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SUMMARY 
 
In this paper, a new approach is proposed for dynamic analysis of general concrete gravity dam-reservoir 
systems based on the decoupled modal technique in time domain. The method is described initially, and 
the analysis of Pine Flat Dam is considered as a verification example. The proposed approach is proved to 
be a very effective technique. The main advantage being that it relies on eigen-vectors of decoupled 
system, which can be easily obtained by standard eigen-solution routines. 
 
 

INTRODUCTION 
 

There are different approaches available for seismic analysis of concrete gravity dams by applying finite 
element method. However, the most natural technique is based on the Lagrangian-Eulerian formulation, 
which employs nodal displacements and pressure degrees of freedom for the dam and reservoir region, 
respectively. Meanwhile, it is well known that in this formulation, the induced total mass and stiffness 
matrices of the coupled system are unsymmetric due to interaction terms [1]. In direct method of analysis 
in time domain, it is possible to efficiently transform the direct integration algorithm in such a manner 
that allows one to work with symmetric matrices [1, 2]. However, in modal analysis, the symmetrization 
process requires introduction of additional variables in eigen-solution routines, which is not very efficient 
and creates complications in computer programming [3, 4]. 
In the present study, a modal analysis method is proposed which is dependent on mode shapes evaluated 
from the symmetric part of the original eigen-problem of the system. The formulation of this method is 
presented initially and the procedure is implemented in a special computer program “MAP-76” [5]. 
Subsequently, the analysis of Pine Flat Dam is considered as a numerical example. The proposed 
technique is applied for this dam and the results are compared against corresponding results related to 
direct method of analysis. Finally, the accuracy of the method is evaluated and its convergence is 
controlled. 
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METHOD OF ANALYSIS 
 
Let us consider a general concrete gravity dam-reservoir system. In this study, the dam is discretized by 
plane solid finite elements, while plane fluid elements are utilized for the reservoir region. It can be easily 
shown that in this case, the coupled equations of the system may be written as [6]: 
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M, C, K in this relation represent the mass, damping and stiffness matrices of the dam body, while G, L, 
H are assembled matrices of fluid domain. The unknown vector is composed of r, which is the vector of 
nodal relative displacements and the vector p that includes nodal pressures. Meanwhile, J is a matrix with 
each two rows equal to a 2×2 identity matrix (its columns correspond to unit rigid body motion in 
horizontal and vertical directions) and ga  denotes the vector of ground accelerations. Furthermore, B in 

the above relation is often referred to as interaction matrix. 
The relation (1) can also be written alternatively in a more compact form as: 
 

gaJMrKrCrM −=++ &&&        (2) 

 
where r  and J  are defined as follows: 
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Meanwhile, the exact forms of CM,  and K , are well apparent by matching relations (1) and (2) 
together. Obviously, these matrices can also be written as sum of the symmetric and unsymmetric parts as 
below: 
 

US MMM +=          (5a) 

SCC =           (5b) 

US KKK +=          (5c) 
 
It is noted from equation (1) that the damping matrix is totally symmetric, and the following relation also 
holds: 
 

T
UU MK −=           (6) 

 
The coupled equation (1) can be integrated and solutions can be obtained through time by direct method 
as well as modal approach. The direct integration process is usually carried out by applying Newmark’s 
algorithm. In the normal procedure, this is encountered with a non-symmetric system of equations to be 
solved at each time step that is not going to be efficient. However, this could be avoided by a Pseudo-
Symmetric technique, which is discussed elsewhere utterly [2]. In modal approach, which is the basis of 



the present study, the method relies on obtaining the natural frequencies and mode shapes of the system. 
Thereafter, the solution can be estimated based on the combination of these modes at different time steps. 
 
Decoupled Modal Technique 
The eigenvalue problem corresponding to relation (2) can be written as follows: 
 

jjj XMXK λ=          (7) 

 
Physically, it is clear that the eigenvalues of the this system are real and free vibration modes exist. 
However, it is noted from the form of matrices MK,  (relation (5)) that the system is not symmetric and 
standard eigenvalue computation methods are not directly applicable. Although, there are techniques 
available to arrive at a symmetric form and reduce the problem to a standard eigenvalue one, it is 
computationaly costly and additional variables are required to be introduced. Therefore, this path is not 
pursued in the present study. As a substitute, it was preferred to work with the eigenvalues and vectors 
extracted from the following eigen-problem: 
 

jSjjS XMXK λ=          (8) 

 
Where SS , MK  are the symmetric parts of the MK,  matrices, as mentioned previously (relation (5)). 
Of course, the eigenvectors obtained through the above relation, are not the true mode shapes of the 
coupled system. However, these can be presumed as Ritz’ vectors which can be similarly combined to 
estimate the true solution. The solution of this substitute eigen-problem are easily obtained by standard 
methods, since the involving matrices are symmetric and positive definite. Having the orthogonality 
condition and normalizing the modal matrix with respect to mass matrix, one would have: 
 

IXMX =S
T           (9a) 

Λ=XKX S
T          (9b) 

 
Where I  is the identity matrix and Λ  is a diagonal matrix containing the eigenvalues of the symmetric 
substitute system.  The following relations are also derived easily based on relations (5), (6) and (9): 
 

XMXIXMX U
TT +=         (10a) 

XMXXKX T
U

TT −= Λ         (10b) 
 
As usual in modal techniques, the solution is written as a combination of different modes: 
 

YXr =           (11) 
 
 The vector Y  contains the participation factors of the modes. Substituting this relation into (2) and 

multiplying both sides of that equation by TX , it yields: 
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In this relation, additional matrix definitions are utilized as below: 
 

XCXC T=∗           (13a) 
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Or alternatively, the following relation is obtained by employing (10): 
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Applying the Newmark’s technique for integration of this equation, would yield the following equation at 
each new time step: 
 

1n1n
ˆˆ
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K̂ and 1n
ˆ

+F are denoted as the generalized effective stiffness matrix and the generalized effective force 
vector of the system at time step n+1, respectively. They are defined as below: 
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In general, the vector of participation factors can be solved through relation (15). Thereafter, the unknown 
vector is obtained by equation (11) as usual in the modal procedure. It must be also mentioned that the 
generalized effective stiffness matrix employed in relation (15) is inherently unsymmetric. However, it 
may be easily transformed to a symmetric matrix by multiplying certain rows of the matrix relation (15) 
by an appropriate factor. This is discussed elsewhere in detail [7]. 
 
 

NUMERICAL EXAMPLE 
 
In this section, the analysis of Pine Flat Dam is considered as a verification example. The dam is 121.92 
m high, with the crest length of 560.83 m and it is located on the King’s River near Fresno, California. 
A special computer program “MAP-76” [5] is used as the basis of this study. The program was already 
capable of analyzing a general dam-reservoir system by direct approach in the time domain [2]. In this 
study, the modal analysis option is also included in the program based on the formulation presented in the 
previous section. 
 
Modeling and Basic Data 
The Pine Flat dam-reservoir system is considered over a rigid foundation. The two-dimensional finite 
element model is displayed in Figure 1. The dam section relates to the tallest monolith (121.92 m), and it 
is assumed in a state of plane stress. The water level is considered at the height of 116.19 m above the 
base, similar to the previous study [2]. Meanwhile, a length of 200 m is included in the model for the 
reservoir domain. 
The dam body is discretized with 8-node plane solid elements, while 8-node fluid elements are used for 
the reservoir region. The model consists of a total of 439 nodes and 568 degrees of freedom and it 
includes 40, 90 plane solid and fluid elements, respectively. 
 



 
Figure 1. Dam-reservoir system discretization 

 
 
Basic Parameters 
The concrete is assumed to be homogeneous and isotropic with the following basic properties: 
 
• Elastic modulus  Ec = 22.75 GPa 
• Poisson’s ratio   νc = 0.20 
• Unit weight         γc = 24.8 kN/m3 

 
The water is taken as compressible, inviscid fluid, with weight density of 9.81 kN/m3 and pressure wave 
velocity of 1440.0 m/s. Meanwhile, the sommerfeld boundary condition is imposed at the upstream 
boundary of the impounded water domain, and the reservoir bottom condition is assumed completely 
reflective. 
The main analysis carried out, is based on modal analysis, and viscous damping is assumed for this case. 
The viscous damping coefficients are considered constant for all the modes ( 05.0βd = ). However, a 

second case is also analyzed based on the direct approach, where the Rayleigh damping matrix is applied 
and the corresponding coefficients are determined such that equivalent damping for frequencies close to 
the first and third modes of vibration would be 5% of critical damping. 
 
Loading 
It should be mentioned that static loads (weight, hydrostatic pressures) are each visualized as being 
applied in one separate increment of time. Therefore, the same time step of 0.01 second, which is chosen 
in dynamic analysis, is also considered as time increment of static loads application. It is noted that time 
for static analysis is just a convenient tool for applying the load sequentially, but it is obvious that inertia 
and damping effects are disregarded in the process. In this respect, the dead load is applied in one 
increment and hydrostatic pressures thereafter in another increment at negative range of time. At time 
zero, the actual dynamic analysis begins with the static displacements and stresses being applied as initial 
conditions.  
The dynamic excitation considered, is the S69E component of Taft earthquake records, which is applied 
in the horizontal x-direction. The time duration utilized, is 13 seconds in each case. 
 



Analysis Results 
As mentioned, the main analysis is performed by modal approach. As a first step of this case, the eigen-
problem is solved based on the symmetric parts of the total mass and stiffness matrices. This is actually a 
decoupled system, and the natural frequencies obtained correspond to either the dam or the reservoir 
(finite region considered). The first five natural frequencies of each domain are listed in Table 1. 
 

Table 1: Natural frequencies of the dam and reservoir. 
 

Natural frequencies if (Hz)  
Mode number (i) Dam Reservoir  

1 3.146408 3.115126 
2 6.475173 4.749112 
3 8.738600 7.795491 
4 11.248678 9.300412 
5 16.989656 9.958278 

 
It is noticed that the first natural frequency of the reservoir is actually slightly lower than the one 
corresponding to the dam. Meanwhile, the natural frequencies of the dam are wider spread in comparison 
to the ones related to the reservoir domain. This means that a much higher number of modes are required 
for the reservoir in comparison with the dam for an accurate solution. 
The first mode shape of the dam is displayed in Fig. 2. Meanwhile, the first two mode shapes of the 
reservoir region are depicted in Fig. 3. It is noticed that the first mode of the fluid domain corresponds to 
a nearly symmetric case which pressures are approximately constant in the horizontal direction, while the 
second mode is very close to a perfect anti-symmetric case. 
In the next step, the modal analysis is carried out by utilizing 25, 75 modes for the dam and the reservoir 
domain, respectively. 

 
 

Figure 2. The first mode shape of the dam  
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(b) 

 
Figure 3. The first two modes of the reservoir; (a) Mode 1,  (b) Mode 2 



For comparison purposes, the same model is also analyzed based on the direct approach. All the basic 
data in this case, are similar to the original case, except for the type of damping. That is Rayleigh 
damping in comparison with viscous damping. Although, this could cause slight differences in result, it 
should not be very significant. Neglecting this minor source of difference, it is well known that the direct 
method results can be considered as exact for the discretization employed, since it is actually equivalent 
to considering all of the modes of both discrete domains.  
Both cases are analyzed, and the result corresponding to envelope of maximum tensile stress is illustrated 
in Figure 4. It is observed that the distribution is very similar for the modal and direct approaches. 
However, it is noticed that maximum value of tensile stress, is about 7.9 percent lower for the modal 
approach in comparison to the direct method. 
For a better evaluation of the results, time histories of some important quantities are depicted in Figures 5 
and 6. These are the horizontal component of displacement at dam crest and the maximum tensile 
principal stress at dam heel. In each graph, the result corresponding to direct method is also shown for 
comparison purposes.  
It is noticed that trends of all quantities monitored, are very similar for the modal and direct approaches. 
However, the modal technique predicts slightly lower maximum values. 
Finally, to evaluate the modal technique more closely, it was decided to double the number of modes 
utilized over the original case. The envelope of maximum tensile stress for this case is shown in Figure 7. 
This Figures could be compared with corresponding result of direct method (Figures 4b). 
It is noticed that distribution becomes almost precisely the same. Meanwhile, the absolute maximum 
tensile stress is now merely 2.2 percent lower than the direct approach result. Although, this degree of 
accuracy is seldom required for practical cases, this illustrates vividly the convergence of the proposed 
technique. 
 

CONCLUSIONS 
 
In this paper, a new technique is proposed for earthquake analysis of concrete gravity dams, which is 
referred to as decoupled modal approach. The method is explained initially, and the procedure is 
implemented in a special computer program “MAP-76”. Meanwhile, the analysis of Pine Flat Dam is 
considered as a numerical example and for verification purposes. The original case analyzed, is based on 
the proposed technique, and it is carried out by utilizing 25, 75 modes for the dam and the reservoir 
domain, respectively. Meanwhile, the direct method of analysis is used for comparison purposes. Overall, 
the main conclusions obtained can be listed as follows: 

• The results obtained based on the decoupled modal approach, compare very well with the 
corresponding results of direct method. More specifically, by comparing the envelope of maximum 
tensile stresses, it is shown that its distribution is very similar for both approaches. Meanwhile, the 
maximum value of tensile stress is only about 7.9 percent lower for the modal approach in 
comparison to the direct method. Furthermore, trends of all quantities monitored, are very similar 
and in good agreement for both methods throughout the execution time. 

• By doubling the number of modes utilized over the original case, the convergence of the technique is 
also controlled. For this case, it is noticed that absolute maximum tensile stress is merely 2.2 percent 
lower than the corresponding direct method result. 

• The proposed decoupled modal approach is proved to be an effective technique for seismic analysis 
of concrete gravity dams. The main advantage of this modal technique is that it employs eigen-
vectors of the decoupled system, which can be easily obtained by standard eigen-solution routines. 
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Figure 4. Envelopes of maximum tensile principal stresses (MPa); (a) Modal,  (b) Direct 



 
Figure 5. Comparison of displacement history at dam crest between the two approaches. 

 
Figure 6. Comparison of maximum tensile stress history at dam heel between the two approaches. 



 
 

Figure 7. Envelope of maximum tensile principal stresses (MPa) when the number of modes utilized are 
doubled over the original case. 
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