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SUMMARY 
 
Traditional nonlinear static pushover analyses cannot fully address the multi-mode effects and response 
interaction that occur in a seismically excited structure.  The recently developed modal pushover analysis 
(MPA) procedure improves on traditional pushover analyses by including multi-modal effects; however, 
its application is currently restricted to predicting the peak values of scalar response quantities. The peak 
responses computed using the MPA procedure could be used to form a rectangular demand envelope for 
any two specified response quantities.  However, this rectangular envelope may be overly conservative as 
compared to the corresponding values computed by nonlinear time-history analyses. This paper describes 
a procedure, which uses the results of MPA analyses, to predict the envelope that bounds a vector of 
responses in a nonlinear structure. The accuracy of the proposed procedure is examined for selected pairs 
of responses by comparing the predicted envelope to the mean simulated response envelope obtained from 
an ensemble of nonlinear dynamic analyses. The response pairs considered include bi-directional inter-
story drifts and bending-moment-axial-load interaction in columns within a three-dimensional model of a 
three-story steel-moment-resisting-frame building. It is shown that the procedure has a level of accuracy 
that is appropriate for estimating the impact of seismic response interaction on the performance of a 
structure loaded into its nonlinear range. 
 

INTRODUCTION 
 
The necessary size and strength of a seismically-loaded structural component is often controlled by the 
simultaneous action of two or more loads and/or deformation demands (collectively called response 
quantities in this paper). For example, a column in a moment frame must be proportioned to resist an axial 
force and bending moment that act concurrently and vary in time. For any specified combination of 
responses, the adequacy of the element to resist those responses is usually ascertained using an interaction 
diagram, which defines the boundary between the safe and unsafe response combinations. Most of the 
commonly used interaction diagrams, such as those associated with moment-axial interaction in steel or 
reinforced concrete columns, have remained relatively unchanged for many years, suggesting that the 
capacity of structural elements subjected to interacting responses is well understood. However, to use 
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these interaction diagrams effectively with seismically-loaded elements, the engineer must also have 
reliable estimates of the peak values of the responses and a model for the correlation that exists between 
them, since it is often observed that the critical response combination that occurs in an element during an 
earthquake does not include the peak value of any of the responses.  
 
It is common in the current practice to estimate the peak values of seismic response quantities using the 
nonlinear static procedure (NSP) prescribed by FEMA 273 [1]; however, it is well known that this 
procedure is not well suited to responses that receive significant contributions from more than one mode 
of vibration. To address this problem with the conventional NSP, Chopra [2] proposed the modal 
pushover analysis (MPA) procedure, which combines the contributions from multiple modes of vibration 
to the peak value of a response quantity by a square-root-sum-of-squares (SRSS) rule similar to that used 
in conventional response spectrum analyses. Chopra [2] has demonstrated that, for several response 
quantities commonly used to assess the seismic performance of a structure, the MPA procedure has a level 
of accuracy that is comparable to that of response-spectrum-based analyses performed on linear structures. 
 
Unfortunately, neither the NSP nor the MPA procedure provides any indication of the correlation between 
two response quantities in time. Consequently, for elements controlled by response interaction, it is 
common in the current practice to use the estimates of the individual response maxima provided by the 
NSP or MPA procedures to construct a rectangular envelope, which is compared to the interaction 
diagram of the element. However, this practice, which implicitly assumes that the responses are perfectly 
correlated, can be overly conservative, as illustrated by Menun [3] for structures responding in their linear-
elastic range. To address this problem in linear structures, Menun [4] developed a response-spectrum-
based procedure for predicting the envelope that bounds two or more seismic responses as they evolve in 
time. In this paper, we modify this linear response-spectrum-based envelope for use with structural 
systems possessing material nonlinearities by incorporating the results provided by MPA analyses. 
 
In addition to moment-axial interaction in columns cited above, the simultaneous action of two or more 
seismic responses must also be considered when, e.g., (1) sizing anchor bolts for combined shear and 
tensile forces, (2) proportioning coupled shear walls in elevator cores for axial load and overturning 
moments, or (3) estimating the maximum bi-directional inter-story drifts in any direction in torsionally-
excited buildings. In this paper, we focus our attention on the envelopes that bound (1) the bi-directional 
inter-story drifts and (2) the axial forces and bending moments in selected columns of a three-story steel-
moment-resisting-frame building to demonstrate the accuracy of the proposed procedure, which is 
quantified by comparing the predicted envelope to the mean simulated response envelope obtained from 
an ensemble of nonlinear dynamic analyses. These comparisons serve to demonstrate that the proposed 
procedure, while not as accurate as the existing response-spectrum-based procedure available for linear 
structures, does provide a reasonable estimate for the envelope that bounds a pair of seismic responses in a 
nonlinear structure that is appropriate for structural design and analysis. 
 

PROPOSED ENVELOPE 
 
Central to the development of the proposed envelope is the response-spectrum-based envelope derived by 
Menun [4] for linear structures. This linear envelope is modified for use with nonlinear structures by 
replacing the conventional response-spectrum-based estimates for the peak modal earthquake-induced 
responses assumed in its formulation with the peak modal responses predicted by the MPA procedure 
developed by Chopra [2]. In this section, we summarize the details of linear response-spectrum-based 
envelope and the necessary modifications to incorporate nonlinear response. 



Response-spectrum-based envelope for linear structures  
The response spectrum method is commonly used to predict the peak values of seismic response 
quantities in linear structures. To employ this method, an eigenvalue analysis of the structure model is first 
performed to identify its natural modes of vibration. For each significant mode, the peak value of a 
response quantity of interest is computed using a prescribed set of design response spectra. The modal 
maxima are then combined using a suitable modal combination rule to estimate the maximum value of the 
response. Menun [4] extended the conventional response spectrum method for use in predicting the 
envelope that bounds a vector response process as it evolves in time. A summary of the derivation of this 
linear envelope necessary for the subsequent development of an envelope suitable for bounding responses 
in nonlinear structures is presented in this section. For brevity, we restrict the following derivation to the 
case of two response quantities; however, we remark that the procedure can be easily extended to any 
number of responses if desired. The interested reader is referred to reference [4] for additional details. 
 
Consider an N-degree-of-freedom linear and classically damped structure with n ≤ N significant modes of 
vibration and let x(t) = [x1(t), x2(t)]

T denote a vector of time-varying responses. In general, x(t) = xO + xQ(t), 
where xO is the 2×1 vector of responses caused by static loads acting on the structure and xQ(t) is the 2×1 
vector of seismic responses. Each element of x(t) can be expressed as a linear function of the nodal 
displacements of the structure, u(t) = [u1(t), u2(t),…,uN(t)]T; i.e., xr(t) = qr

Tu(t), where the elements of the 
N-vectors qr

T, r = 1,2 are functions of the stiffness and undeformed geometry of the structure. When static 
and seismic loads act concurrently on the structure, u(t) = uO + uQ(t), where uO and uQ(t) are the N-vectors 
of nodal displacements caused by the static and seismic loads, respectively. Thus, xr(t) = qr

T[uO + uQ(t)] = 
xOr + xQr(t), where 
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are the rth elements of xO and xQ(t), respectively. 
 
When the structure is subjected to three translational components of ground motion, uQ(t) can be 
expressed in a modal superposition form 
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where ϕi is the ith mode shape, dki(t) is the relative displacement response of an oscillator that has 
frequency, ωi, and damping ratio, ζi, of mode i when it is subjected to the kth component of ground motion 
and 
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is the participation factor associated with the ith mode and kth component of ground motion. In (4), M is 
the mass matrix and ιk is the influence vector that represents the displacement of the nodal masses 
resulting from the static application of a unit ground displacement in the kth direction. Substituting (3) 
into (2) yields the modal decomposition  
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Using (5) as a basis, the peak value Xr = max |xQr(t)| is estimated by the response spectrum method as 
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in which Dki = max| dki(t) | is the displacement response spectrum ordinate corresponding to mode i and ρij 
denotes the correlation coefficient between responses in modes i and j. In deriving (6), it is assumed that 
the components of ground motion are uncorrelated in the directions that they are applied to the structure. 
The necessary modifications to (6) for the case when the components of ground motion are correlated are 
described in reference [4]. As indicated in reference [4], to formulate the response-spectrum-based 
envelope bounding xQr(t) and xQs(t), we must also evaluate the cross term 
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which is related to the covariance between xQr(t) and xQs(t) and carries the information needed to quantify 
the correlation between these responses. Note that (6) is a special case of (7) with r = s, i.e., Xrr = Xr

2 is the 
square of the response spectrum method estimate of the maximum value of xQr(t). Furthermore, it is 
apparent from (7) that Xrs = Xsr. 
 
For the subsequent derivations, it is convenient to define 
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T
rrki DX γφq= ,              r = 1,2                                                                                                    (8) 

which represents the response-spectrum-based estimate of the peak ith mode response of xQr(t) when the 
structure is subjected to the kth component of ground motion. Chopra [5, pp 516-559] shows that Xrki is in 
fact the value of response xr when the structure is statically loaded with the force vector skiAki, where ski = 
γkiMϕi and Aki =ωi

2Dki are the inertial force distribution vector and pseudo-acceleration response spectrum 
ordinate associated with the ith mode of vibration and kth component of ground motion, respectively. 
Substituting (8) into (7) yields 
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We remark that when the modal frequencies are well separated, ρij ≈ 0 and (9) can be simplified as 
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which is the SRSS modal combination rule. 
 
Using the above definitions, the coordinates of the response-spectrum-based envelope bounding two 
responses in a linear structure are specified as follows. Consider Figure 1, which shows the envelope and 
a direction vector α = [cosψ, sinψ]T, where ψ is the counterclockwise angle that α makes with the x1 axis. 
Also shown in this figure is the line Pα that has α as its normal vector and is tangent to the envelope. As 
suggested by the geometry of Figure 1, the tangent point on the envelope in direction α is the point that 
maximizes the distance, Sα = αTx = x1cosψ + x2sinψ, of Pα from the origin. As shown by Menun [4], the 
coordinates of this tangent point are 
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where X is a symmetric, positive semi-definite 2×2 “response matrix” whose (r,s) element is Xrs defined 
by (9), or (10) when the modal frequencies are well separated.  
 
For the two-dimensional envelopes considered in this paper, it is convenient to expand (11) as 
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and we have used the fact that X12 = X21. The envelope can be generated by evaluating (12) for 0 ≤ ψ ≤ 2π 
and plotting the resulting [x1, x2]

T coordinate pairs. It can be shown (Menun [4]) that, because the response 
matrix is symmetric and positive semi-definite, the envelope defined by (12) is an ellipse that is centered 
on xO.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Modification of the response-spectrum-based envelope for nonlinear structures 
The response-spectrum-based envelope described in the previous section is only applicable to linear-
elastic structures. To predict response envelopes in inelastic structures, the procedure must be modified to 
account for the effects of any nonlinear behavior. In this paper, we make these modifications by adopting 
the approach assumed in the MPA procedure [2]. 
 
The MPA estimate of the peak value of a seismic response quantity is found by combining the 
contributions from multiple modes of vibration using the SRSS rule (10) with r = s; however, instead of 
computing the peak modal responses using (8), which assumes the structure remains linear, the MPA 
procedure computes Xrki in a way that incorporates the nonlinear behavior of the structure. That is, the 
(square of the) MPA estimate of the peak value of xQr(t) is 
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in which the peak modal responses Xrki are computed as follows. 
 
1. For each component of ground motion, k = 1,2,3, and significant mode of vibration, i = 1,2,…, n, a 

modal pushover analysis is performed using the load pattern λski, where λ ≥ 0 is a scalar constant that 
is increased until the target displacement, δki = δki

*, of a prescribed control node (typically a roof 
displacement) is attained. During the pushover analysis, the base shear, Vki, and any response quantity 
of interest, xr, are recorded as a function of δki. We refer to the plots of xr as a function of δki as the 
pushover database for the analyses. 
 

2. For each modal pushover, the load-displacement curve, Vki - δki, is idealized as a bilinear system and 
normalized by scaling the load axis (Vki) by [γki

2( ϕi
TMϕi)]

-1 and the displacement axis (δki) by  
[γkiϕki]

-1, where ϕki is the element of ϕi that corresponds to the control node degree of freedom 
assumed for ground motion component k. The resulting normalized load-displacement curve 

 

Figure 1. Specification of the coordinates of a response-spectrum-based envelope. 
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represents the behavior of the inelastic single-degree-of-freedom (SDOF) system associated with the 
ith mode response of the structure to the kth ground motion component. 

 
3. For the ith mode inelastic SDOF system associated with the kth component of ground motion, the 

peak displacement, Dki = max|dki(t)|, is estimated. In practice, this may be done using a design 
constant-ductility response spectrum. 

 
4. The peak displacement of the control node is computed as ∆ki = γkiϕkiDki. The peak nonlinear modal 

response, Xrki, is that value of xr that corresponds to δki = ∆ki in the pushover database assembled in 
step 1. 

 
To generate the envelope for a pair of responses in a nonlinear structure, we propose that the elements of 
the response matrix (X11, X22 and X12) needed for (12) and (13) be computed using (10) with X1ki and X2ki 
computed in step 4 of the above procedure rather than with (8). In this way, the nonlinear behavior of the 
structure is incorporated into the predicted envelope in a manner similar to that used by the MPA 
procedure for predicting peak scalar response quantities. We remark that the response matrix constructed 
using (10) with X1ki and X2ki computed in step 4 of the above procedure will be symmetric and positive 
semi-definite, like the response matrix computed for the linear case; consequently, the proposed envelope 
for responses in a nonlinear structure will also be an ellipse. 
 

ACCURACY OF THE PROPOSED ENVELOPE 
 
In this section, we examine the accuracy of the proposed envelope for selected pairs of seismic response 
quantities in a nonlinear structure. In particular, we use the procedures described in the previous section to 
compute the envelopes that bound (1) the bi-directional inter-story drifts and (2) the axial forces and 
bending moments in selected columns of a three-story steel-moment-resisting-frame building. These 
predicted envelopes are then compared to simulated envelopes generated by a set of nonlinear time-history 
analyses. As a point of comparison, we also plot and compare the predicted and simulated envelopes for 
the case when the structure remains linear-elastic under the seismic loading. The results obtained for the 
linear structure provide an indication of how the accuracy of the proposed envelopes for nonlinear 
structures compares to that achievable for linear structures with the response-spectrum-method. Moreover, 
the response-spectrum-based linear results give an indication of the level of accuracy that is currently 
accepted by the profession.   
 
Modeling Considerations 
Structure Model 
The three-story steel-moment-resisting-frame building shown in Figure 2, which was designed in 
accordance to the Los Angeles building code and the provisions of FEMA 267 [6] for the second phase of 
the SAC Joint Venture Steel Project, was used as the focus of this investigation. The geometry, 
dimensions, material properties and mass of the structure are summarized in Figure 2. The building 
stiffness and mass are symmetric about both principal axes. Structural nonlinearities in the three-
dimensional mathematical model of the building were represented using zero-length plastic hinge 
elements at the ends of all columns and beams in the perimeter moment frames shown in Figure 2. The 
moment-rotation relationship for each plastic hinge was represented by a bilinear curve with an initial 
slope of k = 20EI/L, where L is the length of the supported member, and a 0.9 % strain hardening ratio.  P-
∆ effects are not included in the analyses. 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Ground Motion Ensemble 
An ensemble of 25 pairs of statistically independent artificial ground motions was used to generate the 
time histories and response spectra needed for the study. These ground motions were applied along the 
horizontal x- and y-axes of the structure shown in Figure 2. Vertical ground motions were not included in 
the analyses. The stronger component of each ground motion pair was directed along the x-axis of the 
structure. In accordance with the observations made by Penzien and Watabe [7], the mean response 
spectrum of the weaker component of ground was approximately 85% of the mean response spectrum of 
the stronger component at all frequencies. 
 
The ground motions were simulated as described by Menun [8] such that the mean response spectrum of 
the ensemble matches a target response spectrum obtained from the Abrahamson and Silva [9] attenuation 
relationship for rock sites and strike-slip events. The records have intensities and durations that are 
representative of a Mw = 7.5 earthquake whose rupture plane comes within 2 km of the building site. The 
statistical properties of the ensemble satisfy the assumptions employed in the development of the response 
spectrum method; namely, the ground motions are samples of a wide-band, zero-mean Gaussian process 
that has a stationary strong motion phase that is several times longer than the fundamental period of the 
building. 
 
Computing and plotting the predicted and simulated envelopes 
The mean predicted envelopes plotted below are computed using (12) and (13). For the nonlinear cases, 
the mean constant ductility response spectra obtained for the strong and weak components of the ground 
motions are interpolated to determine Dki in step 3 of the MPA procedure described in the previous 
section. Naturally, for the linear-elastic cases considered, the values of Dki needed to evaluate (8) are 
obtained directly from the mean displacement response spectra of the ground motion components. 
 
The mean simulated envelopes plotted below are generated as described by Menun [3]. 
 

 

Figure 2. 3-story steel moment-resisting frame building. 
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Bi-directional inter-story drifts 
The bi-directional inter-story drifts ∆x(t) and ∆y(t) in the x- and y-directions, respectively, of the example 
structure represent the relative displacement between the center nodes of consecutive floors in the 
building.  Plots of the predicted and simulated mean envelopes bounding the bi-directional inter-story 
drifts at each story of the building are shown in Figure 3 for the linear and nonlinear cases. The predicted 
linear envelopes shown use the first 5 modes of vibration, and predicted nonlinear envelopes are 
computed based on the first 2 modes in the x- and y-directions.  
 
From Figure 3, it is apparent that, in contrast to what might be predicted by the equal-displacements rule, 
significant reductions in the overall sizes of the simulated envelopes occur when the system is allowed to 
undergo nonlinear behavior. This reduction is thought to be the result of a trade-off between increased 
effective period and increased effective damping ratio of the structure as it yields. It is noteworthy that the 
proposed method appears to partially capture this reduction in the size of the nonlinear envelope; 
however, in all cases, the predicted mean envelope is larger than the simulated mean with a maximum 
difference of approximately 35% in the ∆x direction at each story for the nonlinear structure. Compare this 
level of accuracy to that obtained for the linear structure, in which the maximum difference between the 
predicted and simulated mean envelopes in any direction is approximately 15%. We also note from Figure 
3 that the fact that the proposed method yields an elliptical response envelope is not detrimental to the 
overall quality of the prediction in this case since the simulated envelopes for the nonlinear system are 
approximately elliptical.  
 
To further assess the accuracy of the proposed envelope, it is interesting to plot the inter-story drift 
trajectory [∆x(t), ∆y(t)]

T  obtained for each nonlinear time-history analysis and the envelope predicted using 
the actual constant ductility response spectra of the ground motions used. This is done for each of the 25 
time-history analyses in Figures 4, 5 and 6. Examining these figures, it appears that, on average, the 
proposed envelope over-predicts the inter-story drifts as suggested by Figure 3; however, in almost all 
cases, the trajectory comes very close to the predicted envelope, and sometimes exceeds it, in some 
directions suggesting that the proposed envelope may in fact be an appropriate upper bound.  
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Figure 3. Interstory drift envelope comparisons, simulated vs. predicted, stories 1, 2 & 3. 



 

 



 
 

Axial forces and bending moments in columns  
Plotted in Figure 7 are the mean predicted and simulated axial-force-bending-moment (P-M) envelopes for 
the linear and nonlinear cases at the three locations along an exterior column of the E-W moment frame of 
the example building, which are denoted A, B and C in Figure 2. Predicted linear envelopes were 
computed using contributions from the first 10 modes of vibration. The first 3 modes in each building 
direction were used to generate the nonlinear predicted envelopes.  
 

 
Figure 7. Axial load-bending moment comparisons, simulated vs. predicted, locations A, B & C.  
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It is apparent in Figure 7 that significant reductions in the overall sizes of the simulated P-M envelopes 
occur when the system experiences nonlinear behavior, which is captured by the predicted envelopes. In 
fact, the predicted extreme values of the axial forces and bending moments in the nonlinear structure 
appear to be as accurate as those predicted for the linear structure. However, in contrast to the inter-story 
drift envelopes, the simulated P-M envelope is not elliptical for the nonlinear structure. Straight vertical 
faces perpendicular to the P-axis that act as upper and lower bounds on the axial force can be seen in the 
simulated envelopes at all locations. Similarly, straight horizontal faces perpendicular to the M-axis can 
also be seen in the simulated envelopes.  These flat faces perpendicular to the P- and M-axes are a result 
of the plastic hinge capacities at the ends of the beams in the analytical model, which not only limit the 
maximum bending moment in the beam (and supporting column), but also limits the shear force that acts 
at the end of the beam, and thus the axial load that can be transmitted to the supporting column.  From 
these P-M envelope results, it is evident that the proposed procedure, which always predicts an elliptical 
envelope, must be modified if we wish to sufficiently capture the distortion seen in the simulated P-M 
envelopes for the nonlinear structure.     
 
Again, to help assess the accuracy of the proposed procedure, it is useful to plot the P-M trajectories for 
each nonlinear time-history analysis and the envelope predicted using the actual constant ductility 
response spectra of the ground motions used. These trajectory plots and envelopes are shown in Figures 8, 
9 and 10. The results presented in these figures suggest that, on average, the proposed envelope provides a 
reasonable bound on the P-M trajectory that is appropriate for seismic design and analysis. 
 

 



 

 



CONCLUSIONS 
 
A method has been presented for predicting the envelope that bounds a pair of seismic responses in a 
nonlinear structure. The proposed procedure is based on the response-spectrum-based envelope developed 
by Menun [4] for linear structures with modifications to account for the effects of material nonlinearities. 
In particular, the conventional response-spectrum-based estimates for the peak modal responses used in 
the formulation of the envelope for linear structures are replaced with the peak modal responses predicted 
by the MPA procedure developed by Chopra [2]. 
 
The accuracy of the proposed envelope was examined for (1) the bi-directional inter-story drifts and (2) 
the axial forces and bending moments in selected columns of a three-story steel-moment-resisting-frame 
building. To assess the accuracy of the proposed method, the predicted envelopes using the proposed 
method were compared to simulated envelopes generated from nonlinear time-history analyses.  Simulated 
and predicted response envelopes for linear structures were also plotted to provide an indication of how 
the accuracy of the proposed envelopes for nonlinear structures compares to that achievable for linear 
structures with the response-spectrum-method.  
 
The inter-story drift envelope comparisons showed that maximum drifts in the nonlinear system were 
overestimated by the procedure by as much as 35% on average; however, the elliptical shape of the 
predicted envelopes was comparable to that seen in the simulated envelopes.  The opposite was found for 
the axial-force-bending-moment envelopes:  the predicted values of axial force and bending moment were 
close to the maximum simulated values, but the shape of the simulated envelope did not resemble an 
ellipse, which is the shape predicted by the proposed procedure. The distortion seen in the simulated 
axial-force-bending-moment envelopes for the nonlinear system was due to the maximum possible values 
of bending moment and axial load that could be transmitted to the column through the plastic hinges at the 
ends of the girders in the nonlinear system. Modifications to the proposed procedure to account for the 
non-elliptical shape of the axial-force-bending-moment envelopes are currently being examined. 
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