq.3a and Eq.3b can be neglected and due 
to the fact that generally 0.3e < , 1 2ω ω≅  and 3 2ω ω>> . At this point it is worth recalling that, the sum of 
two trigonometric functions of equal amplitudes and different frequencies produces a harmonic (fast 
mode) with harmonically modulated (slow mode) amplitude. Figure 3 shows, for the special case of 

y xe e= , that (a) the longitudinal and transversal displacements responses have a slow modulation of their 

amplitude due to the closeness of 1ω  and 2ω , while the rotational response exhibits a fast modulation of 

its amplitude, due to the fact that 1ω  and 3ω  are well separated; (b) when the envelope of the longitudinal 
displacements reaches its maximum, that of transversal displacements is at its minimum and vice versa, 
and (c) the rotational response has a high amplitude modulation frequency, which results in a strong 
interaction between the fast and slow modes (due to the closeness of the fast and slow mode frequencies). 
 
For the special case of 0ye = , which gives, for fixed xe , the maximum rotational response in free 

vibration from an initial deformation along the y-direction, Eq.3a through Eq.3c reduce to: 
 

( ) 0xu t =         (7a) 
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Figure 4 shows the rotational response ( )u tθ  versus the longitudinal displacement response ( )yu t : this 

plot reveals that, consistently with the fast modulation of the rotational response above observed, for every 
longitudinal cycle of vibration, the rotational response reaches a value close to its maximum, 

max
uθ . 

Furthermore, it can be observed that the rotational maxima are developed at instants of time when the 

longitudinal displacement response is close but not equal to its maximum, 
maxyu . This fact can also be 

explained through inspection of the Argand diagram representation of Eq.7b and 7c [9]. 
 

 
Figure 2: 1Θ  and 3Θ  as a function of F. 

 

 
Figure 3: Free vibration response ( ( )xu t , ( )yu t  and ( )u tθ ) of a system characterised by y xe e= , 

0.1e = , 1.3γ = ,  rad/secLω π=  and 28eD m= . 

 



 
Figure 4: Time evolution of ( )u tθ  versus ( )yu t  for an undamped eccentric structure 

characterised by 0ye = , 28eD m= ,  rad/secLω π= , 0.1a m= , 1.3γ = , 0.05xe =  (for 10sect =  and 

25sect = ). 
 
 
MAXIMUM ROTATIONAL TO MAXIMUM LONGITUDINAL DISPLACEMENT RESPONSE 

RATIO OF UNDAMPED ECCENTRIC SYSTEMS IN FREE VIBRATION: THE “ALPHA” 
PARAMETER IN THE UNDAMPED CASE 

 
The behavioural trend of the rotational response observed in the previous section suggests that the 
maximum rotational and maximum longitudinal displacement responses of eccentric systems might be 
strongly correlated, their ratio representing a basic property of eccentric systems, which could control their 
dynamic response also under general forced vibration conditions. 
 

For undamped eccentric structures, in the special case of 0ye = , the ratio max
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y
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u
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 can be expressed 

in closed-form from Eq.7a, Eq.7c, Eq.6 and Eq.5 as follows: 
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Eq.8 shows that max
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 is inversely proportional to the mass radius of gyration ρ  of the structure; 

thus suggesting the definition of the following dimensionless rotational parameter: 
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As per Eq.9, the rotational parameter uα  (where the subscript u stands for “undamped”) depends on the 

pair of system parameter e and γ  or, even better, on the single structural parameter ( )2 1F e γ= − . 

Structures characterized by large values of uα  are prone to develop large rotational dynamic response, 

while structures with small values of uα  are less prone to rotate when responding dynamically. Figure 5a 

shows the graphical representation of uα  as a function of e and γ : it can be observed that for the same 
initial longitudinal displacement, eccentric systems can develop very different values of maximum 
rotational response depending on the system characteristics. In detail, Figure 5a indicates that the 
rotational parameter uα  increases for increasing values of e and decreasing values of γ . It can be seen 

that for low values of e and γ , uα  strongly increases for decreasing γ  and for increasing e. Note that 
high values of γ  (torsionally-rigid systems) characterize structures with sparse isolators mesh, e.g. with 

few isolators located on the perimeter. The small values of α typical of structures characterised by large γ  
indicate that, in analogy to a flexional resistant section (where it is worth to centrifugate the masses in 
order to obtain a major inertia), in base isolated buildings is better to centrifugate isolators in order to limit 
the rotations of the storey (compatibly with vertical loads). Furthermore, Eq.9 and Figure 5a indicate that 
the rotational parameter uα  is bounded between zero and one ( 0 1uα≤ ≤ ), thus limiting the maximum 

rotational response 
max

uθ  that can be developed in free vibration by any eccentric system to 

max max
12 12y y

e e

u u a

D Dρ
= = . This is a fundamental result. Note also that for 1γ = , the maximum 

rotational response reaches this upper bound independently of the eccentricity e. 
 

 
(a)      (b) 

Figure 5:  (a) The uα  and (b) the dα  ( 5,  10%ξ = ) parameters as a function of e and γ . 

 



 
DAMPED FREE VIBRATIONS RESPONSE FROM A GIVEN TRASLATIONAL 

DISPLACEMENT 
 

The free vibration response histories of classically damped eccentric systems from a given initial 
displacement a along the y-direction and assuming equal viscous damping ratios for each one of the three 
modes of vibration, i.e. 1 2 3ξ ξ ξ ξ= = = , are given by: 
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where 21Di i iω ω ξ= −  ( 1, 2,3i = ) are the damped modal circular frequencies, 
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. The similar structure of the equations of motion for undamped and damped 

eccentric systems and response history simulation studies indicate that undamped and damped eccentric 
systems in free vibration follow similar behavioral patterns [8,9]. 
 
 
MAXIMUM ROTATIONAL TO MAXIMUM LONGITUDINAL DISPLACEMENT RESPONSE 

RATIO OF DAMPED ECCENTRIC SYSTEMS IN FREE VIBRATION: THE “ALPHA” 
PARAMETER IN THE DAMPED CASE 

 
For damped eccentric structures, due to the exponential decay in time of the amplitude of the various 
harmonic components of the damped free vibration response (as given in Eq.10b and Eq.10c), it is not 
possible to obtain a simple exact closed-form expression for the maximum rotational to maximum 
longitudinal displacement response ratio (here referred to as dα , where the subscript d stands for 
“damped”) as done for the undamped case. However, an upper bound analysis yields the following result 
[9]: 
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Due to the lack of an analytical expression for the dα  parameter, a number of dα  values were computed, 

for the special case of 0ye = , through extensive numerical simulations carried out over a wide range of 

system parameter values, namely 0.02 0.22e≤ ≤ , 1.05 1.80γ≤ ≤ , 2% 12%ξ≤ ≤ . As expected, the 
maximum rotational response in free vibration due to a given initial displacement diminishes with 



increasing damping ratio. Least square fit method was then used in order to obtain the following analytical 
approximated expressions for dα , also represented in Fig. 5b: 
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MAXIMUM ROTATIONAL TO MAXIMUM LONGITUDINAL DISPLACEMENT RESPONSE 

RATIO IN FORCED VIBRATION FOR LINEAR ELASTIC SYSTEMS 
 
The interesting analytical (undamped case) and numerical (damped case) results presented in the previous 

section suggest to investigate the values taken by the max

maxy

u

u
θρ ⋅  ratio under forced vibration conditions. 

With this aim, extensive numerical earthquake response simulations were performed for eccentric systems 
over a wide range of system parameters, namely 0.02 0.24e≤ ≤  (with 0ye = , i.e. xe e= ), 1.05 1.80γ≤ ≤ , 

2% 12%ξ≤ ≤ , and using a set of 100 historical ground motion records as earthquake forcing functions. 
The seismic excitation is always supposed to be applied along the y-direction. The results are synthetically 
represented (in terms of mean, mean +/- one standard deviation) in Figures 6a and 6b for two structures 
respectively characterised by 1.18γ =  and 1.41γ = . These plots show that the response ratio 
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Moreover, it is observed that the rotational parameter uα , available in closed-form from Eq.9 and function 

of only parameter F, appears to provide a good upper bound for the max
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 response ratio induced 

by earthquake excitation. 
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Figure 6: Values of max
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 as a function of the relative eccentricity e  obtained from 

earthquake response simulations based on a set of 100 historical earthquake input records: (a) 
1.18γ =  and (b) 1.41γ = . 

 
 
MAXIMUM ROTATIONAL TO MAXIMUM LONGITUDINAL DISPLACEMENT RESPONSE 

RATIO IN FORCED VIBRATION FOR NON-LINEAR SYSTEMS 
 
In extending the research to the non-linear field [10], bilinear systems were here analysed. The 
eccentricities were computed with reference to the center of mass and the center of rigidity in linear elastic 
conditions. Systems characterized by transversal eccentricity xe  only are considered. The new parameters, 

which have to be introduced in the bilinear field, are [10]: 
a

b
Ψ =  the shape factor of the building plan, where a and b are the side dimensions of the 

plan; 

max y

y

Ip
δ δ

δ
−

=  the plastic index, which indicates the level of the plastic excursion, where yδ  is 

the elastic limit displacement and maxδ  is the maximum displacement which is 
reached by the system; 

TL the “effective” longitudinal period of the bilinear system, here assumed to be 
equal to 2 sec with 5Ip = ; 



2

1

k
SHR

k
=  the strain hardening ratio, between the plastic ( 2k ) and the elastic ( 1k ) stiffness, 

here assumed to be equal to 0.1. 
To study the dynamic response of these systems, non-linear numerical simulations must be performed as 

no closed-form exact solutions for the max

maxy

u

u
θρ ⋅  ratio are available. Furthermore, in this case the free 

vibration response from given initial displacement (in the following figures referred to as “linear and then 
constant force” response) looses the reference meaning seen for the elastic case and therefore no non-

linear α can be defined. Nonetheless, the value of the ratio max

maxy

u

u
θρ ⋅  for a number of dynamic inputs has 

been computed to investigate if uα  and dα  could still provide any useful information on the rotational 
response of non-linear eccentric systems. For this reason the following base dynamic inputs have been 
considered: (a) free vibrations from given initial displacement (simulated with a first linear and then 
constant force), (b) free vibration from a given initial velocity, (c) harmonic excitation, (d) white noise 
excitation and (e) earthquake excitation (average of 11 records). Figure 7 shows the results. Note that: (a) 
the values of the ratio obtained for seismic excitation and for harmonic loading provide an upper bound 
and (b) when the plastic index Ip reaches high values, all loadings here considered produce tightly 

bounded values of the max

maxy

u

u
θρ ⋅  ratio. 

Figure 8 shows that, for the case of 1.1832γ =  (similar results were obtained for other values of γ), the 

elastic value ( 0Ip = ) of max

maxy
eqke

u

u
θρ

 
 ⋅
 
 

 is almost always larger than any plastic one. This is a very 

important result as it conservatively allows a linear modelling of bilinear isolators. Only systems 
characterized by large γ values (rare isolators mesh) and very low Ip values (little plastic excursion) make 
exception to this rule [10]. Moreover, the curves confirm that plasticity plays the role of hysteretic 
damping as they become lower and lower for increasing values of Ip (compare Figure 8 with Figure 5b). 
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Figure 7: Responses under different base inputs for a square-shape structure with 1.1547γ = . 
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Figure 8: Plastic behavior of the max

maxy
eqke

u

u
θρ

 
 ⋅
 
 

 ratio for a square-shape structure with 1.1832γ = . 

 
 

ALPHA METHOD FOR PREDICTION OF MAXIMUM ROTATIONAL RESPONSE OF 
ECCENTRIC SYSTEMS 

 

The results presented in the previous sections strongly indicate that the response ratio max

maxy

u

u
θρ ⋅  is a 

robust, low-variability response parameter, which is only weakly excitation dependent and therefore 
mainly system dependent. This fundamental property forms the basis of the here proposed simplified 

analysis procedure. The dimensionless response ratio max

maxy

u

u
θρ ⋅ , as obtained for free vibration conditions 

and named uα  and dα  for undamped and damped eccentric systems respectively, will be hereafter 



referred in general to as the α  parameter. The limited difference between α  and the corresponding value 

of the ratio max

maxy

u

u
θρ ⋅  developed under forced vibration conditions suggests the following simple 

relationship between 
max

uθ  and 
maxyu : 

 

max
max

yu
uθ α

ρ
≅ ⋅      (14) 

 

Other research works [5,6] show that the maximum longitudinal displacement response, 
maxyu , 

developed by an eccentric structure does not differ significantly from the maximum longitudinal 

displacement, 
maxy ne

u
−

, developed by the “equivalent” SDOF oscillator, defined as the structure with 

equivalent dynamic characteristics (same mass and same longitudinal period), but with no eccentricity. In 

the case of earthquake excitation, 
maxy ne

u
−

 can be readily obtained from a response spectrum. Thus, the 

approximation 
max maxy y ne

u u
−

≅ , together with Eq.14, gives the following useful formula for maximum 

rotational response prediction, which provides a powerful tool for simplified (code-like) analysis of the 
torsional response of eccentric structures: 
 

max
max

y ne
u

uθ α
ρ

−≅ ⋅      (15) 

 
 

CONCLUSIONS 
 
The analytical and numerical investigations presented in this paper provide (a) new insight into the 
understanding of dynamic lateral-torsional coupling in linear elastic one-storey 3-DOF eccentric systems, 
(b) sensitivity of coupled lateral-torsional response to structural key system parameter and (c) a new, 
physically-based, simplified analysis procedure to predict the maximum rotational response of eccentric 
systems. 
 
An important dimensionless response parameter, called the “alpha” parameter, is here identified as the 
product of the mass radius of gyration of the structure and the ratio between the maximum rotational and 
the maximum longitudinal displacement response developed by one-storey eccentric systems in free 

vibration, i.e. max

maxy
free

u

u
θα ρ

 
 = ⋅
 
 

. It is found that the α parameter depends on only two condensed system 

parameters, namely the relative eccentricity e of the system and 
L

θωγ
ω

= . Structures characterized by large 

values of α are prone to develop large rotational dynamic response, while structures characterized by 
small values of α are less prone to rotate when responding dynamically. Thus, sensitivity analysis of the α 
parameter with respect to physical structural parameters is crucial in understanding the dynamic behaviour 
of laterally-torsionally coupled systems. The sensitivity analysis performed in this paper leads to the 
following conclusions: 



1. α decreases for increasing values of the longitudinal eccentricity (in the direction of the dynamic 
forcing function). Thus, zero longitudinal eccentricity for a given transversal eccentricity gives the 
maximum rotational response. 

2. α increases as γ  tends to unity (from above as for most eccentric structures γ  is larger than one). 

3. α decreases slower with increasing value of the modal damping ratio than the maximum 
longitudinal displacement. 

4. α is bounded by one from above, thus limiting the maximum rotational response developed in free 
vibration by any eccentric system to the maximum longitudinal displacement at the center of mass 

divided by the mass radius of gyration of the structure (i.e. max
max

yu
uθ ρ

≤ ). 

A compact exact closed-form expression for the α parameter is given for the undamped case ( uα ), and 
approximate empirical analytical expressions based on a least squares fitting of numerical dynamic 
simulations data are provided for the damped case ( dα ). 
 
Furthermore, numerical results have shown that the α values obtained in free vibration are almost the 
same of those obtained in forced vibration. In fact, it is shown that the corresponding dimensionless 

parameter under forced vibration, max

maxy
forced

u

u
θρ

 
 ⋅
 
 

, is only weakly excitation dependent and therefore 

mainly system dependent. Therefore, the maximum rotational response of a given system due to any 

dynamic excitation can be predicted through a simple code-like formula, as max
max

y ne
u

uθ α
ρ

−≅ ⋅  where 

maxy ne
u

−
 is the maximum longitudinal displacement developed by the “equivalent” SDOF oscillator. The 

procedure for the prediction of the maximum rotational response of eccentric dynamic systems is here 
called “alpha method”. 
 
Furthermore, it has been shown that this approach allows a general comprehension of the torsional 
response behaviour of laterally-torsionally coupled dynamic systems both in elastic and in plastic range. It 

is found that the “elastic” value of α represents an upper bound for the max

maxy

u

u
θρ ⋅  ratio of the 

corresponding bilinear system. Estimations of maximum rotation of an elastic-plastic system obtained 
through α are therefore conservative. 
 
 

REFERENCES 
 
1. Rutenberg, A. Behavior of irregular and complex structures: State-of-the-art report - seismic 

nonlinear response of code-designed asymmetric structures. EAEE Task Group (TG) 8, CD-ROM 
Proceedings of the Eleventh European Conference on Earthquake Engineering, A.A. Balkema, 
Rotterdam, 1998. 

2. Hejal, R. & Chopra, A.K. 1987 Earthquake response of torsionally coupled buildings. Report 
UCB/EERC-87/20, Earthquake Engineering Research Center, Univesity of California, Berkeley, 
CA, Dec 1987. 

3. Naeim, F., Kelly, J. M., Design of Seismic Isolated Structures - From Theory to Practice, John 
Wiley & Sons, 1999. 



4. Goel, R.K. & Chopra, A.K. 1990. Inelastic seismic response of one-storey, asymmetric-plan 
systems: effects of stiffness and strength distribution. Earthquake Engng. Struct. Dyn., 19(3), 949-
970. 

5. Nagarajaiah, S., Reinhorn, A. M., and Constantinou, M. C. Torsional coupling in sliding isolated 
structures. Journal of the Structural Division, ASCE, 119 (1), 130-149, 1993. 

6. Nagarajaiah, S., Reinhorn, A. M., and Constantinou, M. C. Torsion in base isolated structures with 
elastomeric isolation systems. Journal of Structural Engineering, ASCE, 119(10), 2932-2951, 
1993. 

7. Kelly, J. M. Earthquake-Resistant Design with Rubber. Springer Verlag, London, 1993. 
8. Trombetti, T. Un approccio semplificato all’analisi dei problemi torsionali negli edifici isolati 

sismicamente alla base. Giornale del Genio Civile, 132, 10-12, 243-267, Oct.-Dec. 1994. 
9. Trombetti, T. L. and Conte, J. P. New insight into and simplified approach to analysis of laterally-

torsionally coupled one-storey systems: Part I. Formulation. Submitted for possible publication in 
Earthquake Engineering and Structural Dynamics, 2000. 

10. Trombetti T., Ceccoli C., Silvestri S. 2001. A Simplified Approach to the Analysis of Torsional 
Problems in Seismic Base Isolated Structures. First International Structural Engineering and 
Construction Conference (ISEC-01), Honolulu, Hawaii, January 2001. 


	Return to Main Menu
	=================
	Return to Browse
	================
	Next Page
	Previous Page
	=================
	Full Text Search
	Search Results
	Print
	=================
	Help
	Exit DVD



