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PARALLEL COMPUTATION OF 3D WAVE PROPAGATION
BY SPECTRAL STOCHASTIC FINITE ELEMENT METHOD
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SUMMARY

Strong ground motion plays an important role féi@ent seismic design and prevention of earthquake
disasters. It is impossible, however, to simulate or predict perfectly accurate earthquake ground motions
because many influential factors have uncertainty. It is essential therefore to quantitatively estimate the
effect of these factors on the ground motions and take them into consideration. Monte Carlo simulation is
a powerful tool for consideration of uncertainty. However, computation of MCS is expensive in terms of
computational resources and mofBaent methods are also in demand.

We present application of Spectral Stochastic Finite Element Method (SSFEM) to the three dimensional
wave propagation analysis in the uncertain field. SSFEM represents a spatial distribution of uncertain pa-
rameters by Karhunen-gwe (KL) expansion. Stochasticity of the solution is represented by Polynomial
Chaos (PC) expansion. The system equation with stochasticity is then projected on Polynomial Chaos
functionals to generate a set of equations. Since PC functionals consist an orthogonal basis of the proba-
bility space called homogeneous chaos, solution of the projected equations assures the best approximation
of the system equation in terms of the error of the norm defined in that homogeneous chaos space.

Since equations projected to PC functionals are not independent of each other, computation of SSFEM
involves treatment of huge matrices. We propose a scheme for parallel computation with MPI for an
efficient computation of SSFEM. In this scheme, each of the projected equations is considered as a separate
domain which has interaction with each other. We utilize a non-iterative time integration scheme for a
nonlinear dynamic FEM analysis. This enables fiitient parallel computation of SSFEM by treating

the interaction between domains of SSFEM as nonlinearity of the system.

The proposed scheme is applied to a three-dimensional wave propagation in the uncertain tiedia. E
ciency and accuracy of the scheme are verified based on the computational results. It is shown that the
presented scheme considerably reduces the computation time without losing accuracy. It indicates that SS-
FEM with MPI would be a powerful option for strong motion simulation with quantitative consideration

of uncertainty.
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INTRODUCTION

For dficient and rational seismic design, it is important to estimate earthquake ground motions with suf-
ficient accuracy. However uncertainty in the estimation of ground motion is inevitable since many influ-
ential factors have uncertainty and most of those factors &ieudi to determine or investigate through

the survey. Therefore consideration of thEeet of such uncertainties is essential in seismic design and
damage estimation.

In this paper, we consider uncertainty of material property of the ground. Ground property is not uniform
and it is impossible to obtain the perfect information about the distribution of the ground property such as
stiffness.

Wave propagation in the random media have been studied for decades and various results have been re-
ported [1, 2, 3]. Most of them, however, are pursuing analytical solutions for rigorous or approximate
expressions and they are not necessarily suitable for engineering problems where various practical condi-
tions such as ground layer structures and boundary conditions have to be taken into consideration.

One of the most powerful tools for such problems is a Monte Carlo simulation, but it requires huge com-
putational resources and mon@&ent methods are demanded. To compute such probl&ioeetly, we

can use stochastic finite element methods (SFEM) by Yamazaki4] and Spanos & Ghanem [5]. We

have proposed to use Spectral Stochastic Finite Element Method (SSFEM) which was originally proposed
by Ghanem and Spanos [6] and SSFEM has been applied to two dimensional wave field [7]. In this paper,
we apply SSFEM to three dimensional wave field.

This paper proposes a method for the parallel computation of SSFEM to the three dimensional analysis
of wave propagation in the field with uncertainty. First part presents formulation of SSFEM applied to
three dimensional wave field. Then the algorithm for parallel computation of dynamic SSFEM analysis is
described. Toillustrate the performance of the proposed formulation, numerical simulations are conducted
on the computer with MPIl. Compare of computational results will verify tfieiency of the proposed
scheme.

SPECTRAL STOCHASTIC FINITE ELEMENT METHOD

This section describes the formulation of wave propagation analysis using Spectral Stochastic Finite Ele-
ment Method (SSFEM). We introduce two schemes to represent stochastic processes that play important
roles in the formulation of SSFEM; Karhunen-éwe expansion and polynomial chaos expansion. The
formulation of wave propagation analysis by SSFEM is presented using these stochastic representation
schemes. More information about utilization of these representations in the formulation of SSFEM are
also found in the references [6, 8, 9, 10].

Karhunen-Loeve Expansion

In SSFEM, uncertain parameters are regarded as stochastic processes whose spatial distributions are repre-
sented by Karhunen-lawe expansion. The Karhunenéwe expansion is a representation of a stochastic
process in terms of uncorrelated random variables. When applied to a stochastic process whose covari-
ance function is known, Karhunen-&ee expansion can provide the optimal representation of the original
process in the mean-square sense.

Let us consider the domafiand a stochastic proce&$x, 6) defined inS wherex € S denotes the spatial
coordinate and denotes an event in the probability space. Assume covariance function of the value at
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arbitrary pointsxy, X2 € S is given asC(xy, X2). Then Karhunen-Leve expansion of a stochastic process
G(x, ) is given as

G(x.0) = G() + Y &(O) VA i(¥) (1)
i=1

WhereG_(x) is a mean value 0§(x, 0) at x andé(6)’s are orthonormal random variables. Scalars
and functionsf;(x)’s are respectively given as eigenvalues and normalized eigenfunctions of the integral
equation

fs Clx. %) fi(x2)d%e = A i (x0). 0

It is impossible to expand Eq.(1) to an infinite order in practice and summation of Eq.(1) is truncated at

a finite order. The truncation order of the summation is referred to as KL order and dendigd by

this paper. Truncated summation of Eq.(1) does not generally represent the original stochastic process
perfectly. However, it is known that Karhunen&we expansion gives the optimal approximation of the
original stochastic process in the sense of mean-square, when the summation is truncated at a given finite
order. Accuracy of truncated Karhunenéwe expansion is discussed by Ghanem [6, 11].

Polynomial Chaos Expansion

Since it is impossible to obtain the information of covariance function of the solution in advance, solution
process can not be represented by Karhunekvk@xpansion. Instead, the solution process is represented
by polynomial chaos expansion. Displacement vegtfor example is given as

u=>" u¥i) (3)
i=0

whereY;(¢) denotes-th polynomial chaos and its argumehis a set of orthonormal Gaussian stochastic
variables:

£= (6,00 (4)

For the purpose of practical computation, we take an intBigerand the expansion is truncated after the
Npc-th term. The value olNpc is disussed below.

Polynomial chao¥,(¢) are given as multivariate Hermite Polynomials which can be constructed as

1gT 8” lgT

¥n(6) = e (1) ———e i¢
" endeiy -

where a multiindexif, i3, ...,) denotes a set of all possible combination of non-negative integers whose
summation is equal to a certain integarwherem is a non-negative integer taken aslQ.. Sup-
pose we have two independent random variabfgsand &2, then possible combination of}(if) for

n=0,123,...,are

(5)

(IT’ Ig) = (0’ O)’ (17 0)9 (0’ 1)’ (2’ 0)7 (19 1)’ (0’ 2)’ T (6)
and corresponding polynomial chaos are obtained as
Yo@) =1 Yié) =&, YaAf) =&
Yaé) =& -1, Waé) =érdn, Ws(§)=&-1,...

They are orthogonal to each other with respect to the Gaussian measure.

(7)



The space spanned ¥ (£)} for whichm = ¥, iy (m > 0) is called am-th order homogeneous chaos
(HC). In this paper, the direct sum of the homogeneous chaos with the order less or eljyal i®
referred to as a homogeneous chaos truncated &t{peth order.

Polynomial chaos consist an orthogonal basis of the homogeneous chaos [12, 13]. When the HC is trun-
cated at a finite order, the number of terms of polynomial chaos to consist the orthogonal basis of the HC
is also finite. LetNpc denote the total number of terms excluding the 0-th order t#§(§). ThenNpc

is uniguely determined by the truncation order of H&;c, and the number of independent stochastic
variables in consideration. Suppose we hislgg stochastic variables, thé¥pc is given as

NS 1 (N + £ — 1)!
Npc = T T T

T 40 (N - 1)! ®

SinceNpc is uniquely determined bk, andNpc, we will specify the cases by KL order and HC order
without explicitly mentioning toNpc. For example, if we truncate Karhunenéw® expansion at 2nd
order and homogeneous chaos by 2nd order, we simply write2dnd HG=2, implicitly meaning that
we haveNpc = 5.

A mean value, variance and probability density function (pdf) of the solution expressed in the from of PC
expansion can be easily evaluated. A mean value is given as the 0-th term. For example, a mean value of
displacement vectar(9) in Eq.(3) is given as

u(d)) = uo. (9)

We denoten-th component ofi by u", and coéicient ofi-th PC ofu' by u'. Then the variance ai-th
component oli is obtained as

Npc

(U = UMy = > @) WIE)NU)? (10)
i=1

where the orthogonality of polynomial chaos, that(i;(£)¥;(£)) = O fori # ] is taken into consider-

ation. Pdf can be simply evaluated in a Monte Carlo Simulation-like manner. Generate numerous sets
of independent Gaussian variablggi = 1,2,...) and estimate the value of Eq.(3) for each of them.
Statistical distribution of those values represents pdf of Eq.(3).

Wave Propagation Analysis by SSFEM

Let us derive the formulation of SSFEM for the wave propagation problem in the uncertain media. We
consider an FEM formulation of equation of motion as

Malt, 6) + K(9)u(t, 6) = p(t) (11)

whereM andK denote mass and Stiess matricesa(t, 8), u(t, 8) and p(t) are acceleration vector, dis-
placement vector and external force vector, respectively.

We assume that the shearffstess has a Gaussian uncertainty. We expand the shi@aesdG(x, 6) by
KL expansion as in Eq.(1). We truncate the expansion of Eq.(12) at a finite KL Nideand we obtain

\' 8

G(x 6) = G(¥) + ), &(6) Gi(¥ (12)
i=1



wherex denotes spatial coordinaté,denotes an event in the probability spaéedenotes the expected
value ofG(x, 6); &(0) are orthogonal Gaussian random variab{&$x) is given as

Gi(¥) = Vaifi(¥) (13)

where 4; and fj(x) are an eigenvalue and an eigenfunction of the Eq.(2) ®itky) representing the
correlation function o(x, 6).

Let K,(#) denote a sffness matrix corresponding to the sheaffretissG (X, 8), then the sttness matrix

K(0) can be expressed as
Nk

K(©) = Ko+ D énl®)Kn. (14)
n=1

Since it is impossible to obtain the correlation function of solution a priori, KL expansion is not applicable
for the solution such as displacement, velocity and acceleration. They are expressed by PC expansion as
in Eq.(3) where summation is truncated\iic.

Substitute in Eq.(11) the diiness matrix and state variables which are expressed in the stochastic expan-
sion representation, we obtain

Npc NkL Npc

M > aOFiE) + D &(0)Kn ) uOFiE) = pt). (15)
i=0 n=0

i=0

To approximate Eq.(15) in the space of homogeneous chaos truncated at a finite order, we project Eq.(15)
on the polynomial chao¥;(¢). Since PC consist an orthogonal basis, this gives the best approximation
of Eqg.(15) in the homogeneous chaos under consideration. This process gives equations to be solved.

Npc Nk Npc
D (F@PiE©) Ma®) + ) > (&i(©)¥i(9) Knti() = (pOF;()) (16)
i=0 n=0 i=0

It can be also shown that PC expansionfioents of acceleratioa(t), velocity vj(t) and displacement
u;(t) satisfy the relation of dierentiation as

d2
dt?

Therefore Eq.(16) can be treated as an ordinary second ofthreditial equation and it can be numerically
solved by conventional time integration schemes.

d
aj(t) = Vi) = 5 u;(). (7)

PARALLEL COMPUTATION OF SSFEM

Suppose that our problem hidgor degree of freedom and that the number of terms of polynomial chaos
to consist the basis of HC under consideratioNgg. Then the matrices of SSFEM to represent Eq.(16)
consist of Npc + 1) x (Npc + 1) blocks where each block is of the size of the matrix of deterministic
FEM analysisNpor X Npor. It can be found recognized that SSFEM requires manipulation of such huge
matrices and it can make the computation expensive.

We propose anficient algorithm for parallel computation of dynamic analysis of SSFEM. This is enabled
by using a non-iterative time integration scheme for FEM and also exploiting the sparseness of the matrices
of SSFEM.



Non-Iterative Time Integration Scheme [14]

In order to implement anficient computation of dynamic analysis of SSFEM, we utilize a non-iterative
time integration (NITI) scheme [14]. NITI scheme is implemented by combining implicit and explicit
time integration schemes, taking advantage of benefits of both schemes. Computational stability of NITI
scheme is comparable with that of implicit schemes under certain conditions, which allows us to take a
large time step to reduce the total number of updating steps. NITI scheme does not require iterative process
even when applied to nonlinear dynamic problems and computation load is decreased considerably.

In the following, we present formulation of NITI scheme applied to the dynamic analysis of a nonlinear
system, using central fierence method as an explicit scheme and Newrgamethod as an implicit
scheme. Let us consider an ordinary equation of motion as

MU(t) + Cu(t) + Ku(t) = f(t, u) (18)

whereM, C andK denote mass, damping andfistess matrices respectively;is displacementf (t, u)

is an external force and it is a function of timeand displacement. Nonlinear problems that have
displacement-dependentfitiess can be written in the same expression by shifting fieeteof nonlin-
earity to the right-hand side of the equation. The equation is discretized assuming the timestapdas
letting subscripk denote the value at theth time stepty = kAt.

Let us illustrate the process by updating the time level ftomt, tot = t,.1. We estimate the external
force attime = t,1 using the displacemen at the current time level= t,. Updating the equation using
Newmarkg method, we obtain the prediction of the displacemgpt, Velocity u,, 1 and acceleratiotiy, 1
as

~ .. 4 . 4

Un+1 = —Un — ZT[Un + ZF(Uml — Un) (19)
~ . 2 .

Un+1 = —Un + Zﬂ(uml — Un) (20)

At At2 At2 At

These prediction requires correction to compensate ffereince of the external forddt,, 1, un.1) and the
assumed external forddt,. 1, uy). Conventional implicit scheme requires iteration to estimate compensa-
tion terms. NITI scheme estimate theéfdrence using the centralftérence method (CDM). Since CDM

is an implicit scheme, compensation can be taken into consideration without iteration pro¢éessnbe

of the external force! f, is simply given as

Afy = f(thet, Une1) — F(ther, Un) (22)

Let A4Un, 1, 4un+1 and4un, 1 denote the responses of the system due to the externalf@ycand they are
given as

2 4 N\ 4 4 2 .

) At \ 77

. At \U 4t

2 2
Aupy1 =0 (25)

Summation of the prediction and the correction yields the response at time {etgh as

U1 = an+1 + AUng1 (26)
Uns1 = l.~'|n+l + Alns1 (27)
Unt1 = Ongt. (28)



Eq.(25) indicates that displacement does not change in the compensating process and consequently the
external forcef (tn:1, Un+1) does not change either. Therefore the relationship

f(the1, Ons1) = F(thit, Une) (29)

holds and, requiring no further interaction, Eqs.(26)—(28) give the solution for the time levg].

Parallelization of Computation

Matrices used in SSFEM analysis are huge and sparce. They consist from blocks, each of which is of the
size of matrices of ordinary FEM analysis. We write these blocks as

M = (¥(£)¥; (€)M (30)
Nk

K= 3" (&Wi€)¥j(€)Ka (31)
n=0

Correspondingly, external force vector should be also divided into blocks as

p(t) = (p()¥|(£)) (32)

Diagonal blocks of mass matrix are nonzero siﬂ‘é’é} # 0, while its non-diagonal blocks are zero
matrices becaus@j¥j) = 0(i # j). Similarly, diagonal blocks of SSFEM fitness matrices are non-zero
matrices due to the terms with= 0. We decompose the itiess matrix into the matrix consisting of the
diagonal blocksi(= j in EQgs.(30) and (31)) and the matrix consisting of the non-diagonal bloegkg)
The matrix containing diagonal blocks of thefstess matrix is denoted byKP and the matrix with the
rest blocks is byK\P. By using these matrices, Eq.(16) can be written as

Miil + KPu = f(t,u) — KNPy, (33)

Exploiting the fact that both mass mattfik and stifness matriXk® are block diagonal, Eq.(33) can be
separated into o o _ o

MYt (tr12) + K'U (te) = P/ (tner) = ) KU (o) (34)

) J#l

wherei denotes the order of polynomial chaos to which the stochastic equation is projected and Eq.(34)
represents the equation of motion projected tad ttrepolynomial chaos. Although Eq.(34) gives an inde-
pendent equation for eachsince non-diagonal block matri«\P is not empty indicating the existence of
interactions, they are not independent of each other.

Now, for an dficient parallel computation, we can apply NITI scheme by regarding the second term of the
right-hand side of Eq.(34) as an external force which is a function of displacement.

The application procedure is simple. First, we solve Eq.(34) assuming the right hand side takes the value
at timet = t,, to obatain
M d (t+1) + KU (taea) = P'(tnea) = D KU (to). (35)
Js J#i
This computation can be conducted separately diergint CPUs in parallel. Matrix used in the com-
putation on each CPU is of the size of deterministic FEM analysis. We obtain the tentative value of

displacementiy; 1 for the time att = t,,1. We update the interaction using these displacement values to
obtain the increment of the external force as

Af= =" K@ (ths) - Ul (ta)). (36)
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Figure 1: Flowchart of parallel computation of SSFEM.

Velocity and acceleration are respectively updated by Eqgs.(23) and (24). Substituting them in Eqgs.(26) —
(28) gives the value at time level= ty,1. This computation can be also conducted on each CPU in
parallel. The proposed scheme workiagently especially because fftiess matrixk of SSFEM are

sparse. The interaction terms are not dominant and consideration of them does not require huge amount
of computation.

The total flow of the proposed parallel computation algorithm is summariz€igire 1. The flow is

assumed to havildpc processes to run parallelly. The 0-th process obtain the input data and distribute the
required information to all other processes. In every step of update, each process independently updates
the state variables on each of the spaces projectbigdgolynomial chaos, assuming the interaction of

the previous time level. The interaction is then estimated based on the computed displacement and their
values are cast to other processes. Based on the updated interaction, process on each processors parallelly
compensates velocity and acceleration. Updating process is conducted on each CPU independently except
communication of interaction forces. Communication has to be conducted only once for every time step
and most of the computation process can be conducted highly independently.

NUMERICAL SIMULATIONS

The performance of the proposed scheme is studied by applying it to the computation of SSFEM analysis
of the three dimensional wave propagation in the uncertain field.
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Figure 2: Problem Setup. Observation point GPy/(z) = (0.0,0.0,0.1) and
observation plane O%= 0.1
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Figure 3: Time history of the input motion

Problem Setup

The domain of £0.5, 0.5] x[-0.5, 0.5] x[-0.5, 0.5] is considered and finite element model is generated by
dividing the domain into 48 40x 40 = 64, 000 elements and total degree of freedom is 207,F&gire 2
illustrates the model under consideration. We set an observation point @B/a3 € (0.0,0.0,0.1) and

an observation plane O5= 0.1 in the model. Displacement at this point and on this plane will be
discussed later.

All parameters except time are given as dimensionless. The unit weight is 1.0 and Poisson’s ratio is 0.25.
Shear sttnessG is assumed to have uncertainty with Gaussian distribution. Its expec@&t®oset as 0.1

which gives corresponding shear wave velocity as/€et]. Correlation function of $fnhess is assumed

as

(X — Xol + 1y1 — Yol + |21 — Zzl)} (37)

b

whereb denotes a correlation length agpddenotes a magnitude of randomness. They are assumed as
b=10andy=0.1.

2
C(X1, Y1, 21, X2, Y2, 22) = ('y@ exp{—

Ricker wavelet with a dominant frequency of 2 [Hz] is given as an explosive source at the center of the
domain. The time history of input motion is plottedkiigure 3. Time step is set agt = 0.01 [sec] and
analysis was conducted for 300 steps.
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0.01

0.005

-0.005

expectation of disp.

-0.01

-0.015
0.5 1 1.5 2 25 3
time(sec)

(b) Parallel computation with 6 CPUs.

Figure 4: Time history of the expectationatomponent of response displace-
ment at an observation point OP, (00.1)

KL order and HC order are set 8| = 2 andNuc = 2. It determines the highest order of PONg: = 5
and the total number of PC to be considered is 6 and we utilize the same number (6) of CPUs in the parallel
computation.

Computation Results
Computational Accuracy

Figure 4 compares the results obtaind by a single CPU and parallel computation. It plots the time histories
of the expectation af-component of displacement at observation point OP. It is oberved that they present
good agreement.

Figure 5 shows the temporal variation of expectation and variatianafmponent of displacement on the
plane OS. They are plotted for four time levels= 0.1, 0.3, 0.5 and 07 [sec]. In the figure, computation
results obtained by 6 CPU parallel computation using the proposed method is plotted with the results
obtained by a single processor and there observestiavatice.

To discuss the accuracy of the proposed method quantitatively, let us define an index to represent the
“difference” as

(38)

N ((Results by 1 CPU} (Results by 6 CPU# | ">
(difference)= {Zl i y ) ( y )

> (Results by 1 CPU)
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Figure 5: Temporal variation of the distributions of the expectation and variatior of
component of displacement on the plane 0.1. Comparison of the results obtained by a
conventional single CPU scheme and 6 CPU parallel computation. They are in good agree-
ment.
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Table 1: Speedup Ratio in terms of Elapse Time

# of CPU | 1 \ 6
Elapse Time [min] 257.2 69.7
Speedup Ratio 1 3.69

Table 2: Speedup Ratio in terms of CPU Time

# of CPU H 1 \ 6
CPU time [min] 257.2 45.0
Speedup Ratio 1 5.71

whereN denotes the total number of nodes. Thefatience” of variance between the results by a single

CPU and by 6 CPUs are of the order of 101t should be noticed that this “fierence” index does not

mean the computational error due to the parallelization of computation process. Both conventional and
parallel schemes have accuracy of second order and error of that order should be considered as inherent.
The diference presented above are of the smaller order and our results indicate that the proposed parallel
computation algorithm for SSFEM assurefisient accuracy for practical purposes.

Computational Ficiency

Improvement of computationfieciency is discussed by comparing the computation time. All computa-
tions are conducted on Pentium 4 processor with the clock frequency of 2.66 [GHz].

Table 1 compares the execution (elapse) time and speed-up ratio, which is defined as a ratio of the elapse
time of the computation by a single CPU and that by plural CPUs. The speed-up ratio by using 6 processors
is 3.06, which is a fairly good score but still considerably lower than the number of processors, 6. It should
be naturally attributed to the overhead loss such as time for data communication among the processors. In
our algorithm, since computation load can be fairly distributed among the processors, load imbalance is
not a major reason of poor speed-up ratio.

Let us also estimate thefeiency of the proposed algorithm according to the Amdahl’'s law. Most of
the computation process of the proposed algorithm can be parallelized and it can be obs€&aixel 2n

which lists CPU time for those computed cases. The table shows that speed-up ratio in terms of CPU time
is 5.71 which is close to the number of CPUs. This indicates that computation (elapse) time can be further
shortened by employing faster hardware for data communication and improving the program codes.

CONCLUSION

We proposed an algorithm for the parallel computation of the dynamic analysis of spectral stochastic finite
element method (SSFEM) applied to the wave propagation analysis in the uncertain media.

In SSFEM, system equation is projected to a finite number of polynomial chaos which consist an orthog-
onal basis of a finitely truncated homogeneous chaos space. This generates a set of projected equations to
be solved. The proposed algorithm treats each of these projected equations separatkdyeon jpiioces-

sors. The interaction among them is taken into consideration as an external force, which efialdet e
computation by utilizing a non-iterative time integration (NITI) scheme [14, 15].

Accuracy and fficiency of the proposed algorithm are verified by the results of numerical simulations.
Three dimensional wave propagation problem in the uncertain media is analyzed by a conventional single-
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CPU scheme and the proposed parallel computation scheme. fldrenice of these computation results
are stfficiently small and the accuracy of the prposed parallel computation algorithm was verified.

Computational fiiciency is also discussed by comparing the computation time required by a single CPU
computation and that by a parallel computation. Computation time is considerably reduced in terms of
the elapsed time. Parallel computation with six processors required less than 30% of that required by
an conventional algorithm with a single processor. Improvemenfimiiency is clearly observed when

they are compared in terms of CPU time. The simulation shows that six-processor computation requires
the CPU time of 5.71 of that required by a single processor case. It indicates the possibility of further
reduction of computation time.
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