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SUMMARY 
 
Investigations show that the seismic behaviour of space structures may fundamentally differ from the 
conventional structures. This paper presents the results of dynamic analyses of double-layer barrel vaults 
with different configurations and support conditions subjected to a severe earthquake, and highlights some 
basic influential elements in the seismic performance of the space structures. The significance of the 
presence of snow loads on dynamic characteristics and seismic performance of space structures is 
emphasized. Various hysteresis models were used, and the effects of strength reduction and energy 
dissipation in compression struts were investigated. The results of seismic analysis generally indicate that 
the induced seismic forces are enormously larger than the conventional seismic forces. The consequences 
of this finding on seismic design of space structures have been discussed, and remedial suggestions have 
been proposed. 
 

INTRODUCTION 
 
In a survey on the seismic behaviour of space structures during the 1995 Hyogoken-Nanbu earthquake in 
Japan, Saka and Tanigushi [1] did not reported any full or partial collapse amongst over one hundred 
double-layer and many gymnasiums with single-layer space structures in the meizoseismal region. In 
effect, many of these structures were used to shelter the people who lost their homes during the 
earthquake.  This promising behaviour has been confirmed by other similar reports. The key to the 
superior behaviour of space structures is their relatively light self weight, high degree of redundancy, and 
appropriate 3-dimensional geometrical form.  
During severe earthquakes, space structures behave differently from most ordinary structures in many 
ways:  
i. In space structures, the ratio of snow and wind loads to the dead load is markedly greater than in 
ordinary buildings. As a structure should be designed for these loads, in the absence of snow and wind, 
the space structures have a much more reserve capacity than the ordinary structures. This reserve capacity 
helps space structures to sustain relatively high seismic loads with little inelastic deformation, whereas 
ordinary structures need to undergo large inelastic deformation because their strengths are normally a 
small fraction of the elastic demand forces. This has a predominant influence on determining the factors 
that account for inelastic performance of structures in earthquakes such as the response modification 
factor R, and the ductility ratio µ. 
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ii. The probability of coincidence of snow and earthquake loads does not play a significant role in 
ordinary buildings, because the snow loads are usually a negligible fraction of the total weight. On the 
contrary, snow loads can be easily up to 2 to 3 times the self weight of a space structure. Therefore, it is 
essential to establish a strategy for combining snow and earthquake loads in the design stage. 
iii. Unless supported by an ordinary ductile substructure, many multiple-layer space structures cannot 
develop a safe failure mechanism with plastic hinges, and instead, they make inelastic excursions through 
buckling of axial members. Such failure mechanism is recognized as undesirable because it is 
accompanied by heavy strength deterioration, and may result in a progressive failure.  Therefore, as 
opposed to ordinary structures where we rely upon their capability for inelastic deformation through safe 
failure mechanisms to discount seismic forces, space structures should be designed for much higher 
seismic forces due to their shortage of ductility. 
iv. In ordinary frame buildings, the horizontal and vertical modes are clearly separated and uncoupled, 
and the horizontal response of building is predominantly governed by the first mode known as the 
fundamental mode. Thus, the vertical component of earthquake does not usually affect the horizontal 
response significantly, and therefore, it is ignored in the design of seismic resistant systems such as 
bracings and shear walls. On the other hand, due to complicated nature of space structures, this may not 
prevail, and the effects of vertical component of earthquake and higher modes of vibration should be 
considered. 
   The main objective of the present study is to highlight some basic characteristics of seismic 
behaviour of space structures, in conjunction with the above issues.  
During the last decade, numerous investigations on seismic behaviour of space structures have been 
reported [1-9]. Saka and Tanigushi [1]  reported a number of cases where the delamination of concrete 
around anchor bolts and supports was found to be the dominant mode of failure during a severe 
earthquake. Pulling off and failure of anchor bolts at the bearing supports, inelastic buckling of members 
in the vicinity of supports, and fracture between ball joints and members were also reported [1]. It will be 
shown later that these types of failure result from underestimation of seismic loads in the design of joints 
and bearing supports.  Similar observations have been reported by Kawaguchi [2]. Karamanos and 
Karamanos [3] discussed the effect of flexibility of supports and the progressive failure. Kunida [4] 
investigated the elastic response of shells to horizontal and vertical seismic excitations. Yamada [5] 
showed that the dynamic response of barrel vaults can be predicted by cylindrical shells with sufficient 
accuracy. Kato et al [6-8] conducted extensive research on seismic behaviour of space structures. They 
investigated the effect of vertical component of earthquake on single layer reticular domes [7]. They 
demonstrated that a dome designed for a gravity load of 180 kg/m2 with a safety factor of 3, would initiate 
to yield under Kobe’s vertical motion at a peak acceleration of 583 gal. It can be concluded that such 
structures may undergo yielding during many severe earthquakes.  
  In the present study, double-layer barrel vaults with two different configurations were subjected 
to seismic loads at presence of snow load, and their response was studied in elastic and inelastic ranges. In 
some models, columns were provided to act as a flexible substructure. In inelastic analyses, various 
hysteresis models were used for axial members to represent different types of post buckling behaviour.  

 
MODELS 

 
4 different barrel vault models were chosen. These models are designated as M1, M2, M3, and M4. As 
shown in Fig. 1, in M1 and M2 there is no column available, and they are seating directly onto the ground. 
Conversely, in M3 and M4, the arch has been seating on columns. The models consist of two-way double 
layer grids. As shown in Fig. 2, in M2 and M3, a rectangular grid is used for both upper and lower layers, 
and in M1 and M4, the lower layer is replaced with a diagonal grid.  
 
 
 



 
 
 

 
 
 
 

 
a. models M1 and M2                        b. models M3 and M4 

Figure 1. geometry and support conditions 
 
 
 
 

 
 

a. models M1 and M4               b. models M2 and M3 
Figure 2. configuration 

 
 

Model Idealization 
To minimize the amount of computation efforts, it was decided to analyze one module instead of the 
whole structure. These modules were also designated as M1, M2, M3, and M4. As shown in Fig. 3, the 
width of each module is 2 m.  It was assumed that no displacement can occur in transverse direction. The 
total mass was distributed evenly between the nodes.  

To study the seismic performance of the models, they were needed to be designed first. The dead 
and the snow loads were assumed as equal to 50 kg/m2, and 150 kg/m2, respectively. Therefore, the total 
gravity load, equals to 8 ton for each module (2x20x200 kg). This gravity load was applied as vertical 
point loads to the nodes, and the models were proportioned to sustain these forces. Therefore, the models 
were primarily designed for loading combination D+S, where D and S represent dead weight and snow, 
respectively. The members were designed from hollow steel tubes. The slenderness ratio of the 
compression members was limited to 200. Subsequently, the models were subjected to the above loading, 
and the design was modified accordingly. This went on until no further modification was needed.  
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Figure 3. Module Models 

 
LINEAR SEISMIC ANALYSIS 

 
Seismic Loading 
The models were subjected to two types of loading: i. Nominal seismic loads, ii. Naghan earthquake 1977. 
The nominal seismic loads were calculated according to the Iranian seismic code with a response 
modification factor R of 6. The amplification factor B was assumed as equal to 2 for all modes. This 
resulted in an identical shear coefficient of C=0.1167 for all modes.  
 The second type of seismic loading consists of a ground motion acceleration applied to the 
supports. The acceleration response of Naghan earthquake is shown in Fig. 4. The Naghan earthquake was 
applied both in horizontal and vertical direction. However, in vertical direction a scaling factor o 2/3 was 
used. Due to low level of damping in space structures as compared with ordinary buildings, the damping 
ratio was assumed as equal to 0.02. 
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Figure 4. Acceleration response spectrum of Naghan Earthquake 1977 for 2% damping. 

a) M1 c) M3 

b) M2 d) M4 



Modes and Frequencies 
One significant factor in evaluating the effect of earthquake on space structures is the amount of snow 
mass that is present during an earthquake. In ordinary buildings, the presence of snow does not affect the 
seismic response, because the ratio of snow mass to the total mass is very small. However, this ratio can 
easily exceed 1 in space structures locating in mountainous or cold regions. The presence of snow can 
produce various effects: i. Inertial seismic forces are increased due to an increase in mass, ii. The overall 
strength decreases as the snow load is applied, iii. Frequency decreases with an increase in snow mass. In 
the present study, various amounts of snow loads were applied to the models, and these effects were 
investigated. Fig. 5 shows the variation of the fundamental period with respect to the amount of snow. The 
results indicate that the presence of snow load increases the fundamental periods of all four models. For 
example, the fundamental period of M1 increases from 0.133 to 0.211 Sec as the snow mass increases 
from 30 to 150 kg/m2. Similarly, the fundamental period of M3 increases from 0.306 to 0.483 at this 
range. It can also be concluded that configuration has a negligible effect on the fundamental period, as in 
this figure M1 and M3 are, respectively, very close to M2 and M4. On the other hand, the results indicate 
that the geometry plays a significant role, as the presence of columns in M4 has resulted in an average 
increase of 145% in period with respect to M1. 
 

Figure 5. variation of period with snow mass 
 
The frequencies and participating masses of M1 and M3 are displayed in Table 1. To compare the results 
with ordinary fame buildings, the frequencies and participation masses of a typical 20 storey building are 
also given. The results indicate that the fundamental frequency of M3 is much less than M1. This is due to 
the presence of columns in M3 that acted as a rather flexible substructure. It can also be seen that the 
participation of the fundamental mode exceeds 80% in both M3 and the 20 storey structure. On the other 
hand, in M1, the fundamental mode has participated in dynamic response by only 59.7%. Hence, it can be 
concluded that the number of modes that contribute in dynamic response is higher in space structures with 
rigid supports as compared with ordinary buildings. As shown in Table 1, the first mode of M1 is a 
horizontal mode with a frequency of 7.5 Hz, and the second and third modes are vertical modes with 
frequencies of 13.9 and 21.7 Hz, respectively. Therefore, due to presence of both horizontal and vertical 
ground motion in real earthquakes, there should occur a marked coupling between horizontal and vertical 
modes, whereas these modes can be easily uncoupled in ordinary buildings. 
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Table 1. Frequencies and participating masses 
 

M1 M3 20 storey 
building frequency Participating 

mass% 
frequency Participating 

mass% 

Mode 
No 

Freq. P. 
mass 

% 

Horiz
. 

mode 

Verti. 
mode 

Horiz
. 

Vert. Horiz
. 

mode 

Verti. 
mode 

Horiz
. 

Vert. 

1 1 80.7 7.5  59.7  3.2  93.5  
2 3.02 10.1  13.9  27.2  9.8  29 
3 5.15 3.4  21.7  51.6 19.6  4.2  
4 7.78 1.75 23.8  16.8   27  31.2 
5 9.49 1.06  32.3  4.3  30  1.9 
6 11.72 0.72 35.7  17.7  38.5  .7  
7 13.99 0.52 40  6.4  41.7  0  
8 16.31 0.39  41.7  1.2 41.7  0  
9 18.69 0.30 41.7  .2  41.7  .7  
10 21.11 0.24  66.7  13.7  47.6  .6 

 
 
Seismic Forces 
As discussed before, all models were subjected to nominal seismic forces, as well as ground motion. Due 
to the significance of coincidence of earthquake and snow for space structures, the models were loaded 
with various amounts of snow from 20% to 100% (i.e. 30 to 150 Kg/m2). The base shear force was 
calculated in each case. It was found that M1 and M2 have very similar base shears. The same applies to 
M3 and M4. Therefore it can be concluded that the configuration of these space structure models has not 
affected the seismic loading. The base shears are illustrated in Fig. 6 for M1 and M3. These results 
correspond to nominal seismic loads and the Naghan earthquake. The results indicate that the nominal 
seismic loads are far less than what a structure experiences during a real earthquake. For example, as the 
nominal seismic load for M1 with 30 Kg/m2 snow load was obtained as 0.24 ton, the structure would 
experience some 4.95 ton in Naghan earthquake in the elastic region. However, the structure may not 
sustain such a large shear force, and therefore, it responds inelastically. In such case, a reduction in base 
shear is normally observed. This will be discussed later. The elastic base shear in M3 is even larger, as it 
reaches 9.08 ton under a snow load of 150 kg/m2. The total weight of the model including the snow is 8 
ton (2x20x200 kg). Therefore, it can be deduced that the elastic seismic forces can exceed the weight of 
structure.   

It is interesting to notice that the presence of snow load increases the seismic loads significantly. 
For example, as the snow load increases from 30 to 150 kg/m2, the base shear in M1 increase from 0.24 to 
0.60 ton under nominal seismic loading, and from 4.95 to 7.76 under Naghan earthquake, respectively. 
Hence, it can be concluded that as opposed to ordinary buildings, the probability of coincidence of snow 
and earthquake plays a significant role in seismic response of most space structures, and therefore, it 
should be taken into account by seismic codes in developing regulations for seismic loading of space 
structures.  



Fig. 6 also indicates that the vertical base reaction due to vertical excitations can be relatively 
large. For example, the vertical base shear of M1 was equal to 7.76 ton at a snow load of 150 kg/m2. 
Thus, the vertical components of earthquakes can produce vertical seismic forces up to the weight of a 
structure, and even more. As the strategy for allowing a structure to respond inelastically can be different 
for horizontal and vertical loads, the generation of such large values of vertical forces in real earthquakes 
should be dealt with special attention. 

 
 

Figure 6. Seismic base shear force s of M1 and M3 
 
 

NONLINEAR SEISMIC ANALYSIS 
 

Hysteresis models 
In the present study, 8 hysteresis models were employed and incorporated in a dynamic computer 
programme to analyze M1, M2, M3, and M4 in nonlinear range. As shown in Fig. 7, these hysteresis 
models are designated as P, Q, U, V, W, X, Y, and Z. X describes an unlimited linear elastic behaviour, 
and has been used as a reference point. V corresponds to an ideal elasto-plastic behaviour, without any 
strength deterioration and stiffness degradation. This model represents the characteristics of either very 
stocky compression struts where no buckling occurs, or those with a yielding fuse. Y is similar to V in 
tension, and it behaves differently in compression as it unloads along the line of zero stiffness until it 
reaches the last yielding threshold. This model idealizes the hysteresis behaviour of elastic slender struts 
around their zero-stiffness plateau.  In this model, no energy dissipation takes place in compression cycles. 
Q is similar to Y, except that it asymptotes by a hyperbolic curve to a reduced strength equal to 80% of the 
buckling load. In Z, an 80% reduction takes place immediately after buckling, and the unloading path is 
similar to ideal elasto-plastic systems. It should be noticed that the member can regain its full compressive 
strength only after it has undergone some tensile yielding. In W, the strength decreases after buckling 
along a hyperbolic line, and asymptotes to 20% of the buckling load. Once unloaded, it runs towards the 
last threshold of tensile yielding, and it regains its full compressive strength after undergoing tensile 
yielding. P and U are similar to W, except that their asymptotic compressive strengths are equal to, 
respectively, 50% and 80% of the buckling load. 
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Figure 7. Hysteresis models 

 
Analyses 
The computer program SOHRAB was written for nonlinear dynamic analysis of space structures. The 
program applies no limit to the number of nodes, and it can take any type of hysteresis model. The 
accuracy of this program was checked with DRAIN-2DX. The results of several analyses were found to 
match quite satisfactorily. This program was then used to conduct nonlinear analyses. Models M1 to M4 
were subjected to the horizontal acceleration of Naghan earthquake with a scale factor R varying in the 
range of 0.1 to 2.5. The maximum horizontal and vertical displacements of M1 and M4 are shown in Figs. 
8 and 9. These figures display the variation of displacement versus the scale factor R (of the ground 
acceleration) for various hysteresis models.   
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a. M1     b. M4 

Figure 8. Horizontal peak displacement of M1 and M4 subjected to the Naghan earthquake with various 
scale factors. 
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a. M1     b. M4 

Figure 9. Vertical peak displacement of M1 and M4 subjected to the Naghan earthquake with various 
scale factors 

 
The maximum horizontal base shear has been given in Figs. 10 and 11 for various hysteresis models. Fig. 
10 shows the variation of the horizontal base shear with the acceleration scale factor R, and Fig. 11 
demonstrates maximum base shear versus displacement. The hysteresis models have been designated as P, 
Q, U, V, X, Y, and Z. To make a better judgment on the results, it is reminded that the total mass of each 
model was equal to 8 ton, including the snow load. 
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Figure 10. maximum horizontal base shear 
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Figure 11. maximum horizontal base shear 
   



Effect of Hysteresis Behaviour on Seismic Response 
The effect of hysteresis behaviour on seismic response has been presented in Figs. 8-11. As shown in Fig. 
7, X represents an ideal elastic behaviour, and all the others correspond to inelastic behaviour of axial 
members. Figs. 8 and 9 indicate that both horizontal and vertical displacements of the elastic model X are 
in general less than the inelastic models. The seismic responses of W and Z are not shown in these figures 
as their displacement response became enormously large, and the system was regarded as unstable. This 
was due to the marked reduction  of postbuckling strength (up to 80%) in these models. Similar trend can 
be observed as for the other models. For example, P and Q underwent larger displacements than the others 
because of their relatively larger strength reduction (50% in P and Q as compared with 20% in U, and 0% 
in V and Y). On the other hand, V and Y with no strength reduction underwent the least deformation 
among all inelastic models. Therefore, it can concluded that postbuckling strength has a predominant 
effect on seismic response, and in general, displacements increase as postbuckling strength decreases.  
 It can be seen in Fig. 7 that the hysteresis models Q and P are similar, except that Q does not 
dissipate energy during excursions in postbuckling region. On the other hand, P dissipates energy during 
excursions in postbuckling region. A comparison of the displacement response of these models in Figs. 8 
and 9 indicates that the two are relatively close.  
 
 Seismic Forces 
The seismic forces in elastic region are dependant on the following factors: i. intensity and frequency 
content of earthquake, and ii. Dynamic characteristics of structure such as frequencies, mode shapes, and 
damping. In inelastic region, some other factors also become influential such as the hysteresis behaviour 
of members and connections, the amount and distribution pattern of strength within a structure, response 
modification factor, and ductility. Thus, in inelastic region, the shortage of strength with respect to elastic 
demand is compensated by the ability to sustain inelastic deformation, usually referred to as ductility. Fig. 
12 (a) illustrates this trend schematically. So far as the strength exceeds the elastic demand Ve , the 
seismic force equals Ve, and the displacement equals a constant value of de. In this region, the seismic 
force does not depend on the strength and ductility of structure. However, as the strength falls below Ve, 
the structure undergoes inelastic deformation, and the seismic force apparently becomes equal to strength. 
This is also depicted in Fig. 12 (b). For Ve’s less than Vy, the seismic force is dependent on the elastic 
characteristics of structure such as frequency, mode shape, and damping, as well as the intensity and 
frequency content of earthquake. As Ve reaches Vy, the seismic force remains constantly equal to Vy, 
although Ve continues to increase. Therefore, a significant conclusion can be drawn for single degree of 
freedom systems: In inelastic region, the seismic forces do not neither depend on the type and magnitude 
of earthquake, nor on the elastic characteristics of structure such as frequency and damping; they are 
merely dependent on the strength of structure. However, for multiple-degree-of freedom systems, the 
seismic forces depend on both elastic and inelastic characteristics of structure [8], and therefore a more 
complicated situation prevails. 

For most ordinary buildings, the inelastic seismic forces vary in a range of 15% to 30% of the 
weight of structure, depending on the seismic design loads suggested by code, the type of structure, and 
overstrength. On contrary, the space structures show a fundamentally different behaviour as they can 
develop much larger forces in inelastic region. The horizontal base shear forces are drawn in Figs. 10 and 
11. Fig. 10 (b) indicates that as the scale factor increases, the seismic base shear in M4 also increases until 
it reaches an ultimate value. This behaviour resembles the behaviour of ordinary structures as shown in 
Fig. 12 (b). The base shear force for ideal elasto-plastic system V was obtained as 3.5 ton. Therefore, the 
seismic force in M4 is equal to 44% of the weight. This is almost 1.5 to 3 times the seismic force for 
ordinary buildings. It should be noticed that we can reduce the base shear by changing the flexibility and 
strength of substructures (columns in M4). This, however, leads to an increase in displacements.  

 



 
 

12 (a)                                                                                 12 (b) 
 

Figure. 12. Effect of inelastic behaviour on seismic response 
 
Fig. 10 (a) indicates that unlike the ordinary buildings, in space structures with rigid supports the base 
shear continues to increase up to large values close to elastic demand. For example, the base shear in 
elasto-plastic model V rises up to 13 ton that is equal to 163% of the weight of structure. This is about 8 
times the average seismic forces in ordinary buildings. Thus, the following conclusions can be drawn.  
1. The inelastic seismic forces that are induced in space structures during severe earthquakes can be 
much more than ordinary buildings. These forces can be even greater than the weight of structure. 
2. These seismic forces can be reduced by decreasing the strength of substructure, although such 
measure leads to an increase in displacements. 
3. The specifications and recommendations at present seismic codes are mainly based upon the seismic 
behaviour of ordinary buildings. Since space structures do behave differently in earthquakes, we need to 
develop specific set of rules for their seismic design. However, it is thought that we will generally end up 
with a lower response modification factor R, and a higher seismic base shear for space structures as 
compared with ordinary buildings.  
4. It should be noticed that such large seismic forces in space structures can lead to the failure of 
supports, as well as the failure of members in the vicinity of supports. This phenomenon has been 
repeatedly reported by investigators. The reason for such undesirable failure is that the supports and joints 
are designed for nominal seismic forces which are far below the real seismic forces in space structures. 
Until appropriate specifications are developed for seismic design of space structures, it is recommended 
that when using present codes, the response modification factor R should be assumed as equal to 1 for 
determining the seismic forces in supports and joints. 
 
 

CONCLUSIONS 
 

On the basis of linear and nonlinear analyses of space structure models subjected to earthquake ground 
motion, the following conclusions can be drawn. 
1. Space structures exhibit an outstanding performance in severe earthquakes. Light weight, appropriate 
geometry, redundancy, and large reserve strength are the key elements in such superior behaviour. 
2.   As opposed to ordinary buildings, in space structures of non-plane geometry (like domes and barrel 
vaults) higher modes and vertical modes contribute in dynamic response effectively.  
3.   The barrel vault models underwent a marked vertical displacement as they were subjected to 
horizontal excitation, whereas in ordinary buildings, there occurs no significant vertical displacement 
under horizontal excitation. 



4.  Post-buckling behaviour proved to have a predominant effect on seismic response. In general, 
displacement response increases with an increase in strength reduction after buckling.  
5.   The real seismic forces that are induced during a severe earthquake in inelastic region can be 
enormously larger than those in ordinary buildings, and they may even exceed the weight of structure. 
These large forces can lead to the failure of supports and joints that, according to many existing codes, are 
designed for nominal seismic forces. Suggestion has been made to avoid this type of failure.  It was also 
shown that these forces can be reduced by introduction of a rather flexible substructure with relatively 
lower strength. Provision of a safe failure mechanism in substructure can protect the main structure from 
developing undesirable brittle modes of failure. 
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