
 

13th World Conference on Earthquake Engineering 
Vancouver, B.C., Canada 

August 1-6, 2004 
Paper No. 473 

 
 

OPTIMAL INSERTION OF VISCOUS DAMPERS INTO SHEAR-TYPE 
STRUCTURES: DISSIPATIVE PROPERTIES OF THE MPD SYSTEM 

 
 

Stefano SILVESTRI1 and Tomaso TROMBETTI2 
 
 

SUMMARY 
 
This paper illustrates the superior dissipative properties offered by inserting viscous dampers into shear-
type structures in accordance with a special scheme (referred to as MPD system) based upon the mass 
proportional damping component of Rayleigh viscous damping matrices. This scheme is characterized by 
a innovative damper arrangement that sees dampers (a) placed so that they connect each storey to a fixed 
point and (b) sized proportionally to each storey mass. 
In the first part of the paper, the physical basis which leads to the peculiar dissipative properties of MPD 
system are recalled. 
In the second part of the paper, the dynamic responses (to a stochastic input) of shear-type structures 
equipped with MPD system are compared with those offered by other damping systems identified as 
optimal using numerical methods. Different sets of optimal damping systems are identified for the 
following three cases: (a) dampers connect adjacent storeys, (b) dampers connect each storey to a fixed 
point and (c) no constraint upon the damper placement is imposed. All systems considered in the 
comparison satisfy a mathematical constraint which imposes that the sum of the damping coefficients of 
all added viscous dampers is the same (equal “total cost” constraint). 
The results indicate that, among all systems considered, the MPD system is capable of providing the best 
overall dissipative properties. This suggests a new and efficient way of inserting viscous dampers in 
structures to be built in seismic areas, which is alternative to the common (and less efficient) interstorey 
damper placement. 
 

INTRODUCTION 
 
In recent years various innovative technologies for protecting civil engineering structures from 
earthquakes have been developed and implemented [1,2]. Among these technologies, the use of added 
viscous dampers has proven to be quite effective in reducing the effects of seismic excitation upon 
building structures [1,2] and several research works have investigated the “optimal” way of inserting 
viscous dampers into shear-type structures [3,4,5,6,7]. 
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PROBLEM FORMULATION 

 
In order to identify the system of added viscous dampers which optimizes the dissipative properties of a 
given shear-type structure and make meaningful comparisons, it is necessary to (address the following key 
issues): (a) introduce a constraint upon the total size (cost) of the system of added viscous dampers, and 
(b) select synthetic indexes capable of capturing the overall dissipative capacities of the different systems 
of added viscous dampers and their effectiveness when applied to given structures. 
As far as the constraint upon the total size of the viscous dampers is concerned, it is here imposed that the 
sum, totc , of the damping coefficients, jc , of all M dampers introduced into the structure, be equal to a set 

value, c , as also adopted in other research works [4,5,6,7]. The above constraint (in the following 
referred to as equal “total cost” constraint) mathematically translates in the following formula: 

1

M

tot j
j

c c c
=

= =∑       (1) 

As far as the identification of indexes capable of capturing the dissipative effectiveness of various 
damping systems are concerned, indexes based upon the response of the dynamic systems to given 
stochastic inputs have proven to be effective and versatile [5,6,7,8,9]. In the analyses here presented, 
internal damping is neglected and linear modeling for the force-velocity relationship of each damper is 
adopted: 

dF c v= ⋅       (2) 

where dF  is the force provided by the damper, c is its damping coefficient and v is the relative velocity 
between the two damper ends. 
 

PROBLEM SOLUTION STRATEGIES FOR THE IDENTIFICATION OF OPTIMAL 
DAMPING SYSTEMS 

 
In 1997 [4], Takewaki proposed a systematic algorithm based upon an inverse problem approach to 
identify the damping coefficients of added viscous dampers which minimize the sum of amplitudes of the 
transfer functions of interstorey drifts evaluated at the undamped fundamental natural frequency. In 2000 
[5], the same author applied a steepest descent method to find the optimal damper arrangement in 
structures subjected to the critical excitation. 
In 2001 [6] and 2002 [7], Singh & Moreschi used the Rosen’s gradient projection method and genetic 
algorithms to identify the damping coefficients of added viscous dampers which minimize a number of 
performance functions based on the system response to a design earthquake ground motion defined by a 
Kanai-Tajimi spectral density function. 
All the above analyses were carried out for a restricted class of structural systems characterized by 
dampers placed between adjacent storeys (which leads to a banded damping matrix). 
Since 2001 [8,9,10,11,12,13,14,15,16], the authors have been studying the problem of optimal damper 
arrangement in an innovative, physically-based manner which led to the identification of a system of 
added viscous dampers (the “MPD system”) which has proven to provide very good overall dissipative 
performances. 
 

THE MPD SYSTEM 
 
For Rayleigh damped multi-degree-of-freedom systems [17], the damping matrix [ ]C  becomes: 

[ ] [ ] [ ]R
C M Kα β= +       (3) 



where [ ]M  and [ ]K  are, respectively, the mass matrix and the stiffness matrix and α and β are two 

proportionality constants having units of sec-1 and sec, respectively. Eq. (3) allows to define the two 
following damping matrices: 

• mass proportional damping (MPD) matrix: 

[ ] [ ]MPD
C Mα=       (4) 

• stiffness proportional damping (SPD) matrix: 

[ ] [ ]SPD
C Kβ=        (5) 

which correspond, respectively, to the MPD and SPD limiting cases of Rayleigh damping. 
For the sake of clarity, the added-damper system that allows an MPD matrix to be obtained is defined 
herein as “MPD system” and, likewise, that which allows an SPD matrix to be obtained is referred to as 
“SPD system”. 
 

PHYSICAL DISSIPATIVE PROPERTIES OF THE MPD AND SPD SYSTEMS 
 
In previous research works carried out by the authors [10], it is proven that, for the class of shear-type 
structures characterized by constant values of storey lateral stiffness ( jk k= , j∀ ) and floor mass 

( jm m= , j∀ ) and under the equal “total cost” constraint, the first modal damping ratio of the MPD 

system, 1
MPDξ , is always larger than the first modal damping ratio of the SPD system, 1

SPDξ , and other 

Rayleigh damping systems, 1
Rξ . The analytical demonstration [10] is based upon the modal damping 

ratios and the properties of the eigenproblem governing the modal responses of the above-defined class of 
shear-type structures, and, moreover, identifies also an upper bound and an approximation for the ratio 

1 1
SPD MPDξ ξ , as follows: 

1 1

1SPD MPD

N
ξ ξ <       (6) 

1 1 2

2SPD MPD

N N
ξ ξ ≅

+
      (7) 

where N is the total number of storeys of the structure. 
Given that, in most cases, the first mode of vibration controls the dynamic response of shear-type 
structures subjected to base excitations, these physically-based results clearly indicate that the MPD 
system provides an overall damping efficiency which is higher than those provided by the SPD system and 
other Rayleigh damping systems. 
Numerical verifications [8,9,11,12,13,14,15,16] have been then carried out upon a wide range of shear-
type structures with reference to both stochastic and seismic inputs, and have confirmed the higher 
dissipative efficiency of the MPD system with respect to that of the SPD system. 
In the following, the dynamic responses (to a stochastic input) of shear-type structures equipped with 
MPD system are compared with those offered by other damping systems identified as optimal using 
numerical methods. 
 

DAMPER PLACEMENT VS. DAMPER SIZING 
 
The introduction of a system of added viscous dampers in a shear-type structure involves the identification 
of (a) the damper placement (where should dampers be placed) and (b) the damper sizing (which size, in 
terms of jc , should they have). 

Whilst remaining in fairly general terms, let us consider the specific case of a 3-storey shear-type 
structure, as represented in Fig. 1a. Fig. 1b shows the structure in question equipped with a system of 



added viscous dampers that lead to a Rayleigh damping matrix. Figures 1c and 1d provide physical 
representation (physical counterpart) of the structure in question with the MPD and SPD systems of added 
viscous dampers, respectively. 
These representations allow to formulate the following alternative definitions, in terms of damper 
placement and sizing, for the MPD and SPD systems: 

• MPD system: dampers are placed in such a way as to connect each storey to a fixed point (fixed 
point placement: FP-placement) and sized so that each damping coefficient jc  is proportional to 

the corresponding storey mass jm  (mass proportional sizing: MP-sizing); 

• SPD system: dampers are placed in such a way as to connect two adjacent storeys (interstorey 
placement: IS placement) and sized so that each damping coefficient jc  is proportional to the 

lateral stiffness jk  of the vertical elements connecting these two storeys (stiffness proportional 

sizing: SP-sizing). 
As previously mentioned, in the research works of Takewaki [4,5] and Singh & Moreschi [6,7], the search 
for the “optimal” damping system was carried out for systems characterised by an interstorey damper 
placement (as per the SPD system), and therefore the results presented in their works identify the 
“optimal” sizing for this particular placement. 
Given the above considerations, the analyses presented in the following compare the dissipative 
performances of the MPD systems with those of offered by: 

• systems characterized by an interstorey (IS) placement and “optimal” sizing; 
• systems characterized by a fixed point (FP) placement and “optimal” sizing; 
• systems characterized by a “free” (FREE) placement and “optimal” sizing. 

With FREE-placement it is meant any type of damper placement (i.e. dampers may connect adjacent 
storeys, non adjacent storeys and storeys to a fixed point). 
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Fig. 1. 3-storey shear-type structure: (a) undamped, (b) equipped with Rayleigh damping system, 
(c) equipped with MPD system and (d) equipped with SPD system. 

 
 

THE TWO “REFERENCE” STRUCTURES 
 
The analyses here presented are developed with reference to two shear type structures. 
The first one is a 5-storey r.c. building structure with a rectangular layout of 30 18m m×  and an interstorey 
height of 3.3h m= . The structure consists of four frames arranged lengthways along the building plan 
( 30m ).In the analyses carried out herein, infinitely stiff beams (with respect to vertical columns) are 
assumed so that use of the two-dimensional shear-type schematisation of Fig. 2 is permitted [16]. The five 
stiffness values, the five storey mass values and the five resultant periods of vibration are set out hereafter: 



9
1

9
2

9
3

9
4

9
5

1.2174 10  N/m

0.7987 10  N/m

0.4986 10  N/m

0.2923 10  N/m

0.1578 10  N/m

k

k

k

k

k

= ⋅

= ⋅

= ⋅

= ⋅

= ⋅

  

5
1

5
2

5
3

5
4

5
5

5.4 10  kg

5.4 10  kg

5.4 10  kg

5.4 10  kg

2.7 10  kg

m

m

m

m

m

= ⋅

= ⋅

= ⋅

= ⋅

= ⋅

  

1

2

3

4

5

0.578 sec

0.252 sec

0.180 sec

0.131 sec

0.091 sec

T

T

T

T

T

=
=
=
=
=

 

The second structure is a 6-storey building model characterized by values of mass and lateral stiffness 
which do not vary along the building height (see Fig. 3). The lateral stiffness kj of the vertical elements 
connecting each j-th storey to the one below is equal to k = 74 10⋅  N/m and the floor mass mj of each j-th 
storey is equal to m = 50.8 10⋅  kg, with the first undamped circular frequency ω1 = 5.39 Hz (first period: 

1 1.17 secT = ). Interstorey height is h = 3 m and total height is htot = 18m. This structure has been selected 
for the sake of comparison with other research results regarding the optimal placement of added viscous 
dampers that are available in literature [4]. 
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Fig. 2. Plan and shear-type schematization of the 5-storey r.c. building structure. 
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Fig. 3. The 6-storey structure. 

 
 



THE STOCHASTIC RESPONSE INDEX I 
 
In previous research works [4,5,8,9], it has been seen that performance indexes based upon the system 
response to a stochastic input are capable of capturing the overall dissipative performances of damping 
systems. In the results here presented, use is made of the average (over all storeys) of the standard 
deviations of the interstorey drift angles (index I) of the system response to the following white-noise 
stochastic input: 

• band-limited between 0 and 60 secradω = , stationary, Gaussian with zero mean, and 

• with constant power spectral density of amplitude 2 2 30.144 secA m=  
(these values have been chosen so that standard deviation of acceleration at the base of the structure 
supplied by this stochastic process is equal to 0.3g, being g the gravity acceleration). 
The mean square response [18] (that coincides with variance for stochastic inputs with zero mean value), 

2
 ID jσ , of the j-th interstorey drift of a structure subjected to the white-noise base input of above is 

calculated as: 

( ) 22 2
  

0

ID j ID jA H d
ω

σ ω ω= ∫      (8) 

where ( ) ID jH ω  is the j-th component (j corresponding to the coordinate of the j-th storey) of the transfer 

function vector, ( ){ }IDH ω , of the interstorey drifts, defined as: 

( ){ } [ ] ( ){ }IDH T Hω ω=      (9) 

with [ ]T  being a N N×  constant matrix consisting of 1,-1, and 0 of this kind: 

[ ]

1 0 ... 0

1 1 0 ...

0 1 1 0

... ...

... 0

0 ... 0 1 1

T

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥−

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

−⎢ ⎥⎣ ⎦

      (10) 

and 

( ){ } [ ] [ ] [ ]( ) [ ]{ }12 1H M i C K Mω ω ω
−

= − − + +     (11) 

where ω represents the natural circular frequency, 1i = −  and { }1  is a vector whose elements are all 

unity for shear-type structures. According to the usual notation of probabilistic theory,  ID jσ  denotes the 

standard deviation of the j-th interstorey drift. 
Eq. (8) allows the definition of an index I, equal to the “average of the standard deviations of the 
interstorey drift angles”, as: 

( ) 2

  
1 1 0

1 1 1 1N N

ID j ID j
j j

I A H d
h N h N

ω

σ ω ω
= =

= =∑ ∑ ∫     (12) 

where h is the interstorey height and N is the total number of storeys of the structure. For a given dynamic 
system (structure + dampers), a small value of index I means a small dynamic response to stochastic input. 
When comparing the given structure equipped with different types of damper systems, a small value of 
index I means a high dissipative effectiveness of the damper system. 
 
 



THE SYSTEMS OF ADDED VISCOUS DAMPERS 
 
To obtain the “optimal” damper sizing for the IS-, FP- and FREE-placements, a search has been carried 
out for the damper sizing (damping coefficients of dampers) which minimize response index I for the two 
reference structures. For this search, use is made of genetic algorithms (GA) [7]. The basic characteristics 
of the GA here adopted can be summarized as follows:  

• population: 30 individuals; 
• mutation choice: 18%; 
• elitism choice: 18%; 
• number of iteration: 150. 

The “genetically identified optimal” (GIO) systems which minimise index I in the cases of IS-, FP- and 
FREE-placements are herein referred to as GIOIS, GIOFP and GIOFREE systems, respectively. 
For the 5-storey structure, the equal “total cost” constraint is imposed with c  equal to 

72.729 10  N sec/m⋅ ⋅ , so that the first modal damping ratio of the structure equipped with the SPD system 
is equal to 1 0.05SPDξ = . With reference to Fig. 4, the values of the damping coefficients of the GIOIS, 
GIOFP and GIOFREE systems are given in Table 1. Notice that the GIOFREE system presents no 
interstorey dampers. For comparison purposes, Table 1 also gives the values of the damping coefficients 
of the MPD and SPD systems. 
For the 6-storey structure, the equal “total cost” constraint is imposed with c  equal to 69 10  N sec/m⋅ ⋅ , 
(for sake of comparison with results available in literature [4]). With reference to Fig. 5, the values of the 
damping coefficients of the GIOIS, GIOFP and GIOFREE systems are given in Table 2. Notice that the 
GIOFP and the GIOFREE systems coincide. In addition to the three “genetically identified optimal” 
systems, the damping scheme identified in the recent works by Izuru Takewaki [4] as “optimal” (for the 6-
storey structure here considered) is also taken into account and will be referred hereafter to as TAK 
system. The specific values of the damping coefficients of the TAK system minimise the sum of 
amplitudes of the transfer functions of interstorey drifts evaluated at the undamped fundamental natural 
frequency 1ω : 

( )
6

 1
1

ID j
j

H
=
∑ ω       (13) 

within the restricted class of dampers placed between adjacent storeys (IS placement) and satisfy the 
“equal total cost” constraint. This system was identified by Takewaki using an algorithm based upon an 
inverse problem approach, proposed by the same author [4]. For comparison purposes, Table 2 also gives 
the specific values of the damping coefficients of the MPD, SPD and TAK systems. Notice that the TAK 
system is very similar to the GIOIS system which minimises performance index I within the same class of 
IS placement. 
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Fig. 4. All possible damper placements for the 5-storey shear-type structure. 

 



Table 1. Damping coefficients [ 610  N sec/m× ⋅  ] and index I [ 310−× ] of the SPD, MPD, GIOIS, 
GIOFP and GIOFREE systems for the 5-storey structure. 

 

 SPD MPD GIOIS GIOFP GIOFREE  
c1 11.206 6.064 0 0 0 c1 
c2 7.352 0 0 0 0 c2 
c3 4.589 0 10.916 0 0 c3 
c4 2.691 0 12.281 0 0 c4 
c5 1.452 0 4.093 0 0 c5 
c6 0 0 0 0 0 c6 
c7 0 0 0 0 0 c7 
c8 0 0 0 0 0 c8 
c9 0 0 0 0 2.823 c9 

c10 0 0 0 0 1.882 c10 
c11 0 0 0 0 0 c11 
c12 0 6.064 0 5.248 1.882 c12 
c13 0 6.064 0 8.397 9.410 c13 
c14 0 6.064 0 9.447 8.469 c14 
c15 0 3.032 0 4.198 2.823 c15 
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Fig. 5. All possible damper placements for the 6-storey shear-type structure. 

 
Table 2. Damping coefficients [ 610  N sec/m× ⋅  ] and index I [ 310−× ] of the SPD, MPD, GIOIS, 

GIOFP, GIOFREE and TAK systems for the 6-storey structure. 
 

 SPD MPD GIOIS GIOFP GIOFREE TAK  
c1 1.50 1.50 3.91 1.02 1.02 4.80 c1 
c2 1.50 0 3.13 0 0 4.20 c2 
c3 1.50 0 1.96 0 0 0 c3 
c4 1.50 0 0 0 0 0 c4 
c5 1.50 0 0 0 0 0 c5 
c6 1.50 0 0 0 0 0 c6 
c7 0 0 0 0 0 0 c7 
c8 0 0 0 0 0 0 c8 
c9 0 0 0 0 0 0 c9 

c10 0 0 0 0 0 0 c10 
c11 0 0 0 0 0 0 c11 
c12 0 0 0 0 0 0 c12 
c13 0 0 0 0 0 0 c13 
c14 0 0 0 0 0 0 c14 
c15 0 0 0 0 0 0 c15 



c16 0 0 0 0 0 0 c16 
c17 0 1.50 0 1.53 1.53 0 c17 
c18 0 1.50 0 1.70 1.70 0 c18 
c19 0 1.50 0 1.70 1.70 0 c19 
c20 0 1.50 0 1.53 1.53 0 c20 
c21 0 1.50 0 1.53 1.53 0 c21 

 
 

THE SYSTEMS RESPONSE TO STOCHASTIC INPUT 
 
The standard deviation, jσ , of each (j-th) storey displacement of a structure subjected to the white-noise 

acceleration input above-described, can be computed as: 

( ) 2

0

j jA H d
ω

σ ω ω= ∫       (14) 

where ( )jH ω  is the j-th component of the system transfer function vector, ( ){ }H ω . 

Figures 6 and 7 show jσ  at all storeys for the 5-storey and the 6-storey structures under the different 

damping configurations, respectively. It can be seen how an IS-placement leads to storey responses which 
are much larger (up to 3 times at the top-storey) than those offered by FP- and FREE-placements. 
Moreover, the MPD system leads to storey responses which are very close to those of the GIOFP and 
GIOFREE systems. The importance of damper placement with respect to damper sizing comes out from 
these results. 
Furthermore, Table 3 and Table 4 provide the values of index I and of other meaningful stochastic 
performance indexes, for the two reference structures equipped with the damping systems above 
described. 
For both reference structures, it can be seen that the MPD and the GIOFP systems (characterised by FP-
placement) provide values of index I which are very close to the minimum ones (provided by the 
GIOFREE system), while the SPD and the GIOIS systems (characterised by IS-placement) provide values 
of index I which are much higher than the others. For the 6-storey structure, the TAK system provides a 
value of index I which is very similar to the one of the GIOIS system. 
As far as other stochastic indexes are concerned, this trend is confirmed: FP placement (i.e. MPD and 
GIOFP systems) always provides smaller values of such indexes than IS placement (i.e. SPD and GIOIS 
systems). Moreover, notice that, for the 6-storey structure, the MPD system provides the smallest value of 
the standard deviation of the base shear, even better than the GIOFREE system (which is numerically 
identified as optimal with reference to interstorey drift angles and not to base shear). This result attests the 
“robustness” of the MPD system with respect to any changes in the choice of the meaningful performance 
index. Actually, a specific performance index let us identify the damping system which optimizes that 
specific index only, without giving any guarantee of good global behavior either in terms of different types 
of input or in terms of different types of response parameters. For this reason, it becomes fundamental the 
identification of damping systems characterized by good dissipative performances which are linked and 
referable to physical properties (such as the MPD system) and not obtained from numerical investigations 
only. 
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Fig. 6. jσ  for the 5-storey structure equipped with the five damping systems considered. 
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Fig. 7. jσ  for the 6-storey structure equipped with the six damping systems considered. 

 
 



Table 3. Values of several stochastic performances indexes offered by the SPD, MPD, GIOIS, 
GIOFP and GIOFREE systems for the 5-storey structure. 

 SPD MPD GIOIS GIOFP GIOFREE 
average of the standard deviations of 

the interstorey drift angles 
(index I) 

[ 310−× ] 

3.88 1.33 2.88 1.18 1.16 

sum of amplitudes of the transfer 
functions of interstorey drifts 

evaluated at the undamped 
fundamental natural frequency 1ω  

(index used by Takewaki [4]) 
[sec2] 

5.67 
× 10-5 

0.97 
× 10-5  

3.81 
× 10-5 

0.93 
× 10-5 

1.05 
× 10-5 

standard deviation of the top-storey 
displacement 

[mm] 
62 18 45 15 15 

standard deviation of the base shear 
[kN] 

9164 3785 7513 3718 3953 

 
Table 4. Values of several stochastic performances indexes offered by the SPD, MPD, GIOIS, 

GIOFP, GIOFREE and TAK systems for the 6-storey structure. 
 SPD MPD GIOIS GIOFP GIOFREE TAK 

average of the standard deviations 
of the interstorey drift angles 

(index I) 

[ 310−× ] 

5.92 1.46 4.92 1.45 1.45 5.13 

sum of amplitudes of the transfer 
functions of interstorey drifts 

evaluated at the undamped 
fundamental natural frequency 1ω  

(index used by Takewaki [4]) 
[sec2] 

0.2139 0.0130 0.1369 0.0124 0.0124 0.1351 

standard deviation of the top-storey 
displacement 

[mm] 
106 25 85 24 24 86 

standard deviation of the base 
shear 
[kN] 

1047 314 802 317 317 785 

 
 

CONCLUSIONS 
 
In this paper, the problem of optimal damper insertion in shear-type structures for maximum efficiency in 
mitigation of the seismic effects has been faced in a innovative and across-the-board manner using a 
physically based approach. 
First, the physically-identified optimal dissipative properties of the mass proportional damping (MPD) 
system are recalled. 
Second, the dissipative performances offered by the MPD system (as applied to two reference shear-type 
structures) are compared with those offered by numerically identified optimal systems. 
Genetic algorithms are here used to identify damping systems characterized by an interstorey (IS) damper 
placement and “optimal” damper sizing, systems characterized by a fixed point (FP) damper placement 



and “optimal” damper sizing, and systems characterized by a “free” (FREE) damper placement and 
“optimal” damper sizing. 
The results indicate that the MPD system and systems characterised by fixed point (FP) placement provide 
the largest dissipative effectiveness. 
 

REFERENCES 
 
1. Hart, G.C. and Wong, K., Structural Dynamics for Structural Engineers, John Wiley & Sons, New 

York, 2000. 
2. http://nisee.berkeley.edu/prosys/applications.html 
3. Contantinou, M.C. and Tadjbakhsh, I.G., Optimum design of a first story damping system, 

Computers & Structures, 1983, Vol. 17, No. 2, 305-310. 
4. Takewaki, I., Optimal damper placement for minimum transfer functions, Earthquake Engineering 

and Structural Dynamics, John Wiley & Sons, 1997, vol. 26, 1113-1124. 
5. Takewaki, I., Optimal damper placement for critical excitation, Probabilistic Engineering 

Mechanics, 2000, vol. 15, 317-325. 
6. Singh, M.P. and Moreschi, L.M., Optimal seismic response control with dampers, Earthquake 

Engineering and Structural Dynamics, 2001, Vol. 30, 553-572. 
7. Singh, M.P. and Moreschi, L.M., Optimal placement of dampers for passive response control, 

Earthquake Engineering and Structural Dynamics, 2002, Vol. 31, 955-976. 
8. Silvestri S., Trombetti T. and Ceccoli C., “Inserting the Mass Proportional Damping (MPD) system 

in a concrete shear-type structure”, Structural Engineering and Mechanics, 2003, Vol. 16, No. 2, pp 
177-193. 

9. Trombetti, T. and Silvestri, S., “Added viscous dampers in shear-type structures: the effectiveness 
of mass proportional damping”, Journal of Earthquake Engineering, 2004, Vol. 8, No. 2, pp 275-
313. 

10. Trombetti, T., Silvestri, S. and Ceccoli, C., “On the first modal damping ratios of MPD and SPD 
systems”, Technical Report: Nota Tecnica n° 64, 2002, Department DISTART, University of 
Bologna, Italy. 

11. Silvestri, S., Trombetti, T. and Ceccoli C., “An innovative damping scheme for shear-type 
structures: the MPD system”, Proceedings of The 2nd Speciality Conference on The Conceptual 
Approach to Structural Design (CDS-03), 2003, Milano Bicocca, Italy, 1-2 July 2003. 

12. Silvestri, S., Trombetti, T., Ceccoli C. and Greco G., “Seismic Effectiveness of Direct and Indirect 
Implementation of MPD Systems”, System-based vision for strategic project and development. 
Proceedings of the 2nd International Structural Engineering and Construction Conference, ISEC-
02, 2003, Roma, Italy, 23-26 September 2003. 

13. Trombetti, T., Silvestri, S., Ceccoli, C. and Greco, G., “Effects of Taking into Consideration 
Realistic Force-Velocity Relationship of Viscous Dampers in the Optimisation of Damper Systems 
in Shear-Type Structures”, System-based vision for strategic project and development. Proceedings 
of the 2nd International Structural Engineering and Construction Conference, ISEC-02, 2003, 
Roma, Italy, 23-26 September 2003. 

14. Trombetti, T., Silvestri, S. and Ceccoli, C., “Inserting Viscous Dampers in Shear-Type Structures: 
Analytical Formulation and Efficiency of MPD System”, Proceedings of the Second International 
Conference on Advances in Structural Engineering and Mechanics (ASEM’02), 2002, Pusan, 
Korea, 21-23 August 2002. 

15. Trombetti, T., Silvestri, S. and Ceccoli, C., “Inserting Viscous Dampers in Shear-Type Structures: 
Numerical Investigation of the MPD System Performances”, Proceedings of the Second 
International Conference on Advances in Structural Engineering and Mechanics (ASEM’02), 
2002, Pusan, Korea, 21-23 August 2002. 



16. Trombetti, T., Ceccoli, C. and Silvestri, S., “Mass proportional damping as a seismic design 
solution for an 18-storey concrete-core & steel-frame structure”, Proceedings of the Speciality 
Conference on “The Conceptual Approach to Structural Design”, 2001, Singapore, August 2001. 

17. Chopra, A.K., Dynamics of Structures, Theory and applications to earthquake engineering, Prentice 
Hall, Englewood Cliffs, 1995. 

18. Crandall, S.H. and Mark, W.D., Random Vibrations in Mechanical Systems, Academic Press, New 
York and London, 1963. 

 


	Return to Main Menu
	=================
	Return to Browse
	================
	Next Page
	Previous Page
	=================
	Full Text Search
	Search Results
	Print
	=================
	Help
	Exit DVD



