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SUMMARY 
 
The utility of Mohr’s circle as an aid for stress analysis is primarily due to its concise graphical nature, 
which facilitates the identification of the critical combinations of normal and shear stresses acting within a 
structure. For example, when the capacity of a material is defined by a normal/shear stress interaction 
diagram, such as the Mohr rupture diagram for reinforced concrete, Mohr’s circle can be superimposed on 
the interaction diagram to identify any combinations of normal and shear stresses that lie in the failure 
domain of the material.  During an earthquake, the radius and center of Mohr’s circle naturally fluctuate in 
time. In such cases, an envelope that bounds the time-varying realizations of Mohr’s circle is useful for 
identifying the critical combinations of normal and shear stresses at that location. In this paper, a 
response-spectrum-based procedure for predicting the envelope that bounds Mohr’s circle in a two- or 
three-dimensional structure subjected to seismic loads is presented. The implementation and accuracy of 
the proposed procedure is illustrated for two concrete dams. Comparison of the predicted envelopes with 
those generated from an ensemble of time-history analyses show that the proposed envelope has a level of 
accuracy that is commensurate with its response spectrum bases and is suitable for structural analysis and 
design. 
 

INTRODUCTION 
 
The state of stress at any location within a three-dimensional structure can be quantified by its 3×3 stress 
tensor, whose elements represent the normal and shear stresses that act parallel and perpendicular to the 
faces of an infinitesimal cube. The admissible combinations of normal and shear stresses acting on an 
oblique plane cut through the cube can be summarized by using the information provided by the stress 
tensor to plot Mohr’s circle. The utility of Mohr’s circle as an aid for stress analysis is primarily due to its 
concise graphical nature, which facilitates the identification of the critical combinations of normal and 
shear stresses. For example, when the capacity of the material is defined by a normal/shear stress 
interaction diagram, such as the Mohr rupture diagram for reinforced concrete (see, e.g., Mehta [1]), 
Mohr’s circle can be superimposed on the interaction diagram to identify any combinations of normal and 
shear stresses that lie in the failure domain of the material.   
 
Procedures for plotting Mohr’s circle are described in many textbooks that cover advanced topics in 
mechanics of materials.  Naturally, however, when a structure is subjected to seismic loads, the size and 
location of Mohr’s circle is a function of time.  In such cases, an envelope that bounds all realizations of 
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Mohr’s circle over the duration of the earthquake is a useful design aid. In references [2] and [3] response-
spectrum-based procedures for computing the envelope that bounds the time-varying realizations of 
Mohr’s circle were developed. In this paper, we describe the implementation and application of these 
procedures for the seismic analysis of two- and three-dimensional structures.  
 
The proposed procedure is based on the response spectrum method and the Penzien-Watabe 
characterization of multi-component ground motions [4]. Consequently, it inherits the assumptions and 
approximations implicit in these idealizations, which naturally affect the accuracy of the envelope. We 
examine the accuracy of the proposed envelope by comparing it to simulated envelopes obtained from an 
ensemble of time-history analyses performed on two concrete dams. These numerical examples serve to 
demonstrate that the procedure has a level of accuracy that is commensurate with its response spectrum 
basis and suitable for structural design and analysis. We also demonstrate how the proposed envelope may 
be used in conjunction with a prescribed interaction diagram for the purposes of assessing the seismic 
safety of a structure. 
 

MOHR’S CIRCLE FOR STATIC STATES OF STRESS 
 
We assume that the geometry of the structure being analysed is defined with respect to a global z1-z2-z3 
coordinate system in which the z1 and z2 axes lie in the horizontal plane and the z3 axis is vertical. The 
state of stress at any location of interest within the structure is defined by the symmetric stress tensor  
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As indicated in Figure 1a, the diagonal elements of the tensor are the normal stresses acting on an 
infinitesimal element at the location of interest, while the off-diagonal terms are the shear stresses.  
 
Now consider a second set of orthogonal axes, z'1, z'2 and z'3, that are rotated with respect to the global 
coordinate system by means of the transformation z' = Az, where z = [z1, z2, z3]

T , z' = [z'1, z'2, z'3]
T and A is 

the 3×3 rotational transformation matrix 
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in which φ1, φ2 and φ3 represent counter-clockwise rotations about the z1, z2 and z3 axes, respectively. In 
formulating A, it is assumed that rotation φ3 about the z3 axis is applied first followed by rotations about 
the resulting z2 and z1 axes, in that order, as indicated in Figure 1b. According to the theory of stress 
transformations (see, e.g., [5], pp. 21-27), the stress tensor σ′ associated with the normal and shear 
stresses acting parallel and perpendicular to the rotated z' coordinate system is related to σ  through the 
transformation  

 TAAσσ =′ .                                                                                                                                    (3) 

As indicated in Figure 1c, σ '11 obtained from (3) is the normal stress acting perpendicular to the oblique 
plane Pφ whose outward normal is the z'1 axis. Similarly, the shear stresses acting on Pφ in the directions 
parallel to the z'2 and z'3 axes are σ '12 and σ '13, respectively.  
 
It is well known that the eigenvalues of σ , which we denote σ *11 ≥ σ *22 ≥ σ *33, are the principal stresses 
acting at the location of interest and the directions in which they act are the corresponding eigenvectors. 
Each pair of principal stresses can be used to construct Mohr’s circle associated with a rotation of the 
infinitesimal element about the axis (eigenvector) corresponding to the other principal stress, as indicated 
in Figure 2. Note that the largest of these circles, associated with σ *11 and σ *33 acts as an upper bound on 
the possible combinations of normal and shear stresses that the element can experience; thus, we focus our 
attention on Mohr’s circle defined by σ *11 and σ *33. While the procedure suggested by Figure 2 for 
plotting this circle is straightforward, it is impossible to implement in the context of the response spectrum 
method. An alternative method of computing the coordinates of Mohr’s circle, which can be incorporated 
into a response-spectrum-based approach, is described in reference [3] and summarized below.  

   
First, let the 6×1 vector, sO = [s1O, s2O,…,s6O]T = [σ11, σ22, σ33, σ12, σ23, σ13]

T represent the static state of 
stress at the location of interest. Upon expanding (3) and rearranging the resulting terms to suit this 
vectorial representation of the stresses, we can write  
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and  
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where Tqi is the trigonometric function in the qth row and ith column of the 6×2 transformation matrix 
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It is shown in reference [3] that each point on Mohr’s circle corresponds to a unit direction vector 
α =[cosψ, sinψ]T in the σ '11 – σ '13  plane defined by a counter-clockwise angle ψ measured from the σ '11 
axis and a unique combination of rotations φ1, φ2 and φ3 that maximizes  
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which is simply the projection of the stress vector, s'O = [σ '11, σ '13]
T on to α . Thus, the largest Mohr’s 

circle in Figure 2 can be generated by specifying a number of directions 0 ≤ ψ ≤ 2π  in the σ '11 – σ '13 
plane and, for each direction, plotting σ '11 and σ '13 (computed using (4a) and (4b)) that correspond to the 
combination of φ1, φ2 and φ3 that maximizes (6). While this approach is computationally cumbersome 
compared to conventional procedures used to plot Mohr’s circle, it has the advantage that (6) is a linear 
combination of the normal and shear stresses acting at the location of interest, which is necessary for 
incorporation into a response-spectrum-based analysis. The nonlinear equations commonly used to 
compute Mohr’s circle are not compatible with the response spectrum method. 
 
We remark that the above procedure can be easily specialized for the case of plane stress or plane strain in 
two-dimensional structures by setting rotations φ1 =φ3 = 0. In this case, the terms in rows 2, 4 and 5 of the 
transformation matrix T are zero and the corresponding stresses, s2O = σ22, s4O = σ12 and s5O = σ23 are 
inconsequential to the analyses. Naturally, only the value of φ2 that maximizes (6) must be determined for 
each direction ψ considered when plotting Mohr’s circle for the two-dimensional case.  
 

RESPONSE-SPECTRUM-BASED ENVELOPE FOR MOHR’S CIRCLE 
 
During an earthquake, the state of stress at any location within a structure varies in time. Consequently, 
the location and size of Mohr’s circle also fluctuate. In this section, we summarize a response-spectrum-
based procedure for computing the envelope EMohr that bounds Mohr’s circle as it evolves in time during 
an earthquake. A detailed derivation and discussion of the procedure can be found in references [2,3]. 
 
Preliminaries 
We assume that the structure is linear and classically damped with N degrees of freedom and that its 
modal properties are available for the n ≤  N significant modes of vibration. For the ith mode, let ωi = the 
natural period, ζi = the damping ratio and ϕi = the mode shape. The mass matrix of the structure model is 
denoted M. We also assume that the influence vectors, ι1, ι2 and ι3, which represent the displacements of 



the masses resulting for the static application of a unit ground displacement in the z1, z2 and z3 directions, 
respectively, are available so that the inertia force distribution vectors 
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may be computed (see Chopra [6], p 483). 
 
The structure is subjected to static loads and seismic ground motions that can act simultaneously in the z1, 
z2 and z3 directions. Each component of ground motion is characterized by is pseudo-acceleration response 
spectrum. Let Aki = Ak(ωi,ζi) denote the pseudo-acceleration response spectrum ordinate of the ith mode of 
vibration for the component of ground motion acting in direction zk.  
 
When we apply the force vector mkiAki to the structure, the resulting vector of stresses at any point of 
interest, ski = [s1ki, s2ki,…,s6ki]

T represents the peak earthquake induced stresses associated with the ith 
mode of vibration and kth component of ground motion. The (square of the) response spectrum estimate 
of the peak value of the qth stress component, Sq = max|sq(t)| is   
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where ρij is the correlation coefficient associated with the ith and jth modal responses (Chopra [6], pp.. 
516-559). In the following discussion, we also make use of the response-spectrum-based cross term, 
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which is related to the covariance between the qth and rth stress components when q ≠  r (see Menun [7]). 
Note that Sqr =  Srq and  Sqq = Sq

2; i.e., (8) is a special case of (9). It is convenient to collect (9) for all stress 
pairs to construct the 6×6 symmetric response matrix S = [Sqr]. We remark that (8) and (9) assume that the 
components of ground motion directed along the z1, z2 and z3 axes are uncorrelated; i.e., the principal 
components of ground motion coincide with the assumed structure axes. Analysis of recorded 
accelerograms suggest that it is often reasonable to assume the vertical component of ground motion 
(directed along the z3 axis) is a principal component; however, the horizontal principal components of 
ground motion will, in general be rotated with respect to the assumed z1 and z2 axes (Penzien [4]). In this 
case, (8) and (9) must be modified as described in reference [7]. For brevity however, we assume in this 
paper that the principal components of ground motion are directed along the assumed structure axes. 
 
Stress envelope on a specified oblique plane 
Central to the computation of EMohr is the envelope that bounds the stress vector s'(t) = [σ '11(t), σ '13(t)]

T 
for prescribed values of φ1, φ2 and φ3 as it evolves in time. It can be shown [7] that the envelope that 
bounds s'(t), which we denote Eφ, is an ellipse whose location, size and orientation on the σ '11 – σ '13 plane 
are defined by s'O and the 2×2 response matrix S' = TTST. In particular, as indicated in Figure 3, for a 
prescribed direction α = [cosψ, sinψ]T in the σ '11 – σ '13 plane, the coordinates s'=[σ '11, σ '13]

T  of a point 
on Eφ are 
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which can be expanded as 
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and we have used the fact that S'12 = S'21. For a prescribed set of rotations, φ1, φ2 and φ3, Eφ can be 
generated by evaluating (11) for a number of closely-spaced values of 0 ≤ ψ ≤ 2π and plotting the 
resulting [s'1, s'2]

T =[σ '11, σ '13]
T coordinate pairs.  

 
Computing EMohr  
The procedure for computing the coordinates of the envelope that bounds Mohr’s circle in a seismically 
loaded structure is analogous to that described earlier for the case of static stresses. In particular, we 
simply replace the static stress vector s'O in (6) with s' defined by (10) and determine the rotations φ1, φ2 
and φ3 that maximize Mα for a specified direction α = [cosψ, sinψ]T in the σ '11 – σ '13 plane. These 
optimal values of φ1, φ2 and φ3 are then substituted into (11) to determine the coordinates of EMohr 
associated with α . Repeating this exercise to a number of angles 0 ≤ ψ ≤ 2π and plotting the resulting [s'1, 
s'2]

T =[σ '11, σ '13]
T coordinate pairs generates the entire envelope.   

 
When we substitute (10) into (6) and expand, the expression that must be maximized can be written as 

∑∑∑
= ==

++++=
6

1

6

1
2121

6

1
21 )sincos)(sincos()sincos(

q r
qrrrqq

q
qOqq STTTTsTTM ψψψψψψα .         (12)    



We remark that the rotations to be determined, φ1, φ2 and φ3, only appear in the evaluation transformation 
matrix elements Tqi (5). The combination of φ1, φ2 and φ3 that maximizes Mα for a specified value of ψ  
must satisfy the set of equations dMα /dφi = 0, i = 1,2,3 such that the second derivatives of Mα with respect 
to these rotations are less than zero. However, due to the nonlinear nature of (12), this approach is 
impractical; instead, we suggest that the critical values of φ1, φ2 and φ3 be found by systematically 
evaluating (12) for many uniformly spaced combinations of these rotations and selecting that which 
maximizes (12). Experience with this “brute-force” approach indicates that it is not computationally 
prohibitive; e.g., in the numerical examples that follow, only 20 equally spaced values of each rotation in 
[0, π] were used (i.e., 203 = 8000 evaluations of Mα), yielding an estimate of max(Mα) that is was always 
within 2% of the true solution. Moreover, we note that the stresses due to static loads, sqO, and the 
response spectrum stress cross terms, Sqr, in (12) are not functions of φ1, φ2, φ3 or ψ . Consequently, only 
one structural analysis (needed to compute sqO) and one eigenvalue analysis (needed to compute Sqr) must 
be performed with respect to the assumed global coordinate system used to define the geometry of the 
structure, thereby further reducing the computational burden of repeatedly evaluating (12). 
 
Often the analyst is only interested in estimates of the maximum and minimum normal (principal) stresses 
or the maximum shear stress acting within a structure. These quantities, which coincide with the extreme 
values of EMohr in the σ '11 and σ '13 directions, respectively, are readily available from the procedure 
described above for predicting the coordinates of EMohr. In particular, it should be apparent that estimates 
of the maximum and minimum principal stresses are obtained when (12) is maximized with ψ = 0 and 
ψ = π, respectively. Similarly, the maximum shear stress (and the expected value of the normal stress that 
acts concurrently) is obtained when ψ = π/2 is used.   
 
Recall that Sr

2 and Sqr defined by (8) and (9) assume that the components of ground motion directed along 
the z1, z2 and z3 axes are uncorrelated. If this assumption is not valid and the horizontal principal 
components of ground motion are rotated with respect to the horizontal z1 and z2 axes of the structure 
model by an (usually unknown) angle θ, then Sr

2 and Sqr are functions of θ. In this case, Mα defined by 
(12) must maximized with respect to φ1, φ2, φ3 and θ. Fortunately, as shown in reference [3], the 
optimisation of Mα with respect to θ  can be uncoupled from the optimisation with respect to φ1, φ2 and φ3 
described above, so the additional computational burden introduced by treating θ as an unknown quantity 
is small. 
  
Finally, we remark that the above procedures for predicting the coordinates of EMohr or the extreme 
principal or shear stresses can be easily specialized for the cases of plane stress or plane strain in two-
dimensional structures by setting rotations φ1 =φ3 = 0 and maximizing Mα defined by (12) with respect to 
φ2 only. 
 

ACCURACY OF THE PROPOSED ENVELOPE 
 

Example structures 
To test the accuracy of EMohr, we compare it to simulated envelopes obtained from a series of time-history 
analyses performed on the two-dimensional finite element model of a concrete gravity dam shown in 
Figure 4 and the three-dimensional model of a concrete arch dam shown in Figure 5. All nodes in the 
finite element models, except those along the bases of the dams and along the abutments of the arch dam, 
are free to translate. To avoid unnecessarily complicating the following analyses, the foundations are rigid 
and the reservoirs are empty (i.e., there are no hydrostatic or hydrodynamic forces acting on the upstream 
faces of the dams). The concrete in the dams is modeled as a homogeneous, isotropic, linear-elastic solid 
that has modulus of elasticity, Poisson’s ratio and density shown in Figures 4 and 5. Using these material 



properties, the global stiffness matrices, K, and consistent mass matrices, M, of the dams are assembled 
by standard procedures [8]. Energy is dissipated in the models by viscous damping, which is represented 
by the damping matrix C=αM+βK, where α = 1.6 and β  = 0.001 are coefficients chosen such that the 
resulting modal damping ratios are reasonable for the severity of ground shaking considered.  

 
Ground motions 
The dams are subjected to ensembles of 20 simulated ground accelerations that were generated in a 
manner similar to that described in [9], which produces statistically independent realizations of a wide-
band, zero-mean Gaussian process. The modulating function used to model the temporal variation of the 
ground motion intensity was selected such that the resulting accelerograms have a stationary strong 
motion phase that is several times longer than the fundamental periods of the dams, as assumed by the 
response spectrum method. The average peak ground accelerations of the major, intermediate and minor 
principal components of the ground motion are 0.20g, 0.15g and 0.12g, respectively. It is assumed that 
ground motions of this intensity are representative of a serviceability level earthquake, during which the 
structures remain elastic and, consequently, the response spectrum method remains valid. A sample 
accelerogram and its pseudo-acceleration response spectrum, together with the average pseudo-
acceleration response spectrum for the major principal component of ground motion are plotted in Figure 
6. Owing to the manner in which the ground motions were simulated, the average response spectra of the 
intermediate and minor principal components have approximately the same spectral shape as the major 
principal component shown in Figure 6, but with smaller intensities that reflect the fact that these 
components are not as strong as the major principal component. We remark however that the procedure 
does not require the components of ground motion have the same spectral shape. 



 



In all time-history analyses, the major principal component of ground motion is directed along the z1 axis 
of the structure model, the intermediate principal component is directed along the z2 axis (for the arch dam 
only) and the minor principal component is directed along the vertical z3 axis. For each (principal) 
component of ground motion, the pseudo-acceleration response spectrum used to evaluate (9) is taken to 
be the average pseudo-acceleration response spectrum computed for the ensemble of 20 simulated records 
used for that component in the time-history analyses 
.  
Comparison of EMohr to time-history results 
For each dam, the ensemble of artificial ground motions described above is used to generate 20 
realizations of s(t) at the locations indicated in Figures 4 and 5. These realizations of s(t) are then used to 
simulate the average bounding envelope on Mohr’s circle (see reference [2] for a description of this 
calculation), which is compared to EMohr computed using the average response spectra of the ground 
motions. The simulated envelopes at the four locations of interest within each dam are plotted in Figures 7 
and 8 along with EMohr. 



 





Figures 7 and 8 show excellent agreement between the simulated and predicted envelopes. The largest 
difference in any direction on the σ '11 – σ '13 plane is less than 10% (along the σ '13 axis at location B 
within the gravity dam) when measured from the origin; however, it is evident that this result is not 
typical; the discrepancies between the simulated average envelope and EMohr are much less in general. The 
results presented in these figures, which are typical of all locations within the dams, suggest that the 
proposed envelope is sufficiently accurate for use in structural design and analysis. 
 

EXAMPLE APPLICATION  
 

We now demonstrate the utility of EMohr as an aid to seismic structural analyses by using it to evaluate the 
adequacy of the concrete in the gravity dam (Figure 4) to withstand all possible combinations of normal 
and shear stresses that are consistent with the assumed design response spectra of the ground motions 
(assumed to be the average response spectra of the simulated ground motions plotted in Figure 6). To 
perform such an assessment at any location of interest within the dam, EMohr, which bounds the normal 
and shear stress demand, must be compared to an appropriate material interaction diagram. In this 
example, we adopt the Mohr rupture diagram for unreinforced concrete (Mehta [1]) for this purpose. A 
Mohr rupture diagram is usually determined empirically from a series of triaxial compression tests 
performed on samples of concrete with increasing confinement pressure. In the following analyses, we 
assume that the Mohr rupture diagram is a parabola defined by  
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where ft = 4.8 Mpa and fv = 6.1 MPa are the nominal tensile and shear strengths of the concrete, 
respectively. The Mohr rupture diagram defined by (13) is plotted in Figure 9 along with EMohr computed 
at location A in Figure 4.  

 
Examining Figure 9, we see that EMohr is encompassed by the Mohr rupture diagram, so the concrete is 
deemed to have adequate strength at this location. Unfortunately, if we wish to examine many locations in 
the dam, this visual approach is cumbersome to use and an algorithm to automate the analyses is desirable. 
One such algorithm, which is described in reference [10], operates by computing the required value of a 
ground motion intensity factor, λ = λ*, that when used to scale the design response spectra used to 



evaluate Sqr in (9), causes EMohr to expand (λ >1) or contract (λ <1) such that it touches, but does not cross, 
the Mohr rupture diagram at one or more points; i.e., λ* may be interpreted as a safety factor for the 
structure. By repeatedly computing λ* at various locations within the dam, a contour plot, like that shown 
in Figure 10 can be generated, which upon inspection reveals those critical locations within the dam 
where the ground motion intensity factor required to cause the concrete to fail is the lowest.  

 
 

CONCLUSIONS 
 
A response-spectrum-based procedure for predicting the envelope, EMohr, that bounds Mohr’s circle at any 
location of interest within a two- or three-dimensional structure that is subjected to as many as three 
translational components of ground acceleration has been described. The envelope is a function of 
quantities that are routinely used and calculated in conventional response spectrum analyses. When only 
the extreme normal (principal) or shear stresses are of interest, they can be readily obtained from the 
envelope; however, it was shown that these stresses can also be computed directly without generating the 
entire envelope. 
 
For brevity, EMohr has been described for the specific case in which the principal (uncorrelated) 
components of ground motion are directed along the global coordinate axes used to define the structure 
model. The required modifications for the more general case in which the horizontal principal components 
of ground motion are rotated with respect to the assumed horizontal axes of the structure model by an 
unknown angle θ can be found in reference [3]. However, these modifications do not significantly change 
the computation or application of EMohr from what is presented in this paper. 
 
The accuracy of the EMohr was examined by means of an ensemble of time-history analyses performed on a 
two-dimension concrete gravity dam and a three-dimensional concrete arch dam using simulated ground 
motions. The results of these analyses demonstrated that the proposed envelope accurately bounds the 



time-varying realizations of Mohr’s circle in an average sense. For each of the four locations considered 
within each dam, the difference between the simulated average envelope and EMohr computed using the 
average response spectra of the ground accelerations was less than 10% in any direction on the normal-
shear stress plane measured from the origin. However, it was noted that this discrepancy was not typical; 
the differences between the simulated and predicted envelopes were much less in general. Thus, we 
conclude that the proposed envelope is sufficiently accurate for structural analysis and design. 
 
The utility of EMohr in structural analysis and design of is similar to that of Mohr’s circle for static states of 
stress. In particular, EMohr provides a concise graphical representation of the possible combinations of 
normal and shear stresses that act at any location of interest within the structure during an earthquake. 
Consequently, the envelope is a useful design aid, particularly when the capacity of the material is defined 
by an interaction diagram, as was illustrated for the example gravity dam using a Mohr rupture diagram to 
represent the capacity of the concrete.  
 

ACKNOWLEDGMENTS 
 

The author is indebted to Prof. Anil Chopra for suggesting the research described herein and providing 
thoughtful and encouraging comments during its development. Financial support provided by the US 
Army Corps of Engineers is also gratefully acknowledged. However, the opinions and conclusions 
described in the paper are those of the author alone.    
 

REFERENCES 
 
1. Mehta PK, Monteiro PJM. “Concrete: Structure, Properties and Materials.” Second edition. Prentice 

Hall: Englewood Cliffs, NJ, 1993. 
2. Menun C. “A response-spectrum-based envelope for Mohr’s circle.” Earthquake Engineering and 

Structural Dynamics 2003; 32:1917-1935. 
3. Menun C. “An envelope for Mohr’s circle in seismically excited three-dimensional structures.” 

Earthquake Engineering and Structural Dynamics 2004; in press. 
4. Penzien J, Watabe M. “Characteristics of three-dimensional earthquake ground motion.” Earthquake 

Engineering and Structural Dynamics 1975; 3:365-374.   
5. Ragab A-R, Bayoumi SE. “Engineering Solid Mechanics: Fundamentals and Applications.” CRC 

Press: New York, NY, 1999. 
6. Chopra AK. “Dynamics of Structures: Theory and Applications to Earthquake Engineering.” Second 

edition. Prentice-Hall: Upper Saddle River, NJ, 2001. 
7. Menun C, Der Kiureghian A. “Envelopes for seismic response vectors. I: Theory.” Journal of 

Structural Engineering ASCE 2000; 126:467–473. 
8. Cook RD. “Concepts and Applications of Finite Element Analysis.” Second edition. John Wiley and 

Sons: New York, 1981. 
9. Ruiz P, Penzien J. “Probabilistic study of the behavior of structures during earthquakes.” Report No. 

UCB/EERC 69-3, Earthquake Engineering Research Center, University of California, Berkeley, CA, 
1969. 

10. Menun, C. and Der Kiureghian, A. “Envelopes for Seismic Response Vectors.” PEER Report 
1999/08, Pacific Earthquake Engineering Center, University of California Berkeley, 1999. 


	Return to Main Menu
	=================
	Return to Browse
	================
	Next Page
	Previous Page
	=================
	Full Text Search
	Search Results
	Print
	=================
	Help
	Exit DVD



