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SUMMARY 

 
Several research projects are underway worldwide to develop effective methods for estimating seismic 
demands for performance-based engineering of buildings. After a brief review of alternative approaches, 
and evaluation of methods currently standard in engineering practice, this paper emphasizes one possible 
approach. Based on modal pushover analysis and improved estimation of target roof displacement, this 
approach is shown to provide considerably improved estimates of demands, while retaining the 
conceptual simplicity and computational attractiveness of current nonlinear static pushover procedures. 
Rooted in structural dynamics theory, this procedure is ready for practical application to symmetric-plan 
buildings and is promising for unsymmetric-plan buildings. 
 

INTRODUCTION 

A major challenge for performance-based seismic engineering is to develop simple, yet sufficiently 
accurate methods for analyzing designed structures and evaluating existing buildings to meet selected 
performance objectives. As reflected in post-1995 guidelines for evaluating existing buildings, such as 
FEMA-273 [1], its successor FEMA-356 [2], and ATC-40 [3] documents, the profession has shifted away 
from the traditional practice of elastic analysis of the structure subjected to seismic forces reduced to 
recognize indirectly inelastic response, instead, inelastic behavior of structures is considered explicitly in 
estimating seismic demands at low performance levels—such as life safety and collapse prevention. 
 
Current Practice 
Currently, the structural engineering profession uses the nonlinear static procedure (NSP) or pushover 
analysis described in FEMA-273/356 [1, 2] and ATC-40 [3] documents to estimate seismic demands, 
which are computed by nonlinear static analysis of the structure subjected to monotonically increasing 
lateral forces with an invariant height-wise distribution until a predetermined target displacement is 
reached. The target displacement is estimated from the deformation of an inelastic SDF system derived 
from the pushover curve by either an iterative procedure, requiring analysis of a sequence of equivalent 
linear SDF systems [3], or by empirical equations based on response history analysis (RHA) of a large 
number of inelastic SDF systems [1, 2]. In the past several years, many researchers have discussed the 
underlying assumptions and limitations of pushover analysis [e.g., Refs. 4-10]. Based on the 
approximation that the response is controlled by the fundamental mode even after the structure yields, the 
NSP procedure, has led to good estimates of seismic demands but such predictions are mostly restricted to 
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low-rise and medium-rise structures in which inelastic action is distributed throughout the height of the 
structure [e.g., 5, 9]. 
 
Improved Procedures 
Consequently, the development of improved procedures for estimating seismic demands has been a hot 
topic for research over the past decade. Improved procedures may be classified into three categories: 
probabilistic approach based on incremental dynamic analyses, nonlinear RHA, and improved pushover 
analysis procedures. 
 
Probabilistic Approach Based on Incremental Dynamic Analysis 
For several years, the Pacific Earthquake Engineering Research Center (PEER) has focused on 
developing a rigorous comprehensive approach for seismic performance assessment of buildings [11]. 
Seismic demands are computed by the incremental dynamic analysis (IDA) procedure [12], and curves 
showing demand against ground motion intensity are developed for a sufficiently large number of ground 
motions to perform statistical evaluation of the results. This implies that for a given ground motion 
intensity, the median and a measure of dispersion (e.g., the 84th percentile) of the response values are 
computed. Such analysis of generic structures leads to hazard curves showing mean annual probability of 
exceedance against the demand parameter. When fully developed, this rigorous approach would represent 
a major advancement in estimating seismic demands for performance-based earthquake engineering. 
 
Nonlinear Response History Analysis 
A rigorous procedure to estimate seismic demands, nonlinear response history analysis (RHA), is 
permitted as an alternative procedure in present building evaluation guidelines, but it is not implemented 
prudently. The FEMA-356 specifications for Nonlinear Dynamic Procedure (NDP) state that the seismic 
demand may be estimated as (1) the maximum of demands due to three ground motions, or (2) the mean 
value of demands due to seven ground motions. These estimates can vary widely, as demonstrated next 
for the SAC-Los Angeles 9-story building subjected to an ensemble of 20 SAC ground motions; nonlinear 
RHA predicted collapse of the building during three of these excitations. The nonlinear RHA results for 
the first story drift led to a mean value of 20.4 cm over 17 excitations (excluding three that caused 
collapse of the building)2. The results, shown in Fig. 1, demonstrate large variation in the drift estimated 
by three implementations of both versions of the FEMA-356 criteria. Such wide variability obviously 
implies that different engineers following the same criteria could arrive at contradictory conclusions about 
seismic safety and rehabilitation requirements for an existing building. 
 
Seismic demands computed by nonlinear RHA may be affected profoundly by the assumptions in 
preparing an inelastic model of the building and software used in implementing the computation. To 
demonstrate the first possibility, Fig. 2 shows the peak values of story drifts for the SAC-Los Angeles 20-
story building due to the LA30 ground motion for three different idealizations of the structure: (1) Model 
M1, a basic centerline model in which the panel zone size, strength and stiffness are not represented; (2) 
Model M2, a model that explicitly incorporates the strength and stiffness properties of panel zones; and 
(3) Model M2A, an enhanced version of model M2, which considers the interior gravity columns, shear 
connections, and floor slabs [9]. No results are shown for Model M1 because it predicted collapse of the 
building. Model M2 predicts story drifts approaching 15%, which are so large that performance of the 
building would not be acceptable. However, the most realistic model (M2A) predicts much smaller story 
drifts, with the largest drift among all stories near 5%. Secondly, the first story drift in the SAC-Los 
Angeles 9-story building due to one of the SAC ground motions computed by three widely used computer 
programs differed by 30%. Such variability implies that engineers using different computer programs or
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(b) Average due to seven excitations
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Figure 1. First story drift: (a) maximum of demands due to three excitations; and (b) average of 
demands due to seven excitations. The excitations were selected randomly three times from an 

ensemble of seventeen excitations 
 

 

Figure 2.  Influence of modeling assumptions on the story drift demands for the SAC-Los Angeles 
20-story building due to LA30 ground motion; results are shown for M2 and M2A models, but 

model M1 predicted collapse of the building. (Adapted from Gupta & Krawinkler [9].) 
 
inelastic modeling assumptions could arrive at contradictory conclusions about the seismic performance 
of the same building. 
 
Nonlinear RHA is an onerous requirement for several reasons. First, an ensemble of site-specific ground 
motions compatible with the seismic hazard spectrum for the site must be simulated. Second, in spite of 
increasing computing power, nonlinear RHA remains computationally demanding, especially for 
unsymmetric-plan buildings—which require three-dimensional analysis to account for coupling between 
lateral and torsional motions—subjected to two horizontal components of motion. Third, such analyses 
must be repeated for many excitations because of the wide variability in the demand due to plausible 
ground motions and the statistics of response must be considered. Fourth, commercial software is so far 
not robust, reliable, or convenient enough for structural modeling and interpretation of response results. 
Fifth, an independent peer review of nonlinear-RHA results is required by FEMA-356, adding to the 
project duration and cost.  
 
Opinions within both the research and professional communities differ on whether nonlinear RHA and the 
implementing software is ready for practical application. Even if nonlinear RHA is ripe for application, it 



is unreasonable to require this onerous procedure for every building—no matter how simple—and of 
every structural engineering office—no matter how small. Therefore, simplified methods are expected to 
remain important in structural engineering practice. Simplified methods must be rooted in structural 
dynamics theory, and their underlying assumptions and range of applicability identified. Nonlinear RHA 
can be employed for final evaluation of those combinations of buildings and ground motions where a 
simplified procedure begins to loose its accuracy. 
 
Improved Pushover Procedures 
Pushover analyses procedures have been improved to account for the contributions of higher modes to 
response, redistribution of inertia forces because of structural yielding and the associated changes in the 
vibration properties of the structure. Adaptive force distributions that attempt to follow more closely the 
time-variant distributions of inertia forces have been proposed [8, 13, 14]. Recently an incremental 
response spectrum analysis procedure (IRSA) has been developed that requires at each incremental 
loading step in the pushover procedure a response spectrum analysis of the structure in its current yielded 
state, treating it as linearly elastic until the next step [15]. Although these procedures provide improved 
estimates of seismic demands for the examples considered, their accuracy remains to be evaluated for a 
wide range of buildings and ground motion ensembles. While these sophisticated procedures are notable 
research contributions, they may be too complicated conceptually for implementation in structural 
engineering practice. 
 
Attempts have been made to consider more than the first mode in pushover analysis [16, 17, 18]. Based 
on structural dynamics theory, a modal pushover analysis procedure (MPA) has been developed that 
includes higher mode contributions to determine the total seismic demand [19]. 
  
Objectives and Scope 
The objectives of the rest of this paper are to evaluate procedures used in current structural engineering 
practice to estimate seismic demands for buildings, and to present improved procedures that retain the 
conceptual simplicity and computational attractiveness of current methods. Both aspects of the analysis, 
estimating the target roof displacement and pushover analysis, are improved. This paper is organized in 
three parts: modal pushover analysis; SDF-system estimate of roof displacement; and SDF-system 
deformation. 
 

SAC BUILDINGS, GROUND MOTIONS AND RESPONSE STATISTICS 
 
SAC Buildings and Ground Motions 
SAC commissioned three consulting firms to design 3-, 9-, and 20-story model buildings with symmetric 
plan according to the local code requirements of three cities: Los Angeles, Seattle, and Boston. Described 
elsewhere in detail [9], the structural systems of these model buildings consisted of perimeter steel 
moment-resisting frames (SMRF). Structural systems, defined by the N-S perimeter frames of 9- and 20-
story buildings, are used as examples in this paper. 
 
For all three locations, sets of 20 ground motion records were assembled representing probabilities of 
exceedance of 2% and 10% in 50 years (return periods of 2475 and 475 years, respectively) [20]. Results 
presented in this paper are for response of the 9-story and 20-story buildings to the 2/50 set of records. 
This set of ground motions enables testing of the MPA procedure—an approximate method—under the 
most severe conditions; many of these ground motions drive the Los Angeles and Seattle buildings far 
into the region of inelastic behavior and strength deterioration. 
 



Response Statistics 
The dynamic response of each structural system to each of the 20 ground motions was determined by two 
procedures: nonlinear RHA and modal pushover analysis (MPA). The “exact” peak value of structural 
response or demand, r, determined by nonlinear RHA is denoted by NL-RHAr , the approximate value from 
MPA by MPAr , and from FEMA-356 analyses by FEMAr . From these data for each ground motion, the 

ratio MPA MPA NL-RHA
*r r r÷=  is defined. An approximate method is invariably biased in the sense that the 

median of this ratio differs from one, underestimates the median response if the ratio is less than one, and 
provides an overestimate if the ratio exceeds one. 
 
The response of each building was also computed assuming linear elastic behavior. For elastic systems, 
the nonlinear RHA procedure specializes to linear RHA and the MPA procedure to standard response 
spectrum analysis (RSA); thus, the responses are denoted as RHAr  and RSAr  and the response ratio is 
written as RSA RSA RHA

*r r r= ÷ . 
 
Presented in this paper are the median values, defined as the geometric mean [21] of 20 observed values, 
of FEMAr , MPAr , NL-RHAr , MPA

*r , and RSA
*r . In the case where one or more excitations caused collapse of 

the building or its first-“mode” SDF system, the median was estimated by a counting method. The 20 data 
values were sorted in ascending order, the median was estimated as the average of the 10th and 11th values 
starting from the lowest value. 
 

NONLINEAR STATIC PROCEDURE: CURRENT PRACTICE 
 
The nonlinear static procedure in FEMA-356 requires development of a pushover curve, a plot of base 
shear versus roof displacement, by nonlinear static analysis of the structure subjected first to gravity 
loads, followed by monotonically increasing lateral forces with a specified, invariant height-wise 
distribution. At least two force distributions must be considered. The first is to be selected from among 
the following: first mode distribution, Equivalent Lateral Force (ELF) distribution, and SRSS distribution. 
The second distribution is either the “Uniform” distribution or an adaptive distribution; the latter varies 
with change in deflected shape of the structure as it yields [13, 14, 22]. The other four force-distributions 
are defined next and shown in Fig. 3.: 
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Figure 3. FEMA-356 force distributions for Los Angeles 9-story building: (a) 1st Mode, (b) ELF, (c) 
SRSS, and (d) “Uniform” [25]. 

 



1. First mode distribution: * 1j j js m φ=  where jm  is the mass and  1jφ  is the mode shape value at 
the jth floor; 

2. Equivalent lateral force (ELF) distribution: * k
j j js m h=  where jh  is the height of the jth floor 

above the base, and the exponent 1k =  for fundamental period 1 0.5 secT ≤ , 2k =  for 

1 2.5 secT ≥ ; and varies linearly in between; 

3. SRSS distribution: *s is defined by the lateral forces back-calculated from the story shears 
determined by response spectrum analysis of the structure, assumed to be linearly elastic; and 

4. “Uniform” distribution: *j js m= . 
 
Each of these four force distributions pushes the building in the same lateral direction over the entire 
height of the building (Fig. 3). 
 
The limitations of the FEMA-356 force distributions are demonstrated in Figs. 4 and 5 where the resulting 
estimates of the median story drift and plastic hinge rotation demands imposed on the SAC buildings by 
the ensemble of 20 SAC ground motions are compared with the “exact” median value determined by 
nonlinear RHA of the buildings. The target displacement was not determined by the FEMA method, but 
was calculated accurately to ensure a meaningful comparison of the two sets of results. The first-mode 
force distribution grossly underestimates the story drifts, especially in the upper stories, showing that 
higher-mode contributions are especially significant in the seismic demands for upper stories. Although 
the ELF and SRSS force distributions are intended to account for higher mode responses, they do not 
provide satisfactory estimates of seismic demands for buildings that remain essentially elastic (Boston 
buildings) or buildings that are deformed far into the inelastic range (Los Angeles buildings). The 
“uniform” force distribution seems unnecessary because it grossly underestimates drifts in upper stories 
and grossly overestimates them in lower stories of four buildings; the other two (Boston buildings) remain 
essentially elastic. Because FEMA-356 requires that seismic demands be estimated as the larger of results 
from at least two lateral force distributions, it is useful to examine the upper bound of results from the 
four force distributions considered. This upper bound also significantly underestimates drifts in upper 
stories, but grossly overestimates them in lower stories. The FEMA-356 lateral force distributions either 
fail to identify, or significantly underestimate, plastic hinge rotations in beams at upper floors. 
 

IMPROVED NONLINEAR STATIC PROCEDURE: MODAL PUSHOVER ANALYSIS 
 
It is clear from the preceding discussion that the seismic demand estimated by NSP using the first-mode 
force distribution (or others in FEMA-356) should be improved. One approach to reduce the discrepancy 
in this approximate procedure relative to nonlinear RHA is to include the contributions of higher modes 
of vibration to seismic demands. Just as for elastic systems, including higher-mode responses improves 
the seismic demand estimate for buildings responding in their inelastic range. 
 
Basic Concept 
The equations of motion for a symmetric-plan multistory building subjected to earthquake ground 
acceleration ( )gu t&&  are the same as if the excitation were external forces, known as the effective 
earthquake forces: 
 

( ) ( )eff gt u t= −p m1 &&  (1) 
 



0 0.5 1 1.5 2

Boston

9−Story

F
lo

or

G

 
 
3
 
 
6
 
 
9

Nonlinear RHA
FEMA
1st Mode
ELF
SRSS
Uniform

0 0.5 1 1.5 2

F
lo

or

20−Story
 G
    
   4  
    
 8  
    

12  
    

16  
    

20

0 1 2 3 4 5

Seattle

0 1 2 3 4 5
 Story Drift, ∆

NL−RHA
, or ∆

FEMA
 (%)

0 2 4 6 8

Los Angeles

0 1 2 3 4 5 6

 

Figure 4. Median story drifts determined by nonlinear RHA and four FEMA-356 force 
distributions: 1st Mode, ELF, SRSS, and “Uniform” [25]. 
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Figure 5.  Median plastic rotations in interior beams determined by nonlinear RHA and four 
FEMA-356 force distributions: 1st Mode, ELF, SRSS, and “Uniform” [25].  



 
where m is the mass matrix and 1 is a vector with all elements equal to unity. This spatial (height-wise) 
distribution of the effective earthquake forces over the building is defined by the vector ≡s m1  and their 
time variation by ( )gu t&& . This force distribution can be expanded as a summation of modal inertia force 
distributions  ns  [23; Section 13.2]: 
 

1

N
n n n n

n=
= ≡ Γ∑s s s mφ  (2) 

where nφ  is the nth-mode of natural vibration and T T
n n n nΓ = m1 mφ φ φ . Thus, 

 
( ) ( )eff,n n gt u t= −p s &&  (3) 

 
is the nth-mode component of effective earthquake forces. 
 
In the MPA procedure, the peak response of the building to ( )eff,n tp — or the peak “modal” demand 

nr — is determined by a nonlinear static or pushover analysis using the modal force distribution 
*n n=s mφ  [based on Eq. (2b)]. The peak modal demands nr  are then combined by an appropriate modal 

combination rule to estimate the total demand. This procedure is directly applicable to the estimation of 
deformation demands (e.g., floor displacements and story drifts) but computation of plastic hinge 
rotations and member forces require additional consideration, as will be elaborated later.  
 
Although modal analysis theory is strictly not valid for inelastic systems, the fact that elastic modes are 
coupled only weakly in the response of inelastic systems [19] permitted development of the MPA 
procedure. 
 
Summary of Procedure 
The MPA procedure is implemented in a sequence of steps: 

1. Compute the natural frequencies, nω  and modes, nφ , for linearly elastic vibration of the building 
(Fig. 6a).  

2. For the nth-mode, develop the base shear-roof displacement, bn rnV u− , pushover curve for lateral 
force distribution, *n n=s mφ . These force distributions for the first three modes are shown in Fig. 
6b and the pushover curves in Fig. 7. Gravity loads, including those on the interior (gravity) 
frames, are applied before the lateral forces, causing roof lateral displacement rgu . 

3. Idealize the pushover curve, which may exhibit negative post-yield stiffness because of P-∆ 
effects, as a bilinear curve (Fig. 8a). 

4. Convert the idealized bn rnV u−  pushover curve to the force-displacement, sn n nF L D− , relation 
(Fig.8b) for the nth-“mode” inelastic SDF system by utilizing *sny n bny nF L V M=  and 

ny rny n rnD u φ= Γ in which *nM  is the effective modal mass, and rnφ  is the value of nφ  at the 
roof. 
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Figure 6. (a) First three natural vibration periods and modes; and (b) Force distributions 
* ,n n=s mφ n = 1, 2, and 3 for the SAC-Los Angeles 9-story building [25]. 
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Figure 7.  “Modal” pushover curves for first three “modes” of six SAC buildings [25]. 
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Figure 8.  Properties of the nth-“mode” inelastic SDF system from the pushover curve [19]. 

 

5. Compute the peak deformation nD  of the nth-“mode” inelastic SDF system defined by the force-
deformation relation developed in Step 4 and damping ratio nζ . The elastic vibration period of 

the system is ( )1/ 2
2n n ny snyT L D Fπ= . For an SDF system with known nT  and nζ , nD  can be 

computed using nonlinear RHA, inelastic design spectrum, or empirical equations for the ratio of 
deformations of inelastic and elastic systems presented later in this paper. The nonlinear RHA is 
appropriate for research investigations and was adopted here, but the latter two methods, which 
will be discussed later, are intended for practical application. 

6. Calculate the peak roof displacement urn  associated with the nth-“mode” inelastic SDF system 
from rn n rn nu Dφ= Γ . 

7. From the pushover database (Step 2), extract values of desired responses n gr +  due to the 
combined effects of gravity and lateral loads at roof displacement equal to rg rnu u+ . 

8. Repeat Steps 3-7 for as many “modes” as required for sufficient accuracy. In this investigation, 
up to three “modes” were included for 9-story buildings and up to five “modes” were included for 
20-story buildings. 

9. Compute the dynamic response due to nth-“mode”: n n g gr r r+= − , where gr  is the contribution of 
gravity loads alone. 

10. Determine the total response (demand) by combining gravity load response and the peak “modal” 
responses using the SRSS rule: 

 
1/ 2

2
g n

n

r r r
  ≈ ±  

   
∑  (4) 

Plastic Hinge Rotations and Member Forces 
Although the total floor displacements and story drifts are computed by combining the values obtained 
from gravity load and “modal” pushover analyses (Step 10), the plastic hinge rotations are not computed 
by this procedure. The rotations of plastic hinges can be estimated from the story drifts by a procedure 
presented earlier by Gupta [9], which (1) estimates the story plastic drift, defined as the total story drift 
minus the story yield drift; and (2) relates the story plastic drift to the beam plastic rotation. The following 



simplifying assumptions were used in estimating the story yield deformation: (1) inflection points are at 
mid-heights of columns and mid-spans of beams; (2) story elevation has regular geometry and uniform 
section properties; (3) yielding occurs only in beams, i.e., columns do not yield, and panel zone effects are 
ignored; (4) effects of gravity loads on yielding in beams are neglected; (5) second-order effects and 
lateral deflections due to column axial deformation are neglected; and (6) dynamic interaction between 
adjacent stories has little effect on story yield drift. 
 
The MPA procedure as described above can be used to also compute internal forces in structural members 
that remain elastic, but not if they deform into the inelastic range. In the latter, case, the member forces 
are computed from the total member deformations—determined by Step 10 in the MPA procedure—using 
the member force-deformation (or moment rotation) relationship, recognizing P-M interaction in 
columns. These procedures to compute member forces are described in [24]. 
 

EVALUATION OF MPA 
 
Higher Mode Contributions in Seismic Demands 
Figures 9 and 10 show the median values of story drift and beam plastic rotation demands, respectively, 
including a variable number of “modes” in MPA superimposed with the “exact” result from nonlinear 
RHA. The first “mode” alone is inadequate in estimating story drifts, but with a few “modes” included, 
story drifts estimated by MPA are generally similar to the nonlinear RHA results. 
 
The first “mode” alone fails to identify the plastic hinging in the upper floors of all buildings and also in 
the lower floors of the Seattle 20-story building. Including higher-“mode” contributions also improves 
significantly the estimate of plastic hinge rotations. In particular, plastic hinging in upper stories is now 
identified, and the MPA estimate of plastic rotation is much closer—compared to the first-“mode” 
result—to the “exact” results of nonlinear RHA. 
 
Accuracy of MPA 
For each of the six SAC buildings, Fig. 11 shows the median of the story drift ratios MPA

*r  for two cases: 
gravity loads (and P-∆ effects) excluded or included; median values of RSA

*r  from elastic analyses are also 
shown. The median value of RSA

*r  being less than one implies that the standard RSA procedure 
underestimates the median response of elastic systems. Because the approximation in the RSA procedure 
for elastic systems is entirely due to modal combination rules, the resulting bias serves as a baseline for 
evaluating additional approximations in MPA for inelastic systems. Although the profession tacitly 
accepts the modal combination approximation by using commercial software based on this 
approximation, perhaps such significant underestimation of response has not been recognized fully. The 
additional bias introduced by neglecting “modal” coupling in the MPA procedure is small to modest if P-
∆ effects are neglected unless the building responds far into the inelastic range, as in the case of the Los 
Angeles 20-story building [25]. The first-“mode” pushover curves with and without P-∆ effects are 
presented in Fig. 12, also noted are the peak values of roof displacement due to 20 ground motions except 
those that caused collapse in the presence of P-∆ effects: one, three, and six excitations in the case of 
Seattle 9-story, and Los Angeles 9-story and 20-story buildings. P-∆ effects have little influence on the 
MPA bias for both Boston buildings because they remain essentially elastic (Fig. 12); however, they 
increase the bias slightly for Seattle buildings because they are deformed moderately into the inelastic 
range (Fig. 12); in addition, they increase significantly the bias for Los Angeles buildings, especially for 
the Los Angeles 20-story building because it is deformed into the region of rapid deterioration of lateral 
capacity (Fig. 12), leading to collapse of its first-“mode” SDF system during six excitations. Because 
beam plastic rotations are directly related to story drifts, the MPA procedure is similarly accurate in 
estimating both demand quantities [25]. 
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Figure 9. Median story drifts determined by nonlinear RHA and MPA with variable number of 
“modes”; P-∆ effects due to gravity loads are included [25]. 
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Figure 10.  Median plastic rotations in interior beams determined by nonlinear RHA and MPA 
with variable number of “modes”; P-∆ effects due to gravity loads are included [25]. 
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Figure 11.  Median story drift ratios MPA

*∆  for two cases: P-∆ effects due to gravity loads excluded 
or included and RSA

*∆  for SAC buildings [25]. 
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Figure 12.  First-“mode” pushover curves for SAC buildings for two cases: P-∆ effects due to 
gravity loads excluded or included. Identified is the drift at onset of rapid deterioration of the 

lateral capacity and the peak values of roof displacement due to each excitation (except for those 
that caused collapse of the system) [25]. 
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Figure 13.  Median response ratios MPA

*r  for column axial forces, MPA
*P ,  and story drifts, MPA

*∆  [24]. 
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Figure 14: Median response ratios MPA
*r  for column bending moments, MPA

*M , and story drifts, 

MPA
*∆  [24]. 

 



The MPA procedure estimates member forces to similar or better accuracy compared to story drifts. This 
is demonstrated in Figs. 13 and 14 where the median response ratios MPA

*r  for member forces and story 
drifts are compared. Such comparative results are presented for bending moments and axial forces in 
columns; similar results for bending moments and shear forces in beams and shear forces in columns are 
available elsewhere [24]. 
 
Overall Comments 
Based on structural dynamics theory, the MPA procedure retains the conceptual simplicity and 
computational attractiveness of the standard pushover procedures with invariant lateral force distribution. 
Because higher-mode pushover analyses are similar to the first-mode analysis, MPA is conceptually no 
more difficult than procedures now standard in structural engineering practice. Because pushover 
analyses for the first two or three modal force distributions are typically sufficient in MPA, it requires 
computational effort that is comparable to the FEMA-356 procedure, which requires pushover analysis 
for at least two force distributions. 
 
Without additional conceptual complexity or computational effort, MPA estimates seismic demands much 
more accurately than FEMA-356 procedures, as demonstrated by a comparison of Figs. 4 and 9; however, 
MPA is an approximate method that cannot be expected to always provide seismic demand estimates 
close to the “exact” results from nonlinear RHA. The total bias in the MPA estimate of seismic demands 
(including P-∆ effects) for Boston and Seattle buildings is about the same as the largest errors observed in 
the RSA procedure—which are tacitly accepted by the profession by using commercial software based on 
RSA. While MPA is sufficiently accurate to be useful in seismic evaluation of many buildings for many 
ground motions—and much more accurate than FEMA-356 procedures—its errors may be unacceptably 
large for buildings that are deformed far into the region of negative post-yield stiffness, with significant 
deterioration in lateral capacity, e.g., Los Angeles 20-story building subjected to the SAC 2/50 ensemble 
of ground motions. For such cases, MPA and most other pushover procedures cannot be expected to 
provide accurate estimates of seismic demands and they should be abandoned in favor of nonlinear RHA. 
To establish the range of applicability of MPA, its bias and dispersion have been documented for 60 
height-wise regular generic frames and 48 irregular frames, in addition to the six SAC buildings presented 
above [26, 27]. 
 
The computational effort in MPA can be further reduced by simplifying computation of the demands 
associated with higher vibration modes by assuming the building to be linearly elastic [28]. Such a 
modified MPA leads to a larger estimate of seismic demand, thus reducing the unconservatism of MPA 
results (relative to nonlinear RHA) in some cases and increasing their conservatism in others. While this 
increase in demand is modest and acceptable for systems with moderate damping, at least 5%, it is 
unacceptably large for lightly damped systems. 
 
In practical application of MPA, the roof displacement for each modal pushover analyses can be 
estimated from the elastic spectrum defining the seismic hazard multiplied by the inelastic deformation 
ratio. These topics are the subject of the remainder of this paper. 
 

SDF-SYSTEM ESTIMATE OF ROOF DISPLACEMENT 

As mentioned earlier, the target value of roof displacement is determined in current NSP from the 
earthquake-induced deformation of an inelastic SDF system. To examine the accuracy of this procedure, 
we compare this SDF-system estimate of roof displacement ( )SDFru —given by 1ru  for the first mode in 

Step 6 of the MPA summary—with the “exact” value ( )MDFru  determined by nonlinear RHA of the 
multistory building treated as an MDF system. Calculating 1ru  requires 1D , which is determined by 



nonlinear RHA of the SDF system, thus avoiding any of the approximations underlying the simplified 
methods for estimating its deformation [1, 2, 3]. The response of each SAC building to each of 20 SAC 
ground motions is computed and the displacement ratio is determined: ( ) ( ) ( )SDF MDFSDF

*r r ru u u= ÷ . The 

difference between the median of this displacement ratio and unity indicates the bias in the SDF-system 
estimate of roof displacement. 
 
Although our principal interest is inelastic seismic demands, for better understanding we first examine 
this displacement ratio for elastic systems. Under this assumption, Fig. 15 presents histograms of the 20 
values of the displacement ratio together with its range of values and median value for each of the six 
SAC buildings. The median ratio is always less than 1.0, indicating that the SDF-system estimate is 
biased toward underestimating the median roof displacement. This underestimation, caused by neglecting 
higher mode contributions is not negligible—it varies between 9 and 26%. The SDF system 
underestimates the roof displacement of 9-story buildings due to 19, 18, and 17 of the 20 ground motions 
for Boston, Seattle, and Los Angeles locations, respectively; for 20-story buildings it is underestimated by 
all excitations except one for the Boston structure. Surprisingly, the displacement due to individual 
excitations is underestimated by as much as 40% to 50% for these buildings. 
 
To investigate this large underestimation of roof displacement, the response history of modal 
contributions and of the combined value of roof displacement for the Los Angeles 9-story building due to 
two of the 20 SAC ground motions is presented in Fig. 16. Consistent with the prevailing view, the first 
mode is strongly dominant in the building response to one of these excitations (Fig. 16a) and the SDF-
system estimate of roof displacement is essentially exact (192 cm versus 191 cm). For another excitation, 
however, the SDF-system estimate (48.6 cm) is 40% less than the “exact” value (80.8 cm) because the 
second mode response is too large to be ignored (Fig. 16b). 
 
Returning to inelastic buildings, Fig 17 shows histograms of the 20-values of the displacement ratio 
together with its range of values and median value for each of the six SAC buildings3. The SDF-system 
underestimates the median roof displacement by 14% and 18% for the Boston 9- and 20-story buildings, 
respectively, underestimates by about 5% for Seattle buildings, and overestimates by 19% for Los 
Angeles buildings. The range of values for the displacement ratio is now much wider, implying that the 
SDF-system estimate of roof displacement due to individual ground motions may be much worse for 
inelastic systems. This estimate can be alarmingly small (as low as 31% to 82% of the exact value for the 
six buildings) or surprisingly large (as large as 145% to 215% of the exact value for Seattle and Los 
Angeles buildings). The errors are actually worse than indicated by Fig.17 because it does not include 
those cases where nonlinear RHA predicted collapse of the first-“mode” SDF system but not of the 
building as a whole3. This large discrepancy arises because for individual ground motions the SDF system 
may significantly underestimate or overestimate the yielding-induced permanent drift in the response of 
the building [29]. 
 
The preceding results lead to two principal conclusions. First, the first-“mode” inelastic SDF system 
provides a biased estimate of the roof displacement of a building. A correction factor to overcome this 
bias should be developed based on available research data [e.g., Ref. 29]. Second, an SDF-system should 
not be used to estimate the roof displacement due to an individual ground motion; however, with a bias 
correction factor it is a reasonable approach if the seismic hazard is defined by a smooth spectrum or an 
ensemble of ground motions. 
 

 
3 Data for excitations that caused collapse of the SDF system are excluded, reducing the number of data to 19 for the 
Seattle 9-story building, 17 for the Los Angeles 9-story building, and 14 for the Los Angeles 20-story building; the 
median values for these buildings are computed by the counting method. 
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Figure 15. Histograms of ratio ( )
SDF

*ru for SAC buildings analyzed as elastic systems; range of 

values and median value of this ratio are noted [29]. 
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Figure 16. Modal contributions to roof displacement of SAC-Los Angles 9-Story building analyzed 
as an elastic system to two SAC ground motions: (a) Record No. 38; (b) Record No. 31; RSA 

estimate of roof displacement is also noted [29]. 
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Figure 17. Histograms of ratio ( )
SDF

*ru for SAC buildings including P-∆ effects due to gravity loads; 

range of values and median value of this ratio are noted [29]. 
 

DEFORMATION OF INELASTIC SDF SYSTEMS: CURRENT PRACTICE 
 
As mentioned earlier, seismic demands are estimated in current engineering practice by pushover analysis 
of the building up to a target roof displacement, estimated from the deformation D  of an inelastic SDF 
system. The methods described in ATC-40 and FEMA-356 guidelines are commonly used to determine 
D . 
 
ATC-40 Method 
The deformation of an inelastic SDF system is estimated by the capacity-spectrum method, an iterative 
method requiring analysis of a sequence of equivalent linear system; the method is typically implemented 
graphically. Unfortunately, the ATC-40 iterative procedure does not always converge; when it does 
converge it does not lead to the exact deformation. Because convergence traditionally implies accuracy, 
the user could be left with the impression that the calculated deformation is accurate, but the ATC-40 
estimate errs considerably. This is demonstrated in Fig.18a, where the deformation estimated by the ATC-
40 method is compared with the value determined from inelastic design spectrum theory and the well-
established equations relating the peak deformation mu of an inelastic SDF system to the peak 
deformation ou of the corresponding linear system: 
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Figure 18. Deformations computed by ATC-40 and from inelastic design spectrum using three 
different y nR Tµ− −  equations: (i) Newmark-Hall (NH) [30]; (ii) Krawinkler and Nassar (KN) [32]; 
and (iii) Vidic et al. (VFF) [31]; part (a) compares deformations and part (b) shows discrepancy in 

ATC-40 method. 
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where nT is the initial elastic period of the system, yR its yield-strength reduction factor, µ  the ductility 
factor, and A the pseudo-acceleration ordinate of the elastic design spectrum. Presented in Fig. 18a are the 
deformations determined by using three different y nR Tµ− −  equations [30, 31, 32]). Both the 
approximate and theoretical results are presented for systems covering a wide range of period values and 
ductility factors subjected to ground motions characterized by an elastic design spectrum. The 
discrepancy in the approximate result presented in Fig. 18b shows that the ATC-40 method 
underestimates by 40-50% the deformation over a wide range of periods [33]. 
 
The two flaws in the ATC-40 capacity spectrum method—lack of convergence in some cases and large 
errors in many cases—appear to have been rectified in recent research [34].  The ATC-55 project, now 
nearing completion, has also led to improved procedures for equivalent linearization of inelastic systems. 
Both of these investigations derive the optimal vibration period and damping ratio parameters for the 
equivalent linear system by minimizing the differences between its response and that of the actual 
inelastic system. Such an equivalent linear method would obviously give essentially the correct 
deformation. However, the benefit in making the equivalent linearization detour is unclear when the 
deformation of an inelastic system can be readily determined using available equations for the inelastic 
deformation ratio (e.g., Refs. 35 and 36] or by using the inelastic design spectrum [e.g., 23 (Chapter 7), 
37, 38]. 
 
The attractive graphical feature of the ATC-40 capacity spectrum method can be retained without the 
equivalent linearization detour. This is achieved in the capacity-demand-diagram method by using the 
well-known inelastic design spectrum to define the demand [39]. When both capacity and demand curves 
are plotted in the pseudo acceleration-deformation format, the yielding branch of the capacity diagram 
intersects the demand curves for several ductility factor values. The deformation is given by the one 



intersection point where the ductility factor calculated from the capacity diagram matches the value 
associated with the intersecting demand curve. This deformation is identical to the value determined by 
Eq. (5). 
 
FEMA-356 Method 
The deformation of an inelastic SDF system is estimated by 
 

2

1 2 3 2
nTD C C C A
π

 =  
 

 (6) 

Multiplying the deformation of the elastic system are three coefficients, 1C , 2C , and 3C . The coefficient 

1C  represents the inelastic deformation ratio, m ou u , for inelastic systems without pinching, stiffness 
degradation, or strength deterioration of their hysteresis loop. Coefficient 2C  accounts for the increase in 
deformation of the inelastic system due to these effects not considered in 1C , and 3C  accounts for P-∆ 
effects. 
 
Equations and numerical values for these coefficients specified in FEMA-356 guidelines are based, on 
research results and on judgment. However, some of the numerical values are not supported by research 
results; e.g., 1C  is limited to 1.5, which is much smaller than the inelastic deformation ratio (determined 
from dynamic response analyses) for systems in the acceleration-sensitive region of the spectrum; 
however, the value of 1 1.0C =  at longer periods is theoretically correct. As part of the ATC-55 project, 
now nearing completion, coefficients 1C , 2C , and 3C  were investigated comprehensively and improved 
specifications were developed for these coefficients. 
 

DEFORMATION OF INELASTIC SDF SYSTEMS: IMPROVED METHODS 

The inelastic deformation ratio, m oC u uµ = , if expressed as a function of elastic vibration period nT  and 
ductility factor µ , can be used to determine the inelastic deformation of a new or rehabilitated structure 
where global ductility capacity can be estimated. The inelastic deformation ratio, R m oC u u= , if 
expressed as a function of nT  and yield-strength reduction factor yR , can be used to determine the 
deformation of an existing structure with known lateral strength. 
 
Figures 19(a) and 19(b) present the median values of Cµ  and RC , respectively, as a function of nT , for 
elastoplastic systems subjected to the LMSR4 ensemble of 20 ground motions; the spectral regions are 
noted in the plots. In the acceleration-sensitive region Cµ  and 1RC ≈  at n cT T=  but they exceed unity 
increasingly for shorter periods and larger µ  or yR , indicating greater inelastic action. For these short-
period systems, the Cµ  and RC  are very sensitive to the yield strength, increasing as the yield strength is 

reduced. Both Cµ  and RC  for very short-period systems ( )n aT T< , even if their strength is only slightly 

smaller than the minimum strength required for the structure to remain elastic (e.g., 1.5yR = ) are much

 
4 Seven ensembles of far-fault ground motions, each with 20 records, are mentioned. The first group of ensembles, 
denoted by LMSR, LMLR, SMSR, and SMLR represent four combinations of large (M=6.6-6.9) or small (M=5.8-
6.5) magnitude and small (R=13-30 km) or large (R=30-60 km) distance. 
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Figure 19. Median inelastic deformation ratios Cµ  and RC  for elastoplastic systems subjected to 

the LMSR ensemble of ground motions [36]. 
 
 
larger than unity. In the velocity sensitive region, Cµ  and 1RC ≈  and are essentially independent of the 
ductility factor or yield strength. In the displacement-sensitive region, Cµ  and 1RC <   for systems in the 
period range dT  to fT , where these ratios decrease as the ductility factor is increased or strength is 
reduced; however, for systems with periods longer than fT , Cµ  and 1RC ≈  are essentially independent 
of ductility factor or strength, and both Cµ  and 1RC =   for very long-period systems, independent of µ  
or yR . Results such as these are the basis for the widely used (e.g., FEMA-356 method) equal 

deformation rule, i.e., m ou u= , which is reasonable for systems in the velocity- and displacement-
sensitive regions of the spectrum, but not for the acceleration-sensitive region. However, the limiting 
value of 1.5 for the coefficient 1C  in FEMA-356 is not supported by Fig. 19 for systems with nT  in the 
acceleration sensitive region of the spectrum. 
 
What is the influence of earthquake magnitude and distance on the inelastic deformation ratio? To answer 
this question, the median Cµ  is plotted against nT  in Fig. 20a for the LMSR, LMLR, SMSR, and SMLR 
ground motion ensembles4. These results indicate that the inelastic deformation ratio is essentially 
independent of earthquake magnitude and distance; however, it is different for near-fault ground motions 
as will be shown later. 
 
What is the influence of soil conditions at the recording sites? To answer this question, the median 
inelastic deformation ratio is presented in Fig. 20b for three ensembles of ground motions recorded on 
firm sites: NEHRP site classes B, C, and D5, all of which are firm soil sites. The median Cµ  versus nT  
curves (Fig. 20b) for the three site classes are very similar; to each other and to the LMSR result. Thus, 
the inelastic deformation ratio is essentially independent of local soil conditions so long as they are firm 
soil sites, but it may be affected by soft soil conditions. 

 
 
5 The second group of three ensembles is categorized by NEHRP site classes B, C, or D. These ground motions were 
recorded during earthquakes with magnitudes ranging from 6.0 to 7.4 at distances ranging from 11 to 118 km. 
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Figure 20. Comparison of Cµ  for elastoplastic systems with 4µ = subjected to (a) LMSR, LMLR, 

SMSR, and SMLR ground motion ensembles; and (b) site class B, C, and D ensembles [36]. 
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Figure 21. Comparison of Cµ  for far-fault (LMSR) and near-fault ground motion ensembles  

plotted versus (a) elastic vibration period nT  and (b) normalized period /n cT T ; both plots are for 
elastoplastic systems with 4µ =  [36]. 

 
The median inelastic deformation ratios Cµ  and RC  for the fault-normal (FN) and fault-parallel (FP) 
components of near-fault (NF) ground motions differ significantly from those for far-fault (FF) motions6 
(Figs. 21a and 22a). This systematic difference between the values of Cµ  (and RC ) for NF and FF 
ground motions, especially in the acceleration-sensitive region of the spectrum, is primarily due to the 
difference between the values of cT  for the two sets of excitations; cT  is the period separating the

 
6 Six ensembles of NF ground motions are mentioned in this paper. The first two ensembles of NF ground motions, 
denoted by NF-FN and NF-FF, are the two horizontal components  (FN and FP) of 15 NF ground motions, recorded 
during earthquakes of magnitudes ranging from 6.2 to 6.9 at distances ranging from 0 to 9 km. These ground 
motions were all recorded on firm soil (NEHRP site class D) or rock; the rock motions have been modified by P. 
Somerville for soil conditions. The next two ensembles, denoted by NF-FN (soil33) and NF-FP (soil 33) are the FN 
and FP components of 33 motions recorded on soil during earthquakes of magnitudes 6.0 to 7.6 at distances of 0.2 to 
16.4 km. The last two ensembles, denoted by NF-FN (rock12) and NF-FP (rock12), are the FN and FP components 
of 12 motions recorded on rock during earthquakes of magnitudes 5.6 to 7.4 at distances of 0.1 to 14 km. 
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Figure 22: Comparison of RC  for far-fault (LMSR) and near-fault ground motion ensembles 
plotted versus (a) elastic vibration period nT  and (b) normalized period /n cT T ; both plots are for 

elastoplastic systems with 4yR =  [36]. 
 
acceleration- and velocity-sensitive regions of the median response spectrum. This assertion is 
demonstrated by plotting the ensemble median of individual ground motion data for Cµ  (and RC ) 

expressed  as a function of the normalized vibration period n cT T ;  cT  varies with the excitation (Figs. 
21b and 22b). Now the inelastic deformation ratio plots for FF ground motions and both—FN and FP—
components of NF ground motions have become very similar in all spectral regions. 
 
Estimating Deformation of Inelastic Systems 
Simplified equations for inelastic deformation ratios RC  and Cµ  would obviously facilitate estimation of 
the deformation of an inelastic SDF system because the deformation of the corresponding linear system is 
readily known from the elastic design spectrum. Developing such equations, a problem first studied by 
Veletsos and Newmark {40], has been the subject of many publications; the more recent ones are found in 
Refs. 35 and 36.  
 
Presented next is an equation that fits the median RC  data for any ensemble of ground motions (but 
ignores the data showing 1RC <  over the period range dT  to fT ) and satisfies the limiting values of 

R RC L=  at 0nT =  and  1RC =  at nT = ∞ , where 
 

11 1 y
R

y

R
L

R α
− 

= + 
 

 (7) 

 
and α   is the post-yield to initial stiffness ratio of bilinear systems. Such a function for RC  has been 
derived [36] in terms of the yield-strength reduction factor yR  and the normalized period n cT T : 
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 (8) 



 

Nonlinear regression analysis of the data for four (LMSR, LMLR, SMSR, and SMLR) ensembles of far-
fault (FF) ground motions led to a = 61, b = 2.4, c = 1.5, and d = 2.4. 
 
As expected, Eq. (8) using these values for a, b, c, and d provides a good, generally modestly 
conservative estimate of the median RC  for LMSR, LMLR, SMSR, and SMLR ground motion ensembles 
(Fig. 23). Interestingly, the same equation and parameters also provide a good fit to the RC  data for 
NEHRP site class B, C, and D ensembles (Fig. 24). Most impressive is the fact that the same equation and 
parameters provide a satisfactory fit to the data for ensembles of near fault (NF) motions recorded on soil 
(Fig. 25) and on rock (Fig. 26). Thus, Eq. (8) and these parameter values are applicable for a wide range 
of conditions, except for soft soil sites, e.g., Mexico City lake bed and San Francisco Bay margins.  
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Figure 23. Comparison of RC  estimated by proposed equation with computed data for LMSR, 
LMLR, SMSR, and SMLR far-fault ground motion ensembles for elastoplastic ( 0α = ) and bilinear 

( 10%α = ) systems; and 6yR =  [36]. 

 

0.01 0.1 1 10 100

1

10

100

(a) α=0%;  R
y
=6

C
R

T
n
/T

c

B              
C              
D              
Proposed C

R

0.01 0.1 1 10 100

1

10

100

(b) α=10%;  R
y
=6

C
R

T
n
/T

c  

Figure 24. Comparison of RC  estimated by proposed equation with computed data for far-fault 
ground motions recorded on site classes B, C, and D for elastoplastic ( 0α = ) and bilinear 

( 10%α = ) systems; and 6yR =  [36]. 
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Figure 25. Comparison of RC  estimated by proposed equation with computed data for near-fault 
ground motion ensembles: NF-FN (soil33) and NF-FP (soil33) recorded on soil [36]. 
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Figure 26. Comparison of RC  estimated by proposed equation with computed data for near-fault 
ground motion ensembles: NF-FN (rock12) and NF-FP (rock12) recorded on rock [36].  

 
Presented finally is an improved equation that fits the median Cµ  data for any ensemble of ground 
motions (but ignores the data showing 1Cµ <  over the period range dT  to fT ) and satisfies the limiting 
values of C Lµ µ=  at 0nT =  and  1Cµ =  at nT = ∞ , where 

( )1 1
Lµ

µ
µ α

=
+ −

 (9) 

Such a function for Cµ  has been derived [36] in terms of ductility factor µ  and the normalized period 

n cT T : 
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 (10) 



Observe that the form of this equation is the same as Eq. (8) for RC  where RL  is replaced by Lµ  and yR  
by µ . Nonlinear regression analysis of the data for four (LMSR, LMLR, SMSR, and SMLR) FF ground 
motion ensembles led to a = 105, b = 2.3, c = 1.9, d = 1.7. 
 
Equation (10) with these parameter values provides a satisfactory estimate of the median Cµ  for LMSR, 
LMLR, SMSR, and SMLR ground motion ensembles, NEHRP site class B, C, and D ensembles, and NF 
ensembles on soil and on rock; plots similar to Figs. 23-26 are available in Chopra and Chintanapakdee 
[36]. Thus, Eq. (10) and these parameter values are generally applicable for a wide range of conditions, 
except for soft soil sites. A more complicated equation would be necessary to match the 1Cµ <  data in 
the dT  to fT  period range; however, these data should be re-examined with P- ∆  effects included before 
developing such an equation. 
 

CLOSURE 
 
The profession has come a long way in estimating seismic demands for buildings by abandoning 
traditional elastic analysis of the structure for reduced seismic forces and developing instead procedures 
that explicitly consider inelastic behavior of the structure. However, these more recent methods, now 
standard in structural engineering practice to estimate seismic demands should be improved. Towards this 
goal, much research has been accomplished worldwide in the past five years, and several different 
approaches are in various stages of development. This paper has emphasized one possible approach that 
provides considerably improved estimate of demands, while retaining the conceptual simplicity and 
computational attractiveness of the procedures currently popular in professional practice. Based on modal 
pushover analysis (MPA) and improved methods to estimate the target roof displacement, this approach is 
ready for practical application to symmetric-plan buildings. 
 
The MPA procedure for estimating seismic demands has been extended to unsymmetric-plan buildings 
and, based on a preliminary evaluation, appears to be promising [41]. It remains to be evaluated further 
considering a range of buildings subjected to ensembles of ground motions. 
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