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SUMMARY 
 
We carried out the multifractal analysis of time series of synthetic earthquakes obtained with the Olami, 
Feder and Christensen (OFC) model. The OFC model is a non-conservative two-dimensional version of 
the Burridge and Knopoff (BK) model used to simulate the behavior of a seismic fault. The model is 
solved using cellular automaton, and every time the automaton is calculated a synthetic earthquake is 
obtained with its magnitude and duration time. We obtained a catalogue of synthetic earthquake 
magnitude, which we can represent as a time series. Such series exhibit power law behavior so much for 
the magnitudes (Gutenberg-Richter law) as for the duration times, and they can be considered as a 
singular measure so we can do multifractal analysis to obtain more information. We used the method 
proposed by Chhabra and Jensen to obtain the multifractal spectra and the width of the spectra. If the 
width is small we have a monofractal behavior, this means that we require only a global Hurst exponent or 
a fractal dimension to characterize the series. If the spectrum is wide the series is more complex because 
we need a set of fractal dimensions to describe it. We found a monofractal behavior for small conservation 
levels but when we increase the conservation level the behavior becomes multifractal. For low 
conservation levels the multifractal spectra are not symmetrical but they become symmetrical as we 
increase the conservation level. In fact, these symmetrical spectra resemble those that are generated with 
binary multiplicative processes. We obtained the same behavior for the spectra of the duration time series. 
We also investigated the relationship between the multifractal spectrum width and the linear dimension of 
the grid that represents the seismic fault, but we did not find an explicit relationship as in the previous 
case. 
 

INTRODUCTION 
 
The OFC model is a non-conservative cellular automaton model introduced by Olami et al. [1, 2] for 
describing the dynamics of a 2-D array of rigid blocks on a frictional surface. It consists of an LxL array of 
individual blocks identified by (i, j), where i, j are integers between 1 and L. Each block is connected to its 
four nearest neighbors by springs with elastic constants K1 and K2 and it is connected on its top to a 
moving driving plate by means of a spring with stiffness KL (see reference 1). The displacement of each 
block from its relaxed position on the lattice is Xi,j and the total force exerted by the springs on a block (i, 
j)  is given by 
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When the two rigid plates move relatively among them the total force in each block it is increased 
uniformly (with a rate proportional to K LV, where V is the relative speed among the plates), until a site 
reaches a value limit and the relaxation process begins). The redistribution of forces after local slip at 
position (i, j) due to the force on one of the blocks is larger than the maximal static friction and is given by 
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where the increments in the force on the nearest-neighbor block are 
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γ1 and γ2 are called the elastic ratios, and for the case K L > 0 the redistribution of the force is non-
conservative, as is expected to occur in actual earthquakes. This redistribution redefines the forces in the 
nearest-neighbor blocks, and further slips can occur, causing a chain reaction (synthetic earthquake). 
The spring-block model is mapped into a continuous, non-conservative cellular automaton modeling 
earthquakes which is described by an algorithm described in references [1] and [2]. We repeat the 
algorithm many times and we obtain that the magnitude of the synthetic earthquakes follows the 
Gutenberg-Richter law. Although the OFC model is a great simplification for studying the dynamics of a 
real fault, it has other properties that are related to real seismicity [3, 4]. The catalog of synthetic 
earthquakes is a time series as the one showed in Fig. 1. To these time series we applied the multifractal 
formalism, if the multifractal spectrum is very narrow this would indicate a monofractal behavior and we 
can describe the series only with one  Hurst exponent  or one fractal dimension [5]. 
 

THE MULTIFRACTAL FORMALISM 

The behavior of nonlinear dynamical systems can be often characterized by fractal or multifractal 
measures which correspond, for example, to the invariant probability distribution of a strange attractor [6], 
the distribution of voltage drops across a random resistor network [7], or the spatial distribution of 
dissipative regions in a turbulent flow [8]. Various multifractal formalisms have been developed to 
describe the statistical properties of these measures in terms of their singularity spectrum, which provides 
a description of the multifractal measure in terms of interwoven sets, with singularity strength α (the 
Lipschitz-Hölder exponent), whose Hausdorff dimension is f(α) [9, 10, 11]. If we cover the support of the 
measure with boxes of size L an define Pi(L) as the probability in the i-th box, then we can define an 
exponent αi by 

 iLLPi
α≈)(       (4) 



and if we count the number of boxes N(α) where the probability Pi has a singularity strength between α 
and α + dα, the f(α) can be defined as the fractal dimension of the set of boxes with singularity strength α 
by 

 )()( αα fLN −≈  (5) 

We used the method developed by Chhabra and Jensen [10, 11] for the calculation of the f(α)  spectrum of 
multifractal structures. First, a 1-parameter manifold of normalized measures µi(q) where the probabilities 
in the boxes of size L are 
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The parameter q can be imagined as some sort of microscope, which enlarges different areas of the 
multifractal. For q>1 the strongly singular structures are enhanced, for values of q<1 the less singular 
areas are more emphasized, and for q=1 the original measure µ(q) is replicated. The Hausdorff dimension 
of the support of µ(q) is 
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and the mean strength of the singularity αi = ln (Pi )/ln L with respect to µ(q) is obtained by evaluating 
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These equations provide a relationship between a Hausdorff dimension f and an average singularity 
strength α as implicit functions of the parameter q. The f versus α curves are the multifractal spectra. 

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Time series of synthetic earthquakes (16384 events). 
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RESULTS 

 
First, we fixed L = 100, it means that we considered grids with 100x100 = 10000 blocks representing the 
seismic fault, and we obtained time series with the magnitude of 16384 synthetic earthquakes. We applied 
the Chhabra and Jensen algorithm to the series and the spectrum multifractal was obtained for different 
values of the conservation level γ. The multifractal spectra were obtained for q from -30 up to 30. The 
αmin, αmax and α0 (the α-value which corresponds to the spectrum maximum). Then the degree of 
multifractality or spectrum width was calculated as ∆α  = αmax - αmin. The spectra for conservation levels  γ 
< 0.24 tend to be asymmetric, just as it is shown in Figure 2, and when γ approximates to the conservative 
case (γ = 0.25)  the spectrum becomes almost symmetrical. In Figure 3, we show αmin, αmax and α0 values 
versus γ, there is a small tendency of α0  to move to the right, and the other α’s  tend to separate as the 
conservation level increases, in this figure we can observe with clarity the mentioned asymmetry. The 
most interesting graph is depicted in Figure 4, in this figure we show the width of the multifractal 
spectrum against the conservation level, just as it is observed, the width grows as the conservation level 
grows. 
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Figure 2. Multifractal spectra γ = 0.1 (above) and  γ = 0.2499 (bottom). Note the widening of the 
spectrum as  γ approximates to the conservative case. If γ is small the spectra is asymmetrical. L = 100. 
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Figure 3. αmin,(circles) αmax (points)and α0 (crosses) versus the level of conservation. L = 100. 
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Figure 4. ∆α  versus the level of conservation. L = 100. 

 



Similar graphs are shown in Figures 5 and 6. First, in figure 5, we plot αmin, αmax and α0 versus L, the 
linear dimension of the grid that represents the seismic fault. In figure 6, we plot ∆α versus L. We did not 
observe tendencies like those observed in Figures 5 and 6; we only observe in Figure 7 that when L grows 
the multifractal spectrum becomes symmetrical. 
The fact that a multifractal spectrum is wider than another is important because it indicates that we need 
more fractal dimensions in order to describe the time series, if the width is small the series comes closer to 
a monofractal behavior. Although we cannot say that they are totally monofractals, we can conclude that 
the multifractal spectra for conservation levels close to zero tend to monofractality, and it means that we 
can describe the time series with only a fractal dimension. As the conservation level increases we need a 
set of fractal dimensions (probably infinite) to describe such time series. This seems to make physical 
sense because at small conservation levels only earthquakes of small magnitude occur, energy cannot be 
stored to produce earthquakes of medium or great magnitude. On the other hand, as γ comes closer to 0.25 
the magnitude of the earthquake grows because there is not energy dissipation in other processes (for 
instance friction), so practically the whole energy is spent in producing earthquakes of medium and great 
magnitude; that does not mean that the Gutenberg-Richter law is no more valid (the small earthquakes are 
much more abundant that the medium ones and these more abundant than the big ones) but there exists a 
tendency that privileges the appearance of earthquakes of greater magnitude when γ is close to 0.25. It is 
also outstanding the symmetry observation, because we can approximate these real multifractals by means 
of theoretic multifractals generated by multiplicative processes, the most symmetrical spectra could be 
estimated by using  binary multiplicative processes. On the other hand, for the asymmetric ones, it would 
be necessary to use so much binary as ternary in a first approach and of other orders if we want a better 
approximation. 
Other observation is pertinent: The time series of the earthquake duration also have multifractal behavior 
and there is a very similar tendency than the series of magnitude: the spectrum becomes wider and more 
symmetrical for γ close to 0.25. 
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Figure 5. αmin,(circles) αmax (points)and α0 (crosses) versus L, γ = 0.2. 

 
CONCLUSIONS 

 



We have shown that a monofractal analysis is not always suitable for the analysis of the time series 
obtained from the OFC model, we think that a multifractal analysis is adequate when the time series were 
generated with conservation levels γ > 0.175, because the width of the multifractal spectrum is not close to 
cero. Many researchers [5, 12, 13] have stated that a time series with a large width is more complex that a 
time series with a small width because we need more fractal dimensions to describe it, this fact seems to 
be related with the dynamics of the system (in this case the spring-block), so big values of γ imply a more 
complex dynamics. We need to do more research to fully establish this fact. The analysis of time series of 
synthetic earthquakes by using multifractals can open a new perspective, because if we can approximate 
real multifractal spectra with theoretic spectra  generated with multiplicative processes then we can use 
the concepts an terms developed for these multiplicative processes, this probably  would help to 
understand the dynamics of these models that have been used intensively to mimic the dynamics of 
seismic faults. 
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Figure 6. ∆α  versus versus L, γ = 0.2. 
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