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SUMMARY 
 
This study investigates the effectiveness of a wall macro-model in predicting the flexural nonlinear 
response of reinforced concrete (RC) structural walls. Model results are compared with experimental 
results for slender RC walls with rectangular and T-shaped cross sections. The analytical model is 
calibrated and the test measurements are processed to allow for a direct comparison of the predicted and 
measured flexural responses. Responses are compared at various locations on the walls. Results obtained 
with the analytical model for rectangular wall cross sections compare favorably with experimentally 
responses for flexural capacity, stiffness, and deformability, although some significant variation is noted 
for local compression strains. For T-shaped walls, the agreement between model and experimental results 
is reasonably good, although the model is unable to capture the variation of the longitudinal strains along 
the flange. Overall, the wall model developed and the calibration studies conducted allow for improved 
prediction of the cyclic response of slender reinforced concrete shear walls.   
 

INTRODUCTION 
 
Prediction of the inelastic response of reinforced concrete (RC) structural walls and wall systems requires 
accurate, effective, and robust modeling and analysis tools that incorporate important material 
characteristics and behavioral response features such as neutral axis migration, tension-stiffening, 
progressive gap closure, confinement, nonlinear shear behavior, and the effect of fluctuating axial force on 
strength and stiffness. Effective analytical models should be relatively simple to implement and 
reasonably accurate in predicting the hysteretic responses of RC walls at both local and global levels, as 
well as capturing the interaction of the walls with other structural members.  
 
Various phenomenological macroscopic models have been proposed in order to incorporate such response 
features in predicting the inelastic response of RC structural walls. The Multi-Component-in-Parallel 
Model (MCPM, later referred to as Multiple-Vertical-Line-Element Model, MVLEM) proposed by 
Vulcano [1] has been shown to successfully capture important response characteristics via the simplicity 
of a macroscopic model. Yet, the model has not been implemented into widely available computer 
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programs, and has not been sufficiently calibrated with and validated against extensive experimental data 
at both local and global response levels.  
 
Given these shortcomings, a research project was undertaken to investigate and improve the MVLEM for 
RC wall systems, as well as to calibrate and validate it against experimental data. A description of the 
improved model, implementation of detailed cyclic constitutive relationships, and the sensitivity of the 
model predictions to both model and material parameters are presented by Orakcal [2]. This paper 
emphasizes the accuracy and limitations of the model by comparing model results with experimental 
results. The study presented herein focuses on modeling and simulation of the flexural response. 
 

THE ANALYTICAL MODEL 
 
A brief description of the wall model and implemented constitutive relationships are presented in this 
section. The model in Fig. 1(a) is an implementation of the generic MVLE model for structural walls. A 
structural wall is modeled as a stack of m elements, which are placed one upon the other (Fig. 1(b)). The 
flexural response is simulated by a series of uniaxial elements (or macro-fibers) connected to infinitely 
rigid beams at the top and bottom (e.g., floor) levels. A single MVLE model has six global degrees of 
freedom, three each located at the center of the rigid top and bottom beams. The primary simplification of 
the model involves applying the plane-sections-remain-plane assumption in calculating the strain level in 
each uniaxial element according to values of displacement or rotation at the degrees of freedom of each 
wall element. The stiffness properties and force-displacement relationships of the uniaxial elements are 
defined according to constitutive stress-strain relationships implemented in the model for concrete and 
steel and the tributary area assigned to each uniaxial element. The strains in concrete and steel are 
typically assumed equal (perfect bond) within each uniaxial element.  
  

       
 
 
 
 
 
 
 
 
 
        
              (a) MVLEM Element                (b) Model of a Wall 
 

Figure 1   Multiple-Vertical-Line-Element Model 
 
The relative rotation between top and bottom faces of the wall element occurs around the point placed on 
the central axis of the element at height ch. A suitable value of the parameter c is based on the expected 
curvature distribution along the element height h, although an accurate assessment of c is not necessary if 
a moderate number of wall elements are used within the yielding region (Orakcal [2]). A horizontal spring 
placed at the height ch, with a nonlinear hysteretic force-deformation behavior following an origin-
oriented hysteresis model (OOHM) (Kabeyasawa [3]) was originally suggested by Vulcano [1] to simulate 
the shear response of the wall element. The OOHM was proven to be unsuitable by Vulcano [4] for an 
accurate idealization of the shear hysteretic behavior especially when high shear stresses are expected. 
However, this study focuses on modeling of the flexural response, thus a linear elastic force-deformation 
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behavior was adopted for the horizontal “shear” spring. For the present model, flexural and shear modes 
of deformation of the wall member 
are uncoupled (i.e., flexural 
deformations do not affect shear 
strength or deformation), and the 
horizontal shear displacement at the 
top of the element does not depend 
on c.  
 
The reinforcing steel stress-strain 
behavior implemented in the wall 
model is the well-known nonlinear 
relationship of Menegotto [5] (Fig. 
2), as extended by Filippou [6] to 
include isotropic strain hardening 
effects. The hysteretic constitutive 
relation developed by Chang [7] 
(Fig. 3) is used as the basis for the 
relation implemented for concrete, 
because it is a generalized 
constitutive model that allows 
recalibration or updating of model 
parameters based on available 
experimental data. The model 
provides the flexibility to represent 
the hysteretic behavior of confined 
and unconfined concrete in both 
cyclic compression and tension, with 
particular emphasis paid to the 
transition between crack opening and 
closure. The constitutive 
relationships implemented in this 
study can be controlled and 
calibrated to follow the relations 
developed by Belarbi [8] or similar 
empirical relations to model tension 
stiffening. Details of the constitutive 
models and the sensitivity of the 
analytical results to model parameters are presented by Orakcal [2]. 
 

EXPERIMENTAL RESULTS 
 
Experimental results were obtained for four, approximately quarter-scale wall specimens tested by 
Thomsen [9,10]. The walls tested included two walls with rectangular cross sections (RW1, RW2), and 
two walls with T-shaped cross sections (TW1, TW2), with the primary variable in the test program being 
the level of detailing provided at the wall boundaries. A brief overview of these studies is provided in the 
following paragraphs, with more detailed information concerning the walls presented in Thomsen [9,10] 
and Massone [11]. 
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          Figure 2   Constitutive Model for Reinforcing Steel 

             Figure 3   Constitutive Model for Concrete 



(b) Wall TW2 

          Figure 4   Wall Cross Sectional Views and Model Discretization 

Test Specimen Information 
The walls were 3.66 m tall and 102 mm thick, with web and flange lengths of 1.22 m. Floor slabs were 
provided at 0.914 m intervals over the height of the T-shaped walls. Typical material properties were 
selected for design, i.e., cf ′  = 27.4 MPa and yσ  = 414 MPa. Boundary vertical steel consisted of 8 - #3 

(db = 9.53 mm) bars, whereas web bars were deformed #2 (db = 6.35 mm). Detailing requirements at the 
boundaries of the wall specimens were evaluated using the displacement-based design approach presented 
by Wallace [12,13]. Well-detailed boundary elements were provided at the edges of the walls over the 
bottom 1.22 m of each wall. A capacity design approach was used to avoid shear failure and favorable 
anchorage conditions existed for the vertical reinforcement anchored within the pedestal at the base of the 
wall. Sample reinforcing details for a rectangular wall specimen RW2 and for a T-shaped wall specimen  
TW2 are shown in Fig. 4. 
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          Figure 5   Instrumentation on the Wall Specimens 

Testing and Instrumentation 
The wall specimens were tested in an upright position. An axial load of approximately 0.10 cg fA ′  was 

applied at the top of the wall by hydraulic jacks mounted on top of the load transfer assembly. The axial 
stress was applied prior to imposing lateral displacements, and held constant throughout the duration of 
each test. Cyclic lateral displacements were applied to the walls using a hydraulic actuator mounted 
horizontally to a reaction wall 3.81 m above the base of the wall. Out-of-plane support was provided to 
prevent twisting of the wall specimen during testing.  
 
Instrumentation was used to measure displacements, loads, and strains at critical locations for each wall 
specimen (Fig. 5). Four wire potentiometers (WPs) were mounted to a rigid steel reference frame to 
measure lateral displacements at 0.91 m intervals over the wall height. A linear potentiometer was also 
mounted horizontally on the pedestal to measure any horizontal slip of the pedestal along the strong floor. 
Two additional linear potentiometers were mounted vertically at each end of the pedestal to measure 
rotation caused by uplift of the pedestal from the strong floor. Shear deformations were measured through 
the use of wire potentiometers mounted on the bottom two stories (in an “X” configuration) of each 
specimen (Fig. 5). 
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Wall base rotations were obtained by taking the difference in the axial (vertical) displacements measured 
by the two wire potentiometers mounted between the base and first story level at each end of the wall and 
dividing the difference in relative axial displacements by the distance between the potentiometers. Linear 
variable differential transducers (LVDTs) were mounted vertically (Fig. 5), over a gage length of 229 mm, 
at various locations along the web and flange of each wall so that axial strains and section curvatures 
could be calculated. The rectangular walls were instrumented with seven LVDTs spaced along the length 
of the wall; whereas, the T-shaped walls had four LVDTs mounted along the web and five mounted along 
the outside face of the flange. Axial concrete strains within the boundary regions of specimens RW2 and 
TW2 also were measured using embedded concrete strain gauges. The center of these gauges were located 



approximately 92 mm above the pedestal interface, with one gauge in each boundary element for RW2, 
whereas TW2 had two gauges in the web boundary element. The strains in the reinforcing steel also were 
measured through the use of strain gauges at wall base and first story levels (1.22 m above the pedestal-
wall interface). All three types of reinforcement were monitored (longitudinal, uniformly distributed web, 
and transverse boundary) at various locations (see Thomsen [9]).  
 

CALIBRATION OF THE ANALYTICAL MODEL 
 
In this paper, calibration of the analytical model and comparison of analytical and experimental results is 
limited to the rectangular wall specimen RW2 and the T-shaped wall specimen TW2; because specimens 
RW2 and TW2 were observed to withstand many cycles of inelastic deformation until failure. In the 
following paragraphs, calibration of model and material parameters are described. 
 
Calibration for Geometry  
Figure 4 displays possible model configurations, with 8 elements stacked upon each other (m = 8); with 8 
uniaxial elements defined along the length of the wall (n = 8) for specimen RW2, and 19 uniaxial 
elements (n = 19) for specimen TW2. A refined configuration with 8 uniaxial elements was assigned for 
the flange specimen TW2, since the neutral axis was expected to be within the flange during loading 
subjecting the flange to compression. The tributary area on the cross-section assigned to each uniaxial 
element is also indicated on Fig. 4. As discussed in Orakcal [2], increasing the number of uniaxial 
elements or the number of MVLEs along wall height does not change significantly the prediction of the 
global response (i.e., lateral load versus wall story displacements); however, use of more MVLEs along 
wall height is valuable in terms of obtaining more detailed information on responses at a given location. 
Thus, the analytical model is refined for subsequent comparisons and discussions for local responses by 
modifying the number of MVLEs along wall height, depending on the location where a local response 
comparison between the analytical and experimental results is desired (e.g., LVDT locations, steel strain 
gauge locations, concrete strain gauge locations, wire potentiometer locations). For the refined analytical 
models, 16 MVLEM elements were used for the modeled walls (m = 16); with 8 elements along the first 
story height, 4 elements along the second story, and 2 elements along the third and fourth stories. A value 
of 0.4 was selected for the parameter c defining the center of relative rotation for each wall element, based 
on prior studies (Vulcano [1]). As discussed in Orakcal [2], using a large number of MVLEs along wall 
height, as has been done in this study, will diminish the influence of the parameter c on the predicted 
response.  
 
Calibration for Material Properties 
Steel Stress-Strain Relations 
The reinforcing steel stress-strain relationship described by the Menegotto [5] model was calibrated to 
reasonably represent the experimentally observed properties of the longitudinal reinforcement used in the 
experimental study. These parameters also were used to calibrate the stress-strain relationship for the 
reinforcing bars in compression. The yield strength and strain-hardening parameters for the bare bars in 
tension were modified according to the empirical relations proposed by Belarbi [8] to include the effect of 
tension stiffening on steel bars embedded in concrete. Figure 6 shows the calibrated analytical steel stress-
strain relations in tension and compression, as well as stress-strain test results for the reinforcement used 
in the construction of the wall specimens. The parameters accounting for the cyclic properties of the 
stress-strain relationship (R0, a1, a2 in Fig. 2) were calibrated for the values suggested by Elmorsi [14] (R0 
= 20, a1 = 18.5, a2 = 0.0015) based on the experimental results carried out by Seckin [15]. As discussed by 
Dodd [16], the hysteretic properties of steel associated with the Bauschinger effect are sensitive to the 
carbon content of the steel, and thus, variations in the behavior are possible. The sensitivity of the model 
response with regard to these parameters is discussed in Orakcal [2]. 
 



          Figure 7   Concrete Constitutive Model  

                  (b) Calibration for Tension 

                  (a) Calibration for Compression 

  Figure 6   Steel Constitutive Model Calibration 

Concrete Stress-Strain Relations 
The monotonic envelope curves of the 
implemented concrete hysteretic stress-strain 
relation for compression and tension allow 
control on the shape of both the ascending and 
descending (i.e., pre-peak and post-peak) 
branches of the stress-strain behavior. The 
curves can be calibrated for selected values of 
peak stress, strain at peak stress, elastic 
modulus, and also via the parameter r defining 
the shape of the envelope curve, allowing for 
model refinement. The envelope curve used in 
the analytical model for unconfined concrete in 
compression was calibrated using results of the 
monotonic stress-strain tests conducted at time 
of testing on standard 152.4 mm x 304.8 mm 
cylinder specimens of the concrete used in the 
construction of the walls (Fig. 7(a)).  
 
The concrete tensile strength was determined 

from the relationship ct ff ′= 31.0  (MPa), 

and a value of 0.00008 was selected for the 
strain ( tε ) at peak monotonic tensile stress; as 

suggested by Belarbi [8] based on a series of 
tests on RC panels with concrete cylinder 
compressive strengths ( cf ′ ) consistent with the 

compressive strength of concrete used for the 
construction of the present wall specimens. 
The r-parameter was calibrated in defining the 
shape of the monotonic tension envelope so 
that it reasonably agreed with the average post-
crack stress-strain relation proposed by Belarbi 
[8] based on the effects of tension stiffening on 
concrete (Fig. 7(b)). 
 
The compression envelope used in the 
analytical model for confined concrete was 
calibrated using the empirical relations 
proposed by Mander [17] for the peak 
compressive stress and the strain at peak 
compressive stress. The confined concrete 
stress-strain behavior was manipulated based 
on the area, configuration, spacing and yield 
stress of the transverse reinforcement (Fig. 6) 
in the confined regions within the first story 
height (0-0.91 m) of the test specimens. 
Accordingly, in the analytical model, the peak 
compressive stress (compressive strength of 
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   Figure 8   Top Lateral Displacement Histories 

confined concrete) and the strain at peak compressive stress were modified within the confined concrete 
areas located at the edges of each wall. Figure 7(a) compares the monotonic stress-strain relations used in 
the wall models for confined and unconfined concrete with the relations proposed by Saatcioglu [18]. The 
strain crε , where the monotonic stress-strain relation enters a linear stress degrading range after reaching 

the peak value, was calibrated such that the post-peak slope of the present stress-strain model agrees with 
the post peak slope of the Saatcioglu [18] model for both confined and unconfined concrete (Fig. 7(a)).  
 
The hysteretic stress-strain rules defined by Chang [7] were used to simulate the cyclic behavior of both 
confined and unconfined concrete implemented in the wall model. The cyclic properties of the stress-
strain relation by Chang and Mander are controlled by key hysteretic parameters including secant stiffness 

( secE ) and plastic stiffness ( plE ) upon unloading from, and stress and strain offsets ( f∆ and ε∆ ) upon 

return to, the compression envelope (Fig. 3). An extensive column database was used by Chang [7] to 
develop empirical relationships for these parameters. The same empirical relationships were used in the 
present model as they were found to produce consistent results when used with the values specified for the 
remaining model and material parameters. Further details on the implemented concrete stress-strain 
relation can be found in Chang [7] and Orakcal [2]. 

 
Shear Force-Deformation Relation 
The study presented herein focuses on modeling of the flexural responses, thus a linear elastic force-
deformation behavior was adopted for the horizontal “shear” spring. The experimental results were 
separated into flexural and shear response components using the methodologies described in Massone 
[11]. In order to compare model results directly with the measured flexural responses, the stiffness of the 
shear spring ( Hk ) was assigned a very large (~infinite) value. 
 

ANALYTICAL RESULTS AND COMPARISON WITH TEST RESULTS 
 
The analytical model was implemented in Matlab [19] to allow comparison between experimental and 
analytical results. A displacement-controlled nonlinear analysis strategy was selected in order to correlate 
the model results with results of the drift-
controlled cyclic tests subjected to prescribed 
lateral displacement histories at the top of the 
walls (Fig. 8). Prior to analysis, the lateral top 
displacement history applied during testing 
and the measured lateral story displacement 
histories for each specimen were corrected to 
remove displacement contributions resulting 
from shear and pedestal movement to allow for 
a direct comparison of the measured and 
predicted flexural responses. Measurements 
obtained in horizontal and vertical linear 
potentiometers mounted on the pedestals (Fig. 
5) were used to remove displacements caused 
by pedestal rotation (caused by uplift) and 
pedestal sliding in the direction of the applied load.  
 
Wall shear deformations were calculated using data from wire potentiometers mounted on the bottom two 
stories of each specimen (Fig. 5) using the procedure recommended by Massone and Wallace [11]. The 
largest shear deformations were concentrated within the first story height of the wall, where shear yielding 
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   Figure 9   RW2 – Load-Displacement Response 

was observed together with flexural yielding. The measured lateral load – shear deformation response in 
the second story was observed to follow an approximately linear elastic relationship; thus, the shear 
deformations in the third and fourth stories of the wall specimens were estimated for the entire loading 
history using the linear elastic shear stiffness values derived for the second story level.  Figure 8 compares 
the lateral top displacement history applied to specimens RW2 and TW2 during testing, with lateral top 
displacement histories obtained after subtracting the contributions due to pedestal movement and shear 
deformations. 
 
The analytical models for specimens RW2 and TW2 were subjected to the modified top displacement 
histories determined using the procedures outlined in the prior paragraph. The measured axial load 
histories applied on the wall specimens during testing, as measured by load cells during testing, were 
applied to the analytical models (on average, approximately 7% of the axial load capacity for RW2 and 
7.5% for TW2, with variation of approximately ± 10%). Comparisons between model predictions of the 
flexural responses and test results are summarized for RW2 and TW2 in the following paragraphs. A 
discussion on the sensitivity of the analytical model results to the model and material parameters is 
presented in Orakcal [2]. 

 
Rectangular Wall, RW2 
Figure 9 compares the measured and predicted lateral load – top flexural displacement responses for the 
rectangular wall specimen RW2. The analytical model captures reasonably well the measured response. 
Cyclic properties of the response, including 
stiffness degradation, hysteretic shape, plastic 
(residual) displacements, and pinching 
behavior are accurately represented in the 
analytical results; therefore, the cyclic 
properties of the implemented analytical stress-
strain relations for steel and concrete produce 
good correlation for global response. The 
lateral capacity of the wall is predicted very 
closely for most of the lateral drift levels.  
 
The underestimation of the wall capacity at 
intermediate drift levels (e.g., 0.5 to 1.5 
percent drift) can be attributed to the inability 
of the analytical stress-strain yield asymptote 
for steel in tension to model the curved strain-
hardening region observed in the stress-strain 
tests for the #3 longitudinal reinforcing bars 
(see Fig. 7), as well as the uncertainty in the calibration of the cyclic parameters governing the 
implemented steel stress-strain relation (R0, a1 and a2) and the parameters associated with concrete tensile 
strength ( tf  and tε ). Recalibration of the material parameters (e.g., 200 =R , 5.181 =a , 15.02 =a ; 

and/or ct ff ′= 5.0  (MPa) and tε  increased in proportion with tf , with shape parameter r  

unchanged), would increase the predicted wall capacity for these intermediate drift levels and result in 
improved correlation. However, such recalibration would impair the correlation for the wall capacity at 
other drift levels, as well as the cyclic properties of the wall response including plastic (residual) 
displacements and pinching. The reader should refer to the paper by Orakcal et al. [2] for information on 
the sensitivity of model results to these material parameters. 
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 Figure 10   RW2 – Lateral Displacement Profiles 

         Figure 11   RW2 – First Story Deformations 

  Figure 12   RW2 – Concrete Strain Distributions 

 
Figure 10 shows a comparison of the lateral 
flexural displacements of the wall, at peak top 
displacement (top displacement reversal) data 
points for each drift level, measured by the 
horizontal wire potentiometers at the first, 
second and third story levels, (Fig. 5); with the 
results of the analysis. The analytical model 
provides a good prediction of the wall lateral 
displacement profile, and the distribution of 
deformations along wall height. The reader 
should note that the drift levels noted in the 
legend of Fig. 10, and in all subsequent 
figures, correspond to “nominal” drift levels 
applied to the wall during testing, versus actual 
drift levels (i.e., measured top displacement 
modified to remove contributions from 
pedestal and shear deformations).  
 
Figure 11 plots the measured and predicted 
lateral flexural displacement histories at the 
first story height (0.91 m) and the rotations 
accumulated over the bottom 0.76 m of the 
wall (rotations were measured via the two 
vertical wire potentiometers mounted to wall 
ends (Fig. 5)). Again, very good agreement 
between the experimental and analytical results 
is observed, indicating that the model 
successfully predicts the nonlinear flexural 
deformations experienced within the plastic 
hinge region of the wall. 
 
Measured and predicted responses at specific 
locations are compared in Fig. 12, which plots 
the average concrete strains measured by the 
seven LVDTs over a 229 mm gauge length at 
the base of the wall (Fig. 5), at applied peak 
positive top displacement (top displacement 
reversal) data points, for selected drift levels 
applied during testing. Similar trends were 
observed in the results for other drift levels and 
also for peak negative top displacement data 
points. Results shown in Fig. 12 illustrate that 
the analytical model predicts reasonably well 
the tensile strain profile, but significantly 
underestimates the compressive strains. A 
similar correlation is observed for the strains in 
longitudinal steel bars (measured by steel 
strain gauges) at wall base level (Fig. 13), 
although the compressive strains in longitudinal reinforcement at the top of the first story level are 
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        Figure 14   RW2 – Concrete Strain Histories 

         Figure 13   RW2 – Steel Strain Distributions 

predicted reasonably well. The larger measured compressive strains in concrete and longitudinal 
reinforcement located at the base of the wall may be due to stress concentrations induced at the wall-
pedestal interface due to the abrupt change in geometry. As well, the larger compressive strains may be 
partially due to the nonlinear shear response that the wall specimen experienced within the first story 
height. Preliminary analysis results using a modified MVLE model with an implemented methodology for 
coupling shear and flexural displacements, based on biaxial constitutive relationships for concrete with 
compressive strain-softening, yields compressive strains larger than those predicted with the flexural 
model used here. Nevertheless, the underestimation of the compressive stresses does not apparently have a 
significant influence on the prediction of the global flexural response (Figs. 9-11) for the modeled wall 
and loading history used in this study.  
 
Figure 14 compares measured responses for a 
specific gauge, an embedded concrete strain 
gauge with gauge length of 83 mm (Fig. 6), 
with results obtained with the model. The 
concrete strain gauge data were available up to 
data point number 330 (0.75% drift level), at 
which time the gauge failed. The analytical 
prediction again underestimates the measured 
compressive strains and overestimates the 
measured tensile strains (which are believed to 
be unreliable, as discussed below). Given the 
differences in the measured and predicted 
results, additional comparisons were made 
using strain histories measured by the LVDTs 
located on either side of the embedded 
concrete strain gauge. Results obtained with 
the two LVDTs straddling the embedded 
concrete strain gauge were used to estimate the 
strain at the location of the embedded concrete 
gauge using linear interpolation. Results are 
presented up to data point number 515, at 
which time the readings in the LVDT closest to 
the wall edge become unreliable. It is observed 
that the analytical tensile strain predictions are 
in very good agreement with the LVDT 
measurements in tension, as mentioned in the 
discussion of Fig. 12. The readings for the 
embedded concrete strain gauge are reasonably 
close to those obtained with the LVDTs for 
compressive strains, but the embedded gauge 
fails to measure correctly the tensile strains (it 
appears that bond between the embedded 
concrete strain gauge and the surrounding 
concrete is insufficient to measure accurately 
the large tensile strains that develop at wall 
boundaries). Similar data trends were observed 
for the concrete strain gauge located at the 
opposite wall boundary of specimen RW2. Overall, the results indicate that the analytical model 
underestimates the compressive strains, but predicts reasonably well the magnitude and variation of the 
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    Figure 15   TW2 – Load-Displacement Response 

         Figure 16   TW2 – First Story Deformations 

wall tensile strain histories, and that tensile strain measurements for the embedded concrete gauge are not 
reliable.  
 
T-Shaped Wall, TW2 
Figures 15 - 17 compare the analytical model 
predictions with selected experimental results 
for the T-shaped wall specimen TW2. The 
correlation of the analytical and experimental 
results for the lateral load – top flexural 
displacement response (Fig. 15), as well as 
first story displacement and rotations (Fig. 16) 
for TW2 resemble those for RW2, when the T-
shaped specimen is subjected to displacements 
in the positive direction (when the wall flange 
is in compression). Therefore, the model 
provides a reasonably good prediction of the 
response for a T-shaped wall with the flange in 
compression, and the same conclusions noted 
for RW2 apply to TW2. This result implies 
that the plane section assumption, which 
assumes the entire flange is effective in 
compression for all drift levels, is appropriate. 
However, for negative displacements (when the wall flange is in tension), the analytical model 
overestimates the lateral load capacity of the wall (Fig. 15), underestimates the lateral displacements at the 
first story level, and overestimates the rotations over the bottom 0.76 m of the wall. The reason for these 
discrepancies between the analytical and experimental results is the nonlinear tensile strain distribution 
experienced along the flange of the wall 
specimen during testing. The concrete strains 
(LVDT readings along the bottom 229 mm of 
the wall) and steel strains (steel strain gauge 
readings mounted on longitudinal 
reinforcement at wall base level), measured 
along the wall flange at peak top displacement 
data points, are plotted and compared with 
analytical results in Fig. 17 for selected drift 
levels. The measured tensile strains, both in 
steel and concrete, follow a nonlinear 
distribution along the width of the flange, 
which cannot be captured with the analytical 
model, which is based on a plane section 
assumption that produces a uniform tensile 
strain distribution along the flange. Because of this assumption, flange tensile strains are overestimated, 
leading to overestimation of the lateral load capacity of the wall when the flange is in tension. The 
experimentally observed nonlinear tensile strain distribution along the flange is also the reason for 
overestimation of the first story rotations and the underestimation of the first story displacements (Fig. 16) 
by the analytical model. The first story displacements predicted by the model are lower (despite 
overestimation of the inelastic rotations due to large tensile strains), because the length of the plastic hinge 
region (the height over which steel yielding is observed) is larger in the analytical model than that 
experienced by the wall specimen during testing. In contrast, the measured compressive strains along the 
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    Figure 17   TW2 – Strain Distributions in Flange 

                              (a) Concrete Strains 

                                (b) Steel Strains 

flange (Fig. 17) are approximately uniform for all applied drift levels, resulting in fairly good analytical 
prediction of the global response for positive displacements.  
 

SUMMARY AND CONCLUSIONS 
 
The intent of this paper was to provide 
information on calibration of the Multiple-
Vertical-Line-Element Model (MVLEM) and 
present comprehensive correlation studies 
between the analytically predicted and 
experimentally observed behavior of slender 
RC walls with rectangular and T-shaped cross 
sections at various response levels. State-of-
the-art, robust constitutive relationships 
implemented into the MVLEM for concrete 
and reinforcing steel were calibrated based on 
the mechanical properties of the materials used 
in the construction of the walls modeled, and 
via parameters previously verified by other 
researchers (e.g., for confinement, tension 
stiffening, cyclic stress-strain behavior of steel 
and concrete). Wall test results were processed 
to exclude the contributions of pedestal 
movement and shear deformation components 
to allow for a direct comparison of the 
experimental results with the flexural response 
prediction of the analytical model. The 
analytical model was subjected to the same 
conditions experienced during testing (e.g., 
loading protocol, minor fluctuations in applied 
axial load). A refined configuration was used 
for the model in order to predict the responses 
at specific locations where instrumentation 
was provided for the tests. The correlation of 
the experimental and analytical results was 
investigated in detail, at various response 
levels and locations (e.g., story displacements, rotations over the first story level, average strains in steel 
and concrete). 
 
It was observed that the MVLE model, as implemented here, provides a good prediction of the 
experimentally observed responses (wall lateral load capacity at varying drift levels, wall displacement 
profile, average rotations and displacements over the region of inelastic deformations) of the wall with 
rectangular cross section. The wall stiffness is well represented both prior to, and after wall yielding, and 
the yield point is captured effectively. The model provides a reasonably accurate prediction of wall tensile 
strains and the position of the neutral axis, whereas the compressive strains tend to be under-predicted, 
possibly due to stress concentrations at wall-pedestal interface or nonlinear shear deformations 
experienced within the nonlinear flexural deformation region of the wall. The authors recommend the 
selected constitutive relationships and the calibration methodology used in this study for a reliable 
prediction of the flexural response for slender RC walls with rectangular cross-sections.  
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The same level of accuracy is observed in the prediction of the global response for T-shaped walls when 
the flange is in compression, where the wall effectively behaves like a wall with a rectangular cross 
section. When the flange is in tension, discrepancies between the results obtained with the analytical 
model and the experimental results are observed for the wall lateral load capacity and the displacements 
and rotations along the wall. Wall lateral load capacity and inelastic rotations tend to be overestimated 
whereas inelastic lateral displacements are under-predicted, due to the observed nonlinear tensile strain 
distribution along the flange of the wall, which cannot be captured by the MVLE model as implemented 
in this study. For a reliable prediction of T-shaped wall response, modifications to the model to account 
for the variation of longitudinal strain along the wall flange. (e.g., via implementation of a nonlinear strain 
distribution relationship such as proposed by Pantazopoulou [20]). This is an area of current research by 
the authors. 
 
This study focused on prediction of the flexural response of slender walls; however nonlinear shear 
deformations were observed in the slender the wall specimens tested, even though the peak applied lateral 
loads (wall shear forces) were only about one-half of the nominal shear capacity of the walls (see Massone 
[11]). Current work by the authors also focuses on developing a methodology to couple the flexural and 
shear displacement components. 
 
Overall, the MVLE model, as used in this study, was shown to be an effective modeling approach for the 
flexural response prediction of slender RC walls, subject to the limitations mentioned above (which also 
apply for a two-dimensional fiber model). The model provides a flexible platform to assess the influence 
of various material and wall attributes on the nonlinear response of slender RC structural walls, as well as 
a practical platform for further implementing further improvements. Implementation of the model into a 
computational platform (e.g., OpenSees [21]) will provide design engineers improved analytical 
capabilities to model the behavior of structural walls and their interaction with other structural elements, 
which is essential for application of performance-based design.  
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