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SUMMARY 
 
Four existing methods to calculate critical separation distances between adjacent nonlinear hysteretic 
structures are evaluated through Monte-Carlo simulations, for which seismic excitation is characterized as 
a nonstationary random process. All the methods use the well-known Double Difference Combination 
rule, but follow different approaches to calculate the correlation coefficient ρ. Results show that none of 
the methods evaluated is completely satisfactory in the sense that they are not capable of providing 
consistently conservative estimates of the critical separation distance for all possible values of relevant 
parameters. A new method, which consists of using values of parameter ρ derived from empirical 
estimates obtained through numerical simulations, is then proposed and examined. Results show that the 
proposed method provides consistently conservative estimates of critical separation distances, the degree 
of conservatism being slight in most cases. These desirable properties are found to hold for a variety of 
wide-band seismic excitations. 
 

INTRODUCTION 
 
Seismic pounding occurs when the separation distance between adjacent buildings is not large enough to 
accommodate the relative motion during earthquake events. Depending on the characteristics of the 
colliding buildings (Anagnostopoulos [1]), pounding might cause severe structural damage in some cases 
(Kasai [2]) and even collapse is possible in some extreme situations (Bertero [3]). Further, even in those 
cases where it does not result in significant structural damage, pounding always induces higher floor 
accelerations in the form of short duration spikes, which in turn cause greater damage to building 
contents. For these reasons, it has been widely accepted that pounding is an undesirable phenomenon that 
should be prevented or mitigated. This is recognized in seismic design codes and regulations worldwide, 
which typically specify minimum separation distances to be provided between adjacent buildings. For 
instance, according to the 2000 edition of the International Building Code, minimum separation distances 
are given by: 
 
 BA XXS +=  (adjacent buildings separated by a property line) (1) 
 

                                                 
1 Graduate Research Assistant, Department of Civil, Structural & Environmental Engineering, University 
at Buffalo, Buffalo, USA 



 22
BA XXS +=  (adjacent buildings located on the same property) (2) 

 
where S = separation distance and XA, XB = peak displacement response of adjacent structures “A” and 
“B”, respectively. Equations (1) and (2) are usually referred to as the ABS and SRSS rules, respectively, 
and are implemented in many seismic design codes and regulations worldwide. Previous studies (Jeng [4], 
Lopez Garcia [5]), however, have shown that they give poor estimates of S, especially when the natural 
periods of the adjacent structures are close to each other. In these cases, the ABS and SRSS rules give 
excessively conservative separation distances, which are very difficult to effectively implement because of 
maximization of land usage. 
 
A more rational approach was presented by Jeng [4] and can be summarized as follows: Let UA(t) and 
UB(t) be stationary random processes over a finite duration, representing the displacement response of two 
linear SDOF systems to a Gaussian, zero-mean stationary stochastic excitation Üg(t), and let 
UREL(t) = UA(t) - UB(t) be the random process representing the displacement response of the systems 
relative to one another. It can be shown that UA(t), UB(t) and UREL(t) are also zero-mean Gaussian 
processes (Soong [6]). Assuming that the ratio of the mean peak value to the standard deviation is a 
constant (a reasonable approximation in the case of stationary Gaussian processes), then the critical 
separation distance, which is obviously equal to the peak relative displacement response, is given by: 
 

 BABAREL XXXXXS ρ−+== 222  (3) 

 
where XA, XB, XREL = mean peak values of UA(t), UB(t) and UREL(t), respectively, and ρ is given by: 
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where E{} is the expectation operator. Equation (4) indicates that ρ is the correlation coefficient for 
processes UA(t) and UB(t). If it is assumed further that the excitation Üg(t) is a white noise, then correlation 
coefficient ρ is given by (Der Kiureghian [7], Grigoriu [8]): 
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where TA, ξA and TB, ξB are natural periods and damping ratios of systems “A” and “B”, respectively. 
Equation (3), together with Equation (5), is usually referred to as the Double Difference Combination 
(DDC) rule. In the case of more realistic nonstationary wide-band excitations, it has been shown (Lopez 
Garcia [5]) that, despite the various simplifying assumptions under which it was derived, the DDC rule is 
much more accurate than the ABS and SRSS rules, although it gives somewhat unconservative results 
when TA and TB are well separated. A correction for these latter cases has been proposed (Lopez 
Garcia [9]). 
 



In actual case scenarios, a great majority of building structures responds nonlinearly when subjected to 
strong ground motions. If it is assumed that Equation (3) is still valid for nonlinear systems (an 
assumption whose basis is weaker than that for linear systems), then all that is needed to extend the 
applicability of the DDC rule to nonlinear systems is a suitable expression for ρ, for which no closed-form 
solution valid for hysteretic systems exists. This problem has been the subject of a number of studies 
carried out by several authors (Filiatrault [10, 11], Penzien [12], Kasai [13], Valles [14]), who have 
proposed different methods. 
 
The first objective of this paper is to evaluate the abovementioned existing methods to extend the 
applicability of the DDC rule to nonlinear hysteretic systems. The evaluation is performed by Monte-Carlo 
simulations, for which the seismic excitation is characterized as a nonstationary random process 
representative of realistic wide-band excitations. The second objective of this study is to propose values of 
ρ for nonlinear hysteretic systems empirically obtained from numerical simulations. It will be shown that 
critical separation distances calculated using the proposed values of ρ are much more appropriate than 
those obtained following any of the existing methods in the sense that they are much more accurate and 
they are always on the conservative side. 
 

DESCRIPTION OF THE EVALUATION PROCEDURE 
 
In this study, seismic excitation is characterized as a Gaussian, zero mean nonstationary random process 
Üg(t) whose evolutionary power spectral density function is given by: 
 

 ( ) ( )[ ] ( )ω=ω gUg StetS 2,  (6) 

 
where e(t) is the envelope function proposed by Saragoni [15] and calibrated by Boore [16] and Sg(ω) is 
given by the well-known modified Kanai-Tajimi equation, i.e. (Clough [17]): 
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where S0 = 200 cm2/sec3, ωg = 12.50 rad/sec, ξg = 0.60, ωf = 2.00 rad/sec and ξf = 0.70. These values, 
typical of realistic wide-band excitations, were selected following recommendations found in the 
literature. The resulting function Sg(ω) is shown in Figure 1 (left) for positive values of ω only. A total of 
200 samples of the process Üg(t) are then generated as explained in Soong [6]. The time duration of all 
samples is 30 sec, and the corresponding 5%-damped mean pseudo-acceleration response spectrum is 
shown in Figure 1 (right). It can be seen that the latter matches very well what can be expected in actual 
case scenarios at sites of firm soil conditions. For illustration purposes, a sample ground acceleration time 
history üg(t) is shown in Figure 2 (left), and the corresponding 5%-damped pseudo-acceleration response 
spectrum is shown in Figure 2 (right). 
 
Nonlinear structures are characterized as SDOF systems having the bilinear force-displacement 
relationship schematically shown in Figure 3, where force at first yield is given by: 
 

 
R

SAm
FY =  (8) 

 



where, in turn, m = mass of the oscillator, SA = elastic pseudo-acceleration response and R = force 
reduction factor. Post-yielding stiffness ratio α and viscous damping ratio ξ are set equal to 0.05. 
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Figure 1: (left) Function Sg(ω) for ω > 0; (right) Mean SA spectrum of Üg(t) (ξ = 5%) 

 

-0.50

-0.25

0.00

0.25

0.50

0 5 10 15 20 25 30

Time [sec]

A
cc

el
er

at
io

n 
[g

]

0.00

0.25

0.50

0.75

1.00

0.00 1.00 2.00 3.00 4.00

Period [sec]

S
A

 [g
]

 
Figure 2: (left) Sample history üg(t); (right) SA response spectrum (ξ = 5%) 
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Figure 3: Bilinear force-displacement relationship of SDOF systems 

 
For a given pair of nonlinear SDOF systems “A” and “B” (characterized by TA, ξA, RA and αA and TB, ξB, 
RB and αB, respectively), mean peak displacement responses XA and XB are first obtained through 
numerical simulations (nonlinear time history analysis). Equation (3) is then used to calculate S, for which 
the value of ρ is obtained according to each of the methods examined in this study. Finally, numerical 



simulations are performed again to calculate the mean peak relative displacement response XREL. Results 
are expressed in terms of the ratio S / XREL, which are conceptually similar to “capacity/demand” ratios 
usually used in structural analysis. 
 

APPLICATION OF THE DDC RULE TO NONLINEAR HYSTERETIC SYSTEMS 
 
Method by Filiatrault [10-11]: 
Obviously, the simplest approach to extend the applicability of the DDC rule to nonlinear systems consists 
of assuming that Equation (5), which is valid for linear systems only, is nevertheless at least a decent 
approximation to the actual correlation between displacement responses of hysteretic oscillators. This 
approach was first applied by Filiatrault [10] to three pairs of adjacent steel building models, and resulted 
in separation distances that were conservative by 30% in all cases. The same approach was later applied in 
the more comprehensive study by Filiatrault [11], which considered reinforced concrete building models, 
and resulted in values of S exhibiting a high degree of dispersion, ranging from 81% conservative to 13% 
unconservative. In both studies, the excitation was characterized by small sets of earthquake records. 
 
Examples of results given by the evaluation procedure followed in this study are shown in Figure 4. Each 
chart shows results for a set of pairs of SDOF systems where the natural period and force reduction factor 
of system “A” (i.e., TA and RA) have a fixed value, the value of RB is fixed as well, and the value of TB 
varies from 0.10 sec to 4.00 sec with 0.025 sec increments. Results shown in Figure 4 exhibit a high 
degree of dispersion. While estimated separation distances are reasonably accurate when TA and TB are 
well separated, they become increasingly conservative (by more than 50% in some cases) as TA 
approaches TB, and finally become suddenly and markedly unconservative when TA and TB are very close 
to each other. Results for other values of TA, RA and RB are qualitatively similar to those shown in Figure 4 
and are not shown for brevity.   
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Figure 4: Normalized separation distances obtained by the method of Filiatrault [10,11] 



Another possible approach to extend the applicability of the DDC rule to nonlinear consists of using 
“effective” linear properties, i.e., it consist of assuming that there exists a pair of linear systems for which 
the correlation between their responses is at least a good approximation to the correlation between the 
responses of the actual nonlinear systems. In other words, this approach assumes that Equation (5) is still 
valid for nonlinear systems as long as TA, ξA, TB and ξB are replaced by “effective” properties TAeff, ξAeff, 
TBeff and ξBeff, which in turn are a function of the characteristics of the actual nonlinear oscillators. While, 
in principle, the use of “effective” linear properties is possible, determination of TAeff, ξAeff, TBeff and ξBeff is 
not straightforward. In what follows, two methods that adopt this criterion are presented and evaluated. 
 
Method by Penzien [12] 
According to Penzien [12], effective linear properties are given by: 
 

 ( )γ−µα+γ
µ=

AA

A
AeffA TT  (9) 
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where µA = displacement ductility of system “A” and γ = 0.65. Substitution of subscript “A” by “B” in 
Equations (9) and (10) gives the corresponding expressions for TBeff and ξBeff. It must be noted that, if 
γ = 1.00, then Equations (9) and (10) are the well-known formulae proposed by Rosenblueth [18] to 
linearize the response of individual hysteretic systems. The factor γ = 0.65 was introduced by Lysmer [19] 
to calibrate the linearization of the seismic response of soil layers. Results presented in Penzien [12] show 
that this method gives results that are significantly different from those obtained using the ABS and SRSS 
rules, but its accuracy was not rigorously examined. 
 
Some representative results of the evaluation performed in this study, calculated using values of µA and µB 
equal to mean displacement ductilities, are shown in Figure 5. It can be seen that, in general, this method 
gives unconservative results. In particular, separation distances S become significantly unconservative, by 
more than 50% in extreme cases, when TB approaches a particular value that, depending on RA and RB, is 
either greater or less than TA. Results for other values of TA, RA and RB are qualitatively similar to those 
shown in Figure 5 and are not shown for brevity. 
 
Method by Kasai [13] 
For the particular case of nonlinear systems having a bilinear force-displacement relationship with a 5% 
post-yielding stiffness ratio (i.e., the nonlinear hysteretic systems considered in this study), Kasai [13] 
proposed that effective linear properties be given by: 
 
 ( )[ ]109.01 −µ+= AAeffA TT  (11) 

 

 ( ) 3.11084.0 −µ+ξ=ξ AAeffA  (12) 

 
Again, substitution of subscript “A” by “B” in Equations (11) and (12) gives the corresponding 
expressions for TBeff and ξBeff. Equations (11) and (12) were obtained from the analysis of results given by 
numerical simulations and indicate the properties of a linear system whose displacement response relative 
to that of a nonlinear system characterized by µ is minimized. Results presented in Kasai [13] show that 



this method gives estimates of S that, while definitely more accurate than those obtained using the ABS 
and SRSS rules, tend to be on the unconservative side. 
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Figure 5: Normalized separation distances obtained by the method of Penzien [12] 

 
The former observation is confirmed by the results shown in Figure 6, which were obtained through the 
Monte-Carlo simulation described before and using again values of µA and µB equal to mean displacement 
ductilities. While still unconservative (up to 25%-30%), separation distances given by the method of 
Kasai [13] are more accurate than those given by the method of Penzien [12]. This is most probably due to 
the fact that, while Equations (9) and (10) were derived by linearizing individual systems, relative 
displacement response was explicitly taken into account when deriving Equations (11) and (12). Results 
for other values of TA, RA and RB are qualitatively similar to those shown in Figure 6 and are not shown for 
brevity. 
 
Method by Valles [14] 
While no closed-form solution exists for Equation (4) in the case of nonlinear hysteretic systems, values of 
ρ can still be obtained by numerically evaluating the expectations involved. This approach was followed 
by Valles [14], whose results were obtained by linearizing the hysteretic term of the equation of motion 
for bilinear systems rather than by nonlinear time-history analysis. Values of ρ were presented in series of 
charts for both wide- and narrow-band excitations and for several combinations of values of other 
parameters. In all cases, however, values of either displacement ductility or force reduction factor were 
assumed equal in both adjacent structures (i.e., either µA = µB or RA = RB). For the more general case where 
either µA ≠ µB or RA ≠ RB, Valles [14] suggested that conservative assessments of S are obtained when the 
value of ρ is taken from the chart valid for the value of either µ or R equal to the lesser of those 
corresponding to the actual nonlinear systems. This last observation, rather than the values of ρ 
themselves, is the object of the evaluation approach followed in this study. 
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Figure 6: Normalized separation distances obtained by the method of Kasai [13] 

 
For clarity, a complete example of the evaluation procedure for this particular method is described. Monte-
Carlo simulations are first performed assuming, for instance, RA = 3.00, RB = 6.00, and the corresponding 
values of XA, XB and XREL, denoted XA3, XB6 and XREL3-6 in this particular case, are obtained. Next, a new 
simulation is performed assuming RA = RB = 3.00 = min(3.00, 6.00), from which “exact” values of ρ for 
this particular situation, denoted ρ3-3, are calculated using: 
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which is derived from Equation (3). Separation distance S3-6 is then given by: 
 

 6333
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363 2 BABA XXXXS −− ρ−+=  (14) 

 
i.e., it is calculated using ρ3-3 rather than ρ3-6, which is not provided in the charts presented in Valles [14]. 
Finally, separation distances S3-6 are normalized by XREL3-6. 
 
Some representative results of the evaluation procedure described above are shown in Figure 7, where it 
can be seen that separation distances S are not always conservative. Moreover, they become suddenly and 
markedly unconservative (by more than 50% in extreme cases) when TA and TB are very close to each 
other. While additional simulations were performed to account for other values of RA and RB, the 
corresponding results are qualitatively similar to those shown in Figure 7 and are not shown for brevity. 
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Figure 7: Normalized separation distances obtained by the method of Valles [14] 

 
Summary 
The ideal method to calculate critical separation distances should provide results that are consistently 
conservative but only for a narrow margin. In doing so, the resulting values of S effectively prevent 
pounding while disruption of land usage is kept to a minimum. Since none of the four methods evaluated 
in this study meets this criterion, there is still a need for a practical yet accurate procedure to extend the 
applicability of the DDC rule to nonlinear hysteretic systems. In this spirit, an alternative approach is 
presented and examined in the next section. 
 

EMPIRICAL VALUES OF PARAMETER ρ 
 
Equation (13) may be applied to any pair of adjacent oscillators to calculate appropriate values or ρ, i.e.: 
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which is derived by solving Equation (3) for ρ. It is important to note that Equation (15), which indicates a 
relationship between mean peak responses, does not give the correlation between displacement responses 
of systems “A” and “B”. Therefore, the designation “correlation coefficient” is not appropriate for values 
of ρ calculated using Equation (15). In this study, they are referred to simply as values of “parameter” ρ. 
Moreover, since they are obtained from numerical simulations, they can suitably be designated as 
“empirical”. 
 
Examples of empirical values of ρ are shown in Figure 8. They were calculated using values of XA, XB and 
XREL obtained by Monte-Carlo simulations for the nonstationary excitation process described before. They 



are expressed in terms of the period ratio T1/T2, where T1 = min(TA, TB) and T2 = max(TA, TB). They were 
obtained considering all the combinations of pairs of nonlinear systems where TA = 0.50 sec, 1.00 sec, … , 
3.50 sec and TB ranges between 0.10 sec and 4.00 in such a way that T1/T2 = k / 100 (k = 1, 2, … , 100). It 
must be noted that R1 indicates the value of R for the system whose natural period is T1 = min(TA, TB), and 
that R2 designates the value of R for the oscillator whose natural period is T2 = max(TA, TB). 
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Figure 8: Examples of empirical values of parameter ρ 

 
It can be seen that, for a given value of T1/T2, ρ exhibits a significant degree of dispersion only when T1/T2 
is close to zero (regardless of the values of R1 and R2) and when both T1/T2 is close to unity and R1 ≠ R2. In 
the latter case, it was observed that, the lesser the value of T1/T2, the lesser the value of ρ. It can also be 
observed that there is always a line that does not follow the general trend. It was found that this particular 
line corresponds to the case where TA = 0.50 sec and TB < 0.50 sec, i.e., the only case for which both TA 
and TB are less than the main period of the excitation Tg ≈ 0.61 sec. It was found that all these 
observations also apply for other values of force reduction factors and damping ratios. 
 
The qualitative findings described in the former paragraph suggest that, in order to express results in a 
relatively simple way suitable for routine practical applications, it is possible to characterize parameter ρ 
as a function of T1/T2 regardless of the actual values of the natural periods. In this spirit, it is then 
proposed that parameter ρ be characterized by “lower envelopes” of empirical values, as indicated in 
Figure 9. In doing so, the proposed values of ρ should result in consistently conservative estimates of 
critical separation distances. The degree of conservatism should in general be slight except in the cases 
mentioned before where the dispersion of empirical values of ρ is significant, for which greater degrees of 
conservatism can be expected. 
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Figure 9: Examples of proposed values of parameter ρ 

 
It was found that, for a given value of R1, the proposed values of ρ are essentially independent of R2 for 
relatively low values of T1/T2. As the T1/T2 ratio increases, however, influence of R2 on the value of ρ 
becomes increasingly important. Qualitatively, this influence depends on whether R2 is greater or less than 
R1, as it can be deduced from the various ρ vs. T1/T2 curves shown in Figure 10. It was also found that, 
while greater damping ratios result in greater values of ρ (same as in the case of linear systems), the 
general shapes of the ρ vs. T1/T2 curves for different combinations of R1, R2 are essentially independent of 
the levels of damping. 
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Figure 10: Proposed values of parameter ρ for different combinations of R1 and R2 

 
The proposed values of ρ can then be used in Equation (3) to calculate critical separation distances. This 
approach is evaluated following the same procedure used in evaluating the existing methods described 
before. Some representative results are shown in Figure 11, where it can be seen that the proposed 
approach gives consistently conservative results and only for a narrow margin in most cases. As expected, 
the only exception occurs when both TA and TB have relatively large values and are close to each other. In 
these cases, a significant degree of conservatism is observed. As mentioned before, this is a consequence 
of ignoring the fact that, when T1/T2 is close to unity, larger values of T1, T2 result in larger values of ρ. 
However, even in these cases the proposed approach is much more appropriate than the ABS and SRSS 
rules, which give results that are far more conservative (Figure 12). Hence, while a lesser degree of 
conservatism would be desirable, the proposed approach provides separation distances that are much less 
than those obtained using code-specified methods but that still effectively prevent pounding. 
 
Although care has been taken to ensure that the stochastic excitation used to empirically obtain values of ρ 
is representative of realistic seismic ground accelerations, there is nevertheless a question about whether 
the proposed values of ρ provide accurate estimates of S for other possible ground excitations. The 



proposed approach is then evaluated as described before but using stochastic excitations for which Sg(ω) 
is now defined in such a way that the 5%-damped mean pseudo-acceleration response spectra of the 
resulting processes Üg(t) match the design spectral shapes defined in the 2000 edition of the NEHRP 
Recommended Provisions for Seismic Regulations for New Buildings and other Structures (FEMA 368). 
Two design response spectra were obtained for spectral accelerations SS = 1.50 g and S1 = 0.60 g and for 
soil types “B” and “E”, whose corresponding spectra have markedly different frequency contents. 
Response-spectrum-compatible functions Sg (ω), which were obtained by smoothing results of an iterative 
process, and the corresponding mean pseudo-acceleration response spectra are shown in Figure 13, while 
sample ground acceleration time histories are shown in Figure 14. Some representative results of the 
evaluation procedure are shown in Figures 15 and 16. It can be seen that they are qualitatively similar to 
those shown in Figure 11, although some quantitative differences can be observed (they are somewhat 
more conservative when TA = 1.00 sec, and somewhat less conservative when TA = 3.00 sec). The most 
important properties, however, are preserved: results are consistently conservative, and the degree of 
conservatism is negligible or slight in most cases. 
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Figure 11: Normalized separation distances obtained using the proposed values of parameter ρ 

 
CONCLUDING DISCUSSION 

 
A new method has been proposed to calculate critical separation distances between adjacent nonlinear 
hysteretic structures. The method adopts the well-known basic equation of the DDC rule, but uses values 
of parameter ρ derived from empirical estimates obtained through numerical simulations. When compared 
to other existing methods, the proposed approach exhibits a number of convenient advantages: (a) it 
provides consistently conservative results; (b) the degree of conservatism is slight in most cases; (c) in 
cases where results are non-negligibly conservative, results are nevertheless much less than those given by 
code-specified equations (i.e., ABS and SRSS rules); and (d) the former properties apply for wide-band 
excitations in general. 
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Figure 12: Comparison of normalized separation distances 
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Figure 13: (left) Response-spectrum-compatible functions Sg(ω); (right) mean response spectra  
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Figure 14: Sample ground acceleration time histories üg(t) 

 
The main disadvantage is the fact that the proposed values of ρ are available only in charts similar to those 
shown in Figure 10. For practical applications, availability of an analytical expression giving values of ρ 
as a function of relevant parameters (i.e., ρ = f (T1/T2, R1, R2, ξ1, ξ2, α1, α2)) would be much more 
convenient. The development of such a function is the subject of an on-going investigation. 
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Figure 15: Values of S / XREL for the Soil Type B response-spectrum-compatible excitation 
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Figure 16: Values of S / XREL for the Soil Type E response-spectrum-compatible excitation 
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