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SUMMARY 
 
Landslides can range in size from small movements of loose debris to massive collapses of entire 
summits. For short to medium-length slopes, some measures will be effective for assessing and mitigating 
landslide hazards. Extremely large slope failures, however, are very difficult to mitigate, and the 
importance of run-out analysis emerges. Lagrangian Particle Finite Difference Method (LPFDM) is 
extended to handle rapid and long-traveling flows of soil. LPFDM describes a soil mass as a cluster of 
Lagrangian material points that carry all necessary information of the material and move freely across a 
Eulerian grid where the equations of motion are solved. 
 

INTRODUCTION 
 
Landslides can range in size from small movements of loose debris to massive collapses of entire 
summits. For short to medium-length slopes, installing preventive drainage works, anchoring and/or 
reinforcing slopes will be effective for assessing and mitigating landslide hazards. Extremely large slope 
failures, however, are very difficult to mitigate, and thus the importance of run-out analysis emerges. 
Many landslides with limited internal deformation will move as coherent masses on thin mobile basal 
layers. Others, however, will become flow-like in character after running some long distances, though 
exhibiting some solid features at their early stages of failure. 
 
For studying large deformations of soils, numerical methods such as FEM or FDM have been widely used. 
For example, the finite difference based FLAC (Fast Lagrangian Analysis of Continua) [1] calculates large 
strains by using low-order strain elements. However, when dealing with large strains, highly distorted 
elements often account for inaccurate results. 
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In the field of computational fluid dynamics, where history-dependent materials are less common, purely 
Eulerian methods are often used. Sulsky et al. [2] extended one of these methods to solid mechanics. Their 
method evolved from a particle-in-cell (PIC) method is referred to as the Material Point Method (MPM) 
and is categorized as a mesh-less method. In MPM, a body to be analyzed is described as a cluster of 
material points. The material points, which carry all Lagrangian parameters, can move freely across cell 
boundaries of a stationary Eulerian computational mesh, which should cover the position of the analyzed 
body. The computational mesh can remain constant for the entire computation, thus the large deformation 
disadvantage of the conventional finite element method related to the problem of mesh distortions is 
eliminated. 
 
Konagai and Johansson [3] developed two-dimensional LPFDM (Lagrangian Particle Finite Difference 
Method) based on simple finite difference scheme of calculation, but with the inclusion of lagrangian 
particles/ material points. The method is intended to be a combination of the schemes of FLAC and MPM 
so that the present method allows for extremely large deformations of soils retaining the simplicity of 
FLAC. The method is further extended herein to model a rapid and long-traveling soil flow keeping its 
planar geometry. 
 

MODELING OF LANDSLIDE MASS 
 
Solid phase 
Though the use of a three-dimensional model is a straightforward approach to the problem, here a thin 
landslide mass flowing over a stiff base slope is modeled as a two-dimensional soil mat. The landslide 
mass consists of a plane assembly of soil columns, represented by material points, in contact with each 
other, free to deform and retaining fixed volumes in their descent down a curving path (Figure 1). 
 
Cells of a computational Eulerian mesh on the ψξ − plane are arranged in such a way that their 
projections on a horizontal x-y plane are a regular square mesh with sides parallel to x and y axes of the 
Cartesian coordinate system. Though the real slope is not a perfect plane, each cell is assumed to be small 
enough for the cell and its neighboring cells to be arranged in one plane. The cells on the ψξ −  plane are 

thus parallelograms. The orientation of the ψξ −  plane is described by ξ  and ψ  axes; the ξ  axis is 

perpendicular to the slope direction and the ψ  axis is parallel to the slope direction of the ψξ −  plane. 

The LPFDM formulation on the ψξ −  plane is available in Konagai et al. [4]. 
 
A soil column (material point) is assumed to experience the same strains in the ψξ −  plane over its entire 

height (z: 0-h). Excluding its weight, the stress components for the soil column, 0,xxσ , 0,yyσ  and 0,xyτ  are 

kept unchanged over its height. However with the presence of its weight, realized stress components are 
described as: 
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Figure 1. Material points on a slip surface 
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Figure 2. Soil column (above) following Mohr-

Coulomb’s criterion (below) 
 
The above components are averaged over the column’s height.  
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Essentially, Mohr/Coulomb criterion should be used for a particular soil element that experiences 
homogeneous stresses over its entire size. For the averaged stress components, however, Mohr/Coulomb 
criterion is tentatively used herein for describing elasto-plastic features of the “material point”. To draw a 
Mohr circle for the material point, the maximum and minimum principal stresses must be chosen among 
three principal stresses including zzσ~ . For this, two principal stresses aσ~  and bσ~  in the x-y plane are first 

to be obtained. It is noted that differing from the geotechnical engineering customary to describe 
compressive stresses as positive, tensile stresses are expressed to be positive in LPFDM. 
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Among the three principal stresses, the maximum, intermediate and minimum principal stresses are 
determined as: 

)~,~,~max(1 zzba σσσσ −−−= , =2σ intermediate )~,~,~( zzba σσσ −−−  

and )~,~,~min(3 zzba σσσσ −−−= .                                   (4a), (4b), (4c), 

 
i.e. one of the principal stresses is always assumed to be in the vertical direction. Once the Mohr circle 
intersects the failure envelope, stresses are “reduced” in such a way that the reduced stress make up a 
slightly reduced Mohr circle that touches the envelope. 
 



Liquid phase 
Soils are often moist, and thus pore-water behavior should be taken appropriately into account. In the 
present program, only a two-dimensional flow of water through a saturated plane landslide mass is 
considered. To account for a rapid soil flow, the water flow through the granular fabric is assumed to obey 
Ergun’s law. Not a granular fabric but its void is assumed to change its volume. In the time-marching 
calculation, an element size should satisfy the following condition: 
 LtvL <<∆  (5) 
where t∆ = time increment and L = cell size  
It is customary in geotechnical engineering to describe compressive pressure as positive. But notation here 
follows the conventional way for FEM formulations, and thus sucking pore pressure p is described as 
positive. In Lagrangian point k included in Cell J, the initial volumes of solid phase and pore-water are 
given respectively by: 
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where, kV  is the volume of the material point k, and e is the void ratio. 

 
A change in void causes an excessive pore pressure kp∆  as: 

 ( ) ( )( ) ( ) ygVVVKp
tktktkk ∆−−=∆ ρ0,0, /  (7a) 

where 
( ) ( ) solidktktk VVV ,−=  with 

( ) ( ) ( ) ( )
JkyyJkxxttktk VV
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K is the compressibility (equivalent bulk modulus) of water in the plane landslide mass. The plan flow, 
however, is associated with it orthogonal component normal to the slip surface. To reflect this feature on 
the analysis, the equivalent bulk modulus must be set at a smaller value than that for the complete plane 
strain case. The change of pore pressure causes pore water to flow within a plane granular fabric. 
Velocities of percolation in x and y directions are respectively given by the following equations (Ergun, 
1952): 
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 =µ viscosity of water, =ρ water density, and =D grain diameter.  
From equations (8a) and (8b), one obtains: 
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Equation (9a) yields: 
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Both xv  and yv  are obtained by substituting Equation (9b) in Equations (8a) and (8b) with xpk ∂∆∂ /  

and ypk ∂∆∂ /  provided as known values. The volume of water flowing into the material point k within 

the time increment t∆  is then given by: 
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This 0,kV∆  is then added to ( )
ttkV

∆−0, , and this procedure updates 0,kV  in Equation (7a).  
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Figure 3  Differentiations on Eulerian square mesh
  

Equation (10) includes second partial derivatives 22 / xpk ∂∆∂ , 22 / ypk ∂∆∂  and yxpk ∂∂∆∂ /2  

(= xypk ∂∂∆∂ /2 ). They are obtained on the Eulerian mesh assuming that kp∆  is uniformly distributed 

over Cell J. The average excessive pore pressure for Cell J is thus given as: 
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The above second partial derivatives are then obtained on the square Eulerian mesh (Figure 3) as: 
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where, L is the cell size of the Eulerian mesh. Similarly, xpk ∂∆∂ /  and ypk ∂∆∂ /  for Cell J are: 

 
L

pp
xpxp xJxJ

JJk 2
// ∆−∆+

∈

∆−∆
=∂∆∂≅∂∆∂  

L

pp
ypyp yJyJ

JJk 2
// ∆−∆+

∈

∆−∆
=∂∆∂≅∂∆∂  

(13d) 
 

(13e) 

When Cell J is along an impermeable boundary, mirror images of 
J

p∆  are used in Equations (13a)-

(13e). 

Given the excessive pore pressure kp∆  from Equation (8a), and using Equation (6), pore water pressure 

kp  is obtained. 
 



NUMERICAL EXAMPLES 
 
Both the internal friction angles and the cohesions for Lagrangian points were modified to fluctuate 
randomly around their mean values so that the deviations eventually exhibit the Gaussian distributions. 
This manipulation is based on the idea that a material exhibiting a complicated hysteresis is comprised of 
a number of elements exhibiting simple and ideal features ([5, 6]). Parameters (mean values) for the 
material used in the following example are listed in Table 1.  Standard deviations of the fluctuated 
parameters were set at 33% of their mean values. 
 

Table 1.  Lagrangian parameters 
Young’s modulus: 5×107 N/m2 Strength reduction: Both cohesion and Internal friction angle 

are reduced by 50% 

Poisson’s ratio: 0.30 Initial friction angle on the slip surface 0.5 rad 

Density: 1700 kg/m3 
refu  in Equation (9) 0.1 m 

Internal friction angle: 0.5 rad α  for local non-viscous damping 0.8 

Cohesion: 9800 N/m2 L: Cell size on x-y plane  
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(a) t = 0 s 
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(b) t = 2.5 s 
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t = 5 s 

Figure 4.  Long traveling soil flow: 
Contour lines in this figure show that there are two slopes A and 
B making up the configuration (see (a)). The soil mass from slope 
B spreads wide as it surged across the horizontal plane, and after 
hitting Slope A, the direction of the mass flow turned avoiding 
Slope A. 

 
 



The available resistance forces on the slip surface often decreases drastically as the soil mass slips further 
down because grain crushing causes the buildup of pore water pressure along the slip surface [9]. To 
reflect this feature of soil, mobilized friction angle ki ,φ  for a material point k is assumed to be slip-

distance dependent, and given by: 

 ( ) )/exp(,, refkinitialkiki uu−⋅= φφ  (5) 

The slope discussed herein is described as a combination of different planes intersecting each other. The 
uppermost surfaces of these planes define the slope configuration. Figures 4a-4c shows the plan of the 
slope. Contour lines in this figure show the configuration made of the two slopes A and B. Diagonal 
contour lines on the left show that Slope A goes diagonally down to the right, while contour lines to the 
right describe that Slope B dips 45 degrees leftward. Lagrangian points are initially arranged in square on 
Slope B. The gravitational acceleration was then given at once to the soil mass, and the mass started 
sliding down the slope under its own weight. The head of the landslide mass slows down to block the 
motion of its tail when it reaches the flat land causing the soil at the toe of Slope B to be pushed up by the 
tail. With no lateral confinement on its edge, the soil mass spreads laterally as it surged across the 
horizontal plane, and after hitting Slope A, the direction of the mass flow turned avoiding Slope A. 
 
Figure 5 compares two different shapes of the same landslide mass; the former (Figure 5 (a)) is the same 
as that examined in Figure 4 assuming the landslide mass is dry, while the effect of pore water pressure is 
taken into account in the latter case (Figure 5 (b)). Though the equivalent bulk modulus K was set at 
1/1000 of that for water, the built-up pore water pressure was substantially large enough to fluidize the 
landslide mass, and the mass exhibited more planar shape with a little thinner fringe continuously 
spreading out, while the dry mass was completely stopped by the soil-breaking slope B. Figure 6 shows 
the pore water pressure buildup in the landslide mass. The maximum compressive pore water pressure is 
reached where the landslide mass hits the soil-braking wall. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 5. Effect of pore water pressure  
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(b) with pore pressure effect 
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(a) without pore pressure effect 
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Figure 6. Pore water pressure buildup in landslide mass 

 

 
Figure 7. Old landslides along Tanigawa river, Ehime, Japan [7]: Based on 14C dating of suspended 
matters stopped behind landslide soil masses, these landslides are estimated to have simultaneously 
taken place about 2050-2150 years ago. Hasegawa [7] conjectures that an earthquake along the 
Median Tectonic Line triggered them. 



SUMMARY AND DISCUSSIONS 
 
The previous example provided a perspective on the capability of the present method for describing long-
traveling soil flows. The landslide mass is represented by a plane assembly of soil columns (material 
points) in contact with each other, free to deform and retaining fixed volumes in their descent down a 
curving path. The computational mesh can remain constant for the entire computation, thus the main 
disadvantage of the conventional finite element method related to the problem of mesh distortions is 
eliminated. 
 
The method however leaves much to improve by comparing these numerical simulations with real 
examples (see Figure 7), and it is extremely difficult to do it, because all Lagrangian parameters for the 
entire landslide mass are hardly obtained. For example, it is quite often that plants growing on a landslide 
mass shoot their roots all through the soil mass in such a way that the overall characteristics of the soil 
mass is largely different from those obtained through conventional soil tests. One possible way will be to 
consider a real landslide as a huge “simple shear test”. In the “real-size” simple shear test, the distal end 
and surface configuration of the landslide mass can be clearly measured. If the landslide mass exhibits 
some liquefiable features, possible peak velocity of the landslide mass will be estimated from mud 
spatters remaining on walls, tree trunks etc. assuming that they follow forms of parabola [8]. If soil 
samples are taken from its sliding surface, a rapid simple shear test for example can be conducted for 
modeling the basal shearing behavior of the soil [9]. 
 
Differing from a conventional 2D model for run-out analysis [10], the model proposed herein allows the 
effect of energy consumption within the deformed landslide mass to be reflected on the numerical 
evaluation of travel distances. Once a good agreement with a real travel distance is obtained in a 
landslide-prone area through a parametric study, it is expected the result will provide necessary pieces of 
information for the landslide risk assessment in this area. An extension of this study will be addressed in 
future publications.  
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