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SUMMARY 
 
As the collapse of reinforced concrete columns is attributed to the loss of vertical bearing capacity 
accompanied with cumulative increase of vertical deformation, analysis that is able to include the vertical 
response is indispensable for collapse simulation of building structures. In this paper, the collapse of 
reinforced concrete column models is studied, using a simplest lumped mass model considering the 
horizontal and vertical vibrations. Fiber model of plastic hinge for RC columns are applied, and factors 
deciding column collapse such as P-delta effect and stress deterioration of materials are taken into 
consideration. It is indicated that column models will collapse at a smaller earthquake input level for a 
simultaneous input of vertical motion, the ultimate safety of buildings should be evaluated considering the 
3-dimensional dynamic behaviors of vertical members. 
 

INTRODUCTION 
 
Recently, very large peak accelerations both at horizontal and vertical directions were recorded during 
intense near-fault earthquakes and this may give us two research subjects to investigate. Firstly, as the large 
horizontal peak values may exceed 1g in PGA and 1m/s in PGV, it is increasingly necessary to check the 
ultimate safety and capacity of structures using earthquake loads or records several times larger than 
considered in seismic design codes. At the same time, analysis should consider the possible strength 
deterioration and negative stiffness at deformations far beyond the limit of non-negative stiffness restoring 
force models. Secondly, the large vertical component requires us to investigate the 3D dynamic response of 
structures, and the 3D restoring force characteristics and the 3D resisting capacities of structures. 
 
Until now, numerous studies were carried out to investigate the effect of vertical ground motion [1], and it 
was found that vertical motion might increase the axial force of columns and the horizontal response of 
buildings. However, the frame model is not able to investigate the structural response until building 
collapse, as the restoring force models are usually applicable only to a relatively small elasto-plastic 
deformation. 
 
Analytical program by element discretization (fiber model) enables us directly including the strength 
deterioration from the stress-strain relation of materials [2]. It was applied for investigating the effect of 
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vertical motion on the response of reinforced concrete frame buildings, and found that the simultaneous 
input of vertical motion does increase the damage of concrete elements and the damage of buildings [3]. It 
is expected that this kind of sophisticated program be applied for a direct discussion of structural response 
not only within a moderate damage level but also up to collapse. 
 
Before studying the collapse of real structures, simple model and parametric studies may be useful for 
picking up the main factors deciding structure collapse, and expose the problems and limits of current 
seismic design. The author investigated the collapse and the effect of vertical motion using simplified 
2DOF models, for RC columns assuming constant story deformations and without considering P-delta 
effect [4], for RC soft story buildings [5][6]. These studies concluded that the phenomenon of collapse 
might be described as the divergence of vertical and horizontal displacements. And even the horizontal 
responses may be not affected by the input of vertical motion if the damage is still moderate, the vertical 
downward displacement will be accumulated and the model will collapse at a smaller earthquake input 
level for a simultaneous input of vertical motion. The vertical resistance of columns must be insured for 
avoiding structure collapse. 
 
The significance of vertical vibration may be reasoned from the fact that the collapse of columns is 
accompanied with the accumulation of compressive axial strain; it was evidenced from numerous static 
tests of reinforced concrete columns. The stable limit of RC columns for horizontal restoring force was 
proposed based on the axial deformation [7]. 
 
This paper investigates the dynamic response and collapse of columns located at the first story of RC 
buildings. The analytical model is modified from a popular loading setup installed in Japan where columns 
subjected to anti-symmetric double curvature flexure deformation. Research is focused on the vertical 
resistance of RC columns, and horizontal strength and long-term axial stress are two main parameters for 
investigation. Fiber model of plastic hinge for RC columns are applied, and factors deciding column 
collapse such as P-delta effect and stress deterioration of materials are taken into consideration. Numerical 
integration is performed using the correct instantaneous stiffness of elements by predicting the time 
increment compatible with stiffness variation. For simplicity, only one of the two horizontal earthquake 
components is considered. 
 

SIMPLIFIED DYNAMIC MODEL FOR REINFORCED CONCRETE COLUMNS 
 
Analytical Model 
Safety of building structures is largely indebted to the capacities of vertical members at the first story. 
Usually, static tests maintain a constant axial force during the lateral loading reversals; here a dynamic 
analytical model with 2DOF in Figure 1 is assumed for investigating the earthquake response of RC 
columns, and only one horizontal component is considered. Although the axial stress of columns may be 
strongly related to the overturning moment [5], this paper discusses the dynamic collapse of columns 
located at the central part of building frames. 
 
In Figure 1, RC column deforms anti-symmetrically in double curvature flexure, and the deformation will 
concentrate at the ends of member at large deformation. Response and collapse of the analytical model will 
be determined not only by the characteristics of the column but also the rigidities hk  and vk  of upper 
stories at horizontal and vertical directions. 
 
Let EI  and EA  be the bending and axial elastic stiffness of RC column, then the rigidities of upper 
stories are assumed as follows in proportional to the height H  of the lamped mass. 
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Actually, the value of lamped mass relies on the deformation distribution of the first story and upper stories. 
Assumption of constant mass could not account the effective mass associated with the deformation 
concentration at the first story after experienced large deformations. 
 
Plastic Hinge Model for RC Column 
Plastic hinge model is applied for RC column with uniform section and reinforcement. In Figure 2, the 
deformation distribution of one half of a column is assumed as shown in Figure 2(a), and deformation will 
be concentrated at the plastic hinge after yielding of column. For the region outside the plastic hinge, a 
uniform axial strain and a triangle curvature distribution are assumed corresponding to the axial force and 
bending moment. Figure 2(b) shows the components of horizontal and vertical displacements { }Tzx 11, , and 
they are expressed in incremental formation by Equation (3) as the sums of deformations resulted by plastic 
hinges and deformations by the region outside of plastic hinge. Here, h  is the height of column, hl  
represents the length of the plastic hinge, { }T

hh εφ ∆∆ ,  are the curvature and axial strain at plastic hinges. 
EI  and EA  are assumed as constant by using their elastic rigidities.  
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Increments of restoring forces { }TNQ ∆∆ , of column are related with the stresses { }TNM ∆∆ ,  at column 
ends by Equation (4), where the second and the third terms account the P-delta effect. 
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Figure 1. An analytical model for studying 
 the dynamic collapse of RC columns 
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Fiber Model at Plastic Hinge 
At the possible plastic hinge, column section is divided into discrete elements. Applying the assumption 
that plane cross section remains plane after deformation, strain of the ith element with a distance of is  
from the center of section will be expressed by curvature hφ  and axial strain of the section hε  as follows. 

hihi s φεε ∆⋅+∆=∆                                                      (5) 

The local stiffness matrix [ ]ks  for plastic hinge section is expressed as follows, where ii AE ,  are the 
tangent modulus and area of discrete elements. 
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Compatibility and Equilibrium of Column 
Substituting Equation (6) into Equation (3), we have the compatibility matrix [ ]Ts between column 
displacements and deformations at plastic hinge as follows. 
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Substituting Equation (7) into Equation (4), we have the stiffness matrix [ ]kc of column as follows. 
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Equation of Motions and Overall compatibility 
Let the displacements and restoring forces at the horizontal and vertical directions to be zx, and NQ, , and 
initial viscous damping factors zx hh ,  are independent and proportional to their initial elastic circular 
frequencies zx ωω , , the incremental equation of motions are expressed as follows. Where 00 , zx represent 
ground motions in each direction. Axial force N will be minus value at compression. 
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Displacements of the lamped mass are expressed by Equation (11), and using Equations (9) and (11), the 
overall stiffness [ ]K  will be expressed by Equation (12). 
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Further, using Equations (7),(9) and (12), we have the compatibility matrix [ ]T  between overall 
displacements and deformations at plastic hinge as follows. 
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DYNAMIC ANALYSIS OF REINFORCED CONCRETE COLUMNS 
 
Constructive Rules of Materials 
The stress-strain ( εσ − ) relations of reinforcement and concrete are assumed as shown in Figure 3. 
Tension strength of concrete is ignored, and ccεµ  is the ultimate strain of concrete. For reinforcement, 
buckling is simplified as a straight line with negative stiffness. Young modulus of reinforcement and 
concrete are assumed to be MPaEs 210000= , MPaFE cc 20/21000=  respectively. 

 
Non-Iterative Integration Method Using Instantaneous Stiffness 
As expressed by Equations (12) and (13), both compatibility matrix [ ]T  and overall stiffness matrix [ ]K  
are related with the instantaneous matrix [ ]ks  of plastic hinge. Therefore, response analysis should use the 
correct values of [ ]ks , i.e., the correct tangent modulus of discrete elements, to ensure the equilibrium and 
the compatibility conditions. 
 
Within the record time interval 0t∆  of an earthquake wave, Newmark’s β  method )4/1( =β  is applied 
temporally using an appropriate constant time interval. If a stiffness variation is confirmed for any elements, 
then the time increment t∆  compatible to the first of stiffness variation is calculated for response 
regression [8]. This variable time increment was made possible by using explicit formulas about overall 
displacements, and about element strains from the relation of Equation (5). For each element, a quadratic 
equation for loading and a linear equation for unloading are obtained for solving the time increment t∆  
compatible to stiffness variation. The correct t∆  will be the minimum value tried for all fiber elements. 
 
Earthquake Record and Inputted Earthquake Motions 
Vertical (SCS-UP) and one horizontal (SCS052) components of Sylmar-converter Station, January 17, 
1994 Northridge earthquake are used, record time interval is st 005.00 =∆ , and duration is 40 second. The 
peak values of earthquake records are 20522 /00.6,/61.5 smPGAsmPGAUP ==  respectively. 
 
In order to obtain the maximum input level leading to column collapse, earthquake records of both 
directions are multiplied by a same multiplier Ω , and the analysis is to find the minimum of Ω  leading 
to collapse for different analytical parameter combinations. Multiplier Ω  is used for convenience of 
discussion; it may contradict with the fact that the ratio of peak accelerations between vertical and 
horizontal components as well as the wave forms may vary for different earthquake intensity. 
 
Analytical Parameters 
For column of a n-story RC building, assuming the height of lamped mass is ( )nhH 3/2= , the story height 
is cmmh 3505.3 == , the weight of a single story is kgftfW 40000400 == , then using the long-term axial 
force ratio 0n  of column defined by Equation (14), the size of section will be decided by Equation (15). 
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Figure 3.  Constructive rule of materials 
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The number of story )9,7,5,3( =n  and the long-term axial force ratio )05.0,4.01.0( 0 ofpitchawithton =  
are chosen as the analytical parameters. Two input conditions are investigated about, (1) simultaneous input 
of vertical ground motion, (2) vertical ground motion is not inputted but variable axial force by vertical 
displacement is considered. 
 
Time history analysis is performed for an input waves that are Ω  times of the earthquake records. 
Computation is terminated when meeting the following conditions assumed for column collapse. After that 
time, the column will accompany with a divergence of horizontal and/or vertical displacements. 

(1) Loss of horizontal resistance when yqhx >/ . This is a condition for column losing its horizontal 
restoring force due to P-delta effect, when assuming the fix end having a perfect elasto-plastic 
moment-rotation relationship under constant axial force. 

(2) Loss of vertical resistance due to the failure of core concrete at plastic hinge when cch εµε 2< . This 
means the axial strain at the center of section exceeds two times of the ultimate strain of concrete 
material. 

For analytical model, initial damping at horizontal as well as vertical directions are taken as 02.0=xh , 
02.0=zh , as we have little information until now about the vertical damping. The length of possible plastic 

hinge is assumed be DLh = , the section is divided into 10 concrete and 2 reinforcement elements. 
 
For a square RC section, reinforcement ratio is assumed be %0.2=gp , the yielding strength of 
reinforcement be MPay 350=σ , the compressive strength of concrete be MPaFc 30= . For the 
stress-strain ( εσ − ) relation of materials, the compressive strain of reinforcement when fracture occurred is 

51=sµ , and the ultimate strain of concrete ccεµ  is assumed as 20,10=cµ . 
 
The maximum bending moment of a RC section may vary with the variation of axial force. As a rough 
estimation, horizontal strength coefficient yq  of the model is evaluated approximately by Equation (16) 
using a constant axial force. 
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Therefore, if the reinforcement ratio gp  and strength of materials cy F,σ  are given, yq  is decided only 
by the long-term axial force ratio 0n  and the number of story n. In Table 1, elastic vibration periods are 
listed for some parameters. Time increment for numeric integration is limited as stt 001.05/0 =∆≤∆ , that 
meets the requirement for insuring computation accuracy when using variable time increment [8], i.e., 

s001.0  is smaller than 1/10 of minimum vertical vibration period ( 1.03058.0 0 === nandnforsTz ). 

n H(m) mg(tf) D(m) n0 qy Tx (s) Tz (s) n H(m) mg(tf) D(m) n0 qy Tx (s) Tz (s)

3 7.0 120 0.632 0.10 0.500 0.321 0.058 9 21.0 360 1.095 0.10 0.866 0.321 0.101

3 7.0 120 0.516 0.15 0.309 0.482 0.071 9 21.0 360 0.894 0.15 0.535 0.482 0.123

3 7.0 120 0.447 0.20 0.221 0.643 0.082 9 21.0 360 0.775 0.20 0.384 0.643 0.142

3 7.0 120 0.400 0.25 0.171 0.803 0.092 9 21.0 360 0.693 0.25 0.296 0.803 0.159

3 7.0 120 0.365 0.30 0.138 0.964 0.101 9 21.0 360 0.632 0.30 0.239 0.964 0.174

3 7.0 120 0.338 0.35 0.114 1.124 0.109 9 21.0 360 0.586 0.35 0.198 1.124 0.188

3 7.0 120 0.316 0.40 0.096 1.285 0.116 9 21.0 360 0.548 0.40 0.167 1.285 0.201

Table 1.  Analytical parameters for 3-story and 9-story column models 



DYNAMIC RESPONSE AND COLLAPSE OF RC COLUMNS 
 
Dynamic response of columns is discussed for 10=cµ , and ccεµ  is the ultimate strain of concrete as 
illustrated in Figure 3. 
 
Maximum Response 
In order to find the earthquake input level leading to column collapse, Figures.4 and 5 show the maximum 
response vs. Ω  for 3-story and 9-story models respectively. Ω  is a multiplier for Sylmar-converter 
station records, and started from 0.05 to the value leading to column collapse. 
 
(a) Maximum horizontal displacement 
Maximum horizontal displacement maxX  (in cm) increase with Ω , and at a certain input level, maxX  
become unstable and increase dramatically with a very small increase of Ω . In order to avoid the 
divergence of horizontal displacement, maxX  must be restricted within some value. Actually, this is the 
horizontal displacement when column lost its horizontal resistance. This displacement increases with a 
lower long-term axial force ratio 0n , or a larger horizontal strength coefficient yq  (see relation between 

0n  and yq  by Equation (16) and Table 1). In both Figures of 4(a) and 5(a), for 3.0,2.0,15.0,1.00 =n , the 
limits of maxX  are smaller than cmcmcmcmX 10,15,20,25= , they are much smaller than the deformation 
capacity obtained from considering the P-delta effect of column ( cmcmcmcmhqX y 48,77,108,175== , for 
3-story column model). 
 
(b) Minimum vertical displacement 
The downward minimum vertical displacement minZ  (in cm) increase with Ω  and 0n , and at a certain 
input level corresponding to the stable limit of horizontal displacement, minZ  also become unstable and 
increase dramatically with a very small increase of Ω . The limit of minZ  is about -0.5cm for 3-story 
column model, and is about -1cm for 9-story column model. The difference may be arisen from the elastic 
deformation outside the plastic hinges. 
 
(c) Maximum vertical displacement 
The upward maximum vertical displacement maxZ  also increase with Ω . However, for higher long-term 
axial force ratio 3.00 =n , there are no tensile deformation occurred until column collapse. 
 
(d) Maximum horizontal restoring force 
The maximum horizontal restoring force mgQ /max  (normalized by weight mg) increase with Ω  if it is 
small and column is within elastic state. For lower long-term axial force ratio 15.0,1.00 =n , mgQ /max  
increase with Ω  even after yielding of column. However, for higher long-term axial force ratio 

3.0,2.00 =n , mgQ /max  remain constant irrelevant with the increase of Ω . 
 
(e) Minimum vertical restoring force 
The compressive minimum vertical restoring force mgN /min  (normalized by weight mg) increase with 
Ω . For lower long-term axial force ratio 15.0,1.00 =n , mgN /min  may be as large as 6 or 4. However, if it 
is normalized by the compressive strength of concrete cFD2 , then the maximum of cFDN 2min /  near 
collapse will be 6.05.0// min02min ↔=⋅= mgNnFDN c  for different 0n . Therefore, the axial compressive 
force is limited within the compressive force capacity of columns when subjected to large bending 
deformation. 
 
(f) Maximum strain rate of fiber elements 
The maximum strain rate of fiber elements at plastic hinges is extremely large, and may be as large as 
0.1/s-0.3/s. This paper has not included the effect of strain rate on the constructive rules of materials. 



 

Figure 4.  Maximum response of 3-story column models under various input amplifier 

Figure 5.  Maximum response of 9-story column models under various input amplifier 
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Resisting Capacity of Column Models 
The ultimate resisting capacity of structures for preventing collapse may be interpreted as the capacity to 
resist gravity load, as well as the earthquake actions both at the horizontal and at the vertical directions. In 
this paper, collapse of column models is defined as the divergence of horizontal or vertical displacements, 
and as a matter of factor, they occur simultaneously and suddenly with a very small increase of earthquake 
input level. 
 
In Figure 6(a), the capacity to resist an earthquake input level Ω  is plotted against the horizontal strength 
coefficient yq . Ω  leading to collapse increase with yq , and is also affected by the number of story. In 
Figure 6(b), the capacity against collapse for resisting gravity load and earthquake input is plotted together, 
and there is a strong correlation between the long-term axial capacity ratio axn  with earthquake input Ω , 
This means that the ultimate capacity of columns should be evaluated considering the vertical resistance. 
The long-term axial capacity ratio axn  is defined by Equation (17), normalized by axial capacity of RC 
columns. 
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2 cygygc
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In Figure 6(b), a curve of quadratic function between Ω  and axn/1  is plotted to describe the tendency of 
their relation. Extremely, the function means RC column could not resist earthquake when gravity load 
equals to the axial capacity of columns ( 1,0 ==Ω axn ), and RC column will never collapse if without 
gravity load ( 0, =∞=Ω axn ). 

 
Restoring Force at Horizontal and Vertical Directions 
Hysterics at both directions are shown in Figures 7,8 for 3-story model with 15.00 =n . When 88.0=Ω  in 
Fig.7, although displacement at the horizontal direction is relative large and degradation of horizontal 
resistance is accompanied, no divergence of displacements were occurred. However, a slightly increase of 
input 01.0=∆Ω , collapse is occurred at both directions in Fig.8 where 89.0=Ω . 
 
In Figure 8, the horizontal restoring force of (a) is similar to that of bending moment at plastic hinge of (c), 
the effect of P-delta effect on the horizontal restoring force is small, and the degradation of horizontal 
resistance might be considered as the result of material deterioration (see Figure 3). 
 
Figure 8(b) and Figure 8(d) show large upward displacement and large upward deformation, and the 
upward displacement is the result of tensile deformation at plastic hinge. There is no clear hysteretic rule at 
the vertical direction.  

Figure 6. Resisting capacity of column models vs. yielding coefficient or long-term axial force ratio 
 (a) Capacity of columns with a horizontal strength (b) Capacity against gravity load and earthquake actions    
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Time History of Displacements 
For 3-story model with 15.00 =n  and 89.0=Ω , Figure 9 shows the time history of (a) horizontal 
displacement, (b) vertical displacement, (c) axial strain of plastic hinge, (d) vertical restoring force. A 
sudden increase of displacements in both directions is occurred at the time around sec12=t . Apparently, 
the divergence of vertical displacement z is a slightly faster than that of horizontal displacement x. 
 
For 88.0=Ω , Figure 10 shows the time history of (a) horizontal displacement, (b) vertical displacement, 
(c) inputted horizontal acceleration, (d) inputted vertical acceleration. The inputted accelerations were 
multiplied the Sylmar-converter station records by 88.0=Ω . Although large residual displacements 
resulted, there is no divergence of displacements at both directions. The large upward vertical displacement 
coincide with the large horizontal displacement ( sec5sec4 == tandt ), this may be interpreted as the 
result of the movement of neutral axis at plastic hinge. 

Figure 7. Restoring forces Ω=0.88 Figure 8. Restoring forces with Ω=0.89 

Figure 9. Time history of 3-story model with 15.00 =n and Ω=0.89 
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INFLUNCE OF VERTICAL MOTION AND VERTICAL VIBRATION ON COLUMN COLLAPSE 
 
Dynamic response of columns and the effect of vertical motion are discussed for 20=cµ , where ccεµ  is 
the ultimate strain of concrete as illustrated in Figure 3. Similar results and conclusions may be obtained 
for 10=cµ . Here, “H+V” means the simultaneous input of horizontal and vertical motions; “H” means 
only the horizontal motion was inputted. 
 
Influence of Vertical Motion on Maximum Response 
In Figure 11, maximum responses of 3-story models are plotted against earthquake input multiplier Ω  for  
(a) vertical displacement, (b) vertical compressive force. The simultaneous input of vertical motion 
results a larger vertical downward displacement and a large vertical compressive force. The minimum 
vertical force mgN /min in compression is proportional to Ω . For the analytical parameters discussed, if 
the vertical displacement excess –0.4cm irrelevant to the input of vertical motion, then a divergence of 
displacements will be initiated and the column model will be collapsed. 
 
Even the vertical motion is not inputted; a larger vertical compressive force is resulted. However, 

mgN /min is not only affected by the input level Ω , but also affected by the long-term axial force ratio 0n . 
For 3.0,2.00 =n , mgN /min is not less than –1.4, i.e., a 40% increase of axial compressive force. However, 
for 15.0,1.00 =n , mgN /min may be as large as –2.0 to –3.0, a result of the large movement of neutral axis 
at plastic hinge. Vertical vibration occurs even without vertical input. 
 
Influence of Vertical Motion on Resisting Capacity of Columns 
With simultaneous input of horizontal and vertical motions, column model will collapse at a smaller input 
level; averagely the omission of vertical motion will over-estimate the earthquake resistant capacity by 
20%. It must point out that the over-estimation may be more significantly if compared with the result using 
restoring force obtained from the assumption of constant axial force. Again, in Figure 11(c), the capacity 
against collapse for resisting gravity load and earthquake input is plotted together. Curves of quadratic 
function between Ω  and axn/1  are plotted to describe the tendency of their relation. Here, axn  is the 
long-term axial capacity ratio. 
 
Influence of Vertical Motion on Restoring Forces 
Figure 12 shows the restoring forces of a 3-story model with or without vertical motion. The simultaneous 
input of vertical motion results large deterioration of horizontal restoring force, and a large variation of 
axial force. 

Figure 10. Time history of 3-story model with 15.00 =n  and input acceleration (Ω=0.88) 
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Influence of Vertical Motion on the Time History 
Figure 13 shows the time history of horizontal displacement x and vertical displacement z with or without 
the input of vertical motion. Without vertical motion, occasionally, the residual horizontal displacement is 
small at the end of computation. However, the simultaneous input of vertical motion results a 10cm drift of 
horizontal displacement after the time of 4sec, and the final divergence of displacement is due to the loss of 
horizontal resistance. If vertical motion is also inputted, the vertical displacement drifts to the compressive 
direction, because the accumulation of compressive strain at the plastic hinge. The low-frequency vibration 
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Figure 11. Effect of vertical motion on the maximum response and resisting capacity 

Figure 12. Effect of vertical motion on restoring forces ( 20.00 =n and Ω=0.85) 
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of vertical displacement is due to the movement of neutral axis of plastic hinge, while the high-frequency 
vibration is due to the vertical input motion and it results a large vertical force. 
 

CONCLUSIONS 
 
Dynamic response of reinforced concrete column models until collapse were studied using a simplest 
lumped mass model that was developed from fiber model of plastic hinge, and shear deformation and shear 
failure of columns was not considered. Factors that may affect column response such as deltaP −  effect 
and deterioration of materials were taken into consideration. Dynamic collapse of RC column is attributed 
to the divergence of displacements and the loss of resistances at both horizontal and vertical directions. 
Parametric studies using time history analysis were carried out to find the multiplier Ω  for 
Sylmar-converter station records leading to column collapse. The main findings about the dynamic 
response of column models may be summarized as follows. 
 
(1) Horizontal strength deterioration of RC columns is mainly due to the stress deterioration of materials at 

plastic hinge; this is aggravated by vertical ground motion. 
(2) The collapse of RC columns may occur suddenly from a relatively stable state if the earthquake input 

is slightly increased. Resistances at both the horizontal and the vertical directions are lost after a 
monotonic increase of downward vertical displacement. 

(3) The capacity of RC columns for avoiding collapse may be better understood if the gravity load was 
plotted against earthquake input. If the long-term axial stress ratio 0n  or the capacity ratio axn  is 
doubled, then the capacity against earthquake input will be reduced to 1/4. The ultimate safety of 
structures should be discussed considering the vertical resistance of columns. 

(4) The simultaneous input of vertical motion results large axial compressive forces, and enable the 
column collapse at a smaller input level. The omission of vertical motion will over-estimate the 
earthquake resistant capacity by 20%. 

(5) Even the vertical motion is not inputted, vertical vibration occurs and this may result a large vertical 
compressive force. The restoring force models obtained from static test under constant axial force may 
also over-estimate the earthquake resistant capacity. 

 
The investigation was made using a lamped mass model; it could not account the effect of distributed mass 

                          (a)  Displacements with simultaneous input of vertical motion
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                          (b)  Displacements without input of vertical motion but with consideration of vertical vibration
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Figure 13. Effect of vertical motion on displacement response ( 20.00 =n and Ω=0.85) 



and the vertical vibration of beams and floors. Assumptions about the vertical damping and the length of 
plastic hinge were made, and simplified stress-strain relations of materials were assumed. It is expected that 
the 3D restoring force characteristics of RC columns will be studied by future 3D shaking table test. 
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