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SUMMARY

Strong ground motion plays an important role for efficient seismic design and prevention of earthquake
disasters. It is impossible, however, to simulate or predict perfectly accurate earthquake ground motions
because many influential factors have uncertainty. It is essential therefore to quantitatively estimate the
effect of these factors on the ground motions and take them into consideration. Monte Carlo simulation is
a powerful tool for consideration of uncertainty. However, computation of MCS is expensive in terms of
computational resources and more efficient methods are also in demand.

We present application of Spectral Stochastic Finite Element Method (SSFEM) to the three dimensional
wave propagation analysis in the uncertain field. SSFEM represents a spatial distribution of uncertain pa-
rameters by Karhunen-Loève (KL) expansion. Stochasticity of the solution is represented by Polynomial
Chaos (PC) expansion. The system equation with stochasticity is then projected on Polynomial Chaos
functionals to generate a set of equations. Since PC functionals consist an orthogonal basis of the proba-
bility space called homogeneous chaos, solution of the projected equations assures the best approximation
of the system equation in terms of the error of the norm defined in that homogeneous chaos space.

Since equations projected to PC functionals are not independent of each other, computation of SSFEM
involves treatment of huge matrices. We propose a scheme for parallel computation with MPI for an
efficient computation of SSFEM. In this scheme, each of the projected equations is considered as a separate
domain which has interaction with each other. We utilize a non-iterative time integration scheme for a
nonlinear dynamic FEM analysis. This enables an efficient parallel computation of SSFEM by treating
the interaction between domains of SSFEM as nonlinearity of the system.

The proposed scheme is applied to a three-dimensional wave propagation in the uncertain media. Effi-
ciency and accuracy of the scheme are verified based on the computational results. It is shown that the
presented scheme considerably reduces the computation time without losing accuracy. It indicates that SS-
FEM with MPI would be a powerful option for strong motion simulation with quantitative consideration
of uncertainty.
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INTRODUCTION

For efficient and rational seismic design, it is important to estimate earthquake ground motions with suf-
ficient accuracy. However uncertainty in the estimation of ground motion is inevitable since many influ-
ential factors have uncertainty and most of those factors are difficult to determine or investigate through
the survey. Therefore consideration of the effect of such uncertainties is essential in seismic design and
damage estimation.

In this paper, we consider uncertainty of material property of the ground. Ground property is not uniform
and it is impossible to obtain the perfect information about the distribution of the ground property such as
stiffness.

Wave propagation in the random media have been studied for decades and various results have been re-
ported [1, 2, 3]. Most of them, however, are pursuing analytical solutions for rigorous or approximate
expressions and they are not necessarily suitable for engineering problems where various practical condi-
tions such as ground layer structures and boundary conditions have to be taken into consideration.

One of the most powerful tools for such problems is a Monte Carlo simulation, but it requires huge com-
putational resources and more efficient methods are demanded. To compute such problems efficiently, we
can use stochastic finite element methods (SFEM) by Yamazakiet al.[4] and Spanos & Ghanem [5]. We
have proposed to use Spectral Stochastic Finite Element Method (SSFEM) which was originally proposed
by Ghanem and Spanos [6] and SSFEM has been applied to two dimensional wave field [7]. In this paper,
we apply SSFEM to three dimensional wave field.

This paper proposes a method for the parallel computation of SSFEM to the three dimensional analysis
of wave propagation in the field with uncertainty. First part presents formulation of SSFEM applied to
three dimensional wave field. Then the algorithm for parallel computation of dynamic SSFEM analysis is
described. To illustrate the performance of the proposed formulation, numerical simulations are conducted
on the computer with MPI. Compare of computational results will verify the efficiency of the proposed
scheme.

SPECTRAL STOCHASTIC FINITE ELEMENT METHOD

This section describes the formulation of wave propagation analysis using Spectral Stochastic Finite Ele-
ment Method (SSFEM). We introduce two schemes to represent stochastic processes that play important
roles in the formulation of SSFEM; Karhunen-Loève expansion and polynomial chaos expansion. The
formulation of wave propagation analysis by SSFEM is presented using these stochastic representation
schemes. More information about utilization of these representations in the formulation of SSFEM are
also found in the references [6, 8, 9, 10].

Karhunen-Loève Expansion
In SSFEM, uncertain parameters are regarded as stochastic processes whose spatial distributions are repre-
sented by Karhunen-Loève expansion. The Karhunen-Loève expansion is a representation of a stochastic
process in terms of uncorrelated random variables. When applied to a stochastic process whose covari-
ance function is known, Karhunen-Loève expansion can provide the optimal representation of the original
process in the mean-square sense.

Let us consider the domainS and a stochastic processG(x, θ) defined inS wherex ∈ S denotes the spatial
coordinate andθ denotes an event in the probability space. Assume covariance function of the value at
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arbitrary pointsx1, x2 ∈ S is given asC(x1, x2). Then Karhunen-Lòeve expansion of a stochastic process
G(x, θ) is given as

G(x, θ) = Ḡ(x) +

∞∑

i=1

ξi(θ)
√
λi fi(x) (1)

whereḠ(x) is a mean value ofs(x, θ) at x and ξi(θ)’s are orthonormal random variables. Scalarsλi ’s
and functionsfi(x)’s are respectively given as eigenvalues and normalized eigenfunctions of the integral
equation ∫

S
C(x1, x2) fi(x2)dx2 = λi fi(x1). (2)

It is impossible to expand Eq.(1) to an infinite order in practice and summation of Eq.(1) is truncated at
a finite order. The truncation order of the summation is referred to as KL order and denoted byNKL in
this paper. Truncated summation of Eq.(1) does not generally represent the original stochastic process
perfectly. However, it is known that Karhunen-Loève expansion gives the optimal approximation of the
original stochastic process in the sense of mean-square, when the summation is truncated at a given finite
order. Accuracy of truncated Karhunen-Loève expansion is discussed by Ghanem [6, 11].

Polynomial Chaos Expansion

Since it is impossible to obtain the information of covariance function of the solution in advance, solution
process can not be represented by Karhunen-Loève expansion. Instead, the solution process is represented
by polynomial chaos expansion. Displacement vectoru for example is given as

u =

∞∑

i=0

uiΨi(ξ) (3)

whereΨi(ξ) denotesi-th polynomial chaos and its argumentξ is a set of orthonormal Gaussian stochastic
variables:

ξ = (ξ1, ξ2, . . . , )
>. (4)

For the purpose of practical computation, we take an integerNPC and the expansion is truncated after the
NPC-th term. The value ofNPC is disussed below.

Polynomial chaosΨn(ξ) are given as multivariate Hermite Polynomials which can be constructed as

Ψn(ξ) = e
1
2ξ
>ξ(−1)m

∂n

∂ξin1
∂ξin2
· · ·e

− 1
2ξ
>ξ (5)

where a multiindex (in1, i
n
2, . . . , ) denotes a set of all possible combination of non-negative integers whose

summation is equal to a certain integerm where m is a non-negative integer taken as 0,1, . . . Sup-
pose we have two independent random variables,ξ1 and ξ2, then possible combination of (in1, i

n
2) for

n = 0, 1,2,3, . . . , are
(in1, i

n
2) = (0, 0), (1, 0), (0,1), (2,0), (1,1), (0, 2), · · · (6)

and corresponding polynomial chaos are obtained as

Ψ0(ξ) = 1, Ψ1(ξ) = ξ1, Ψ2(ξ) = ξ2,

Ψ3(ξ) = ξ2
1 − 1, Ψ4(ξ) = ξ1ξ2, Ψ5(ξ) = ξ2

2 − 1, . . .
(7)

They are orthogonal to each other with respect to the Gaussian measure.
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The space spanned by{Ψn(ξ)} for which m =
∑

k ink (m ≥ 0) is called anm-th order homogeneous chaos
(HC). In this paper, the direct sum of the homogeneous chaos with the order less or equal toNHC is
referred to as a homogeneous chaos truncated at theNHC-th order.

Polynomial chaos consist an orthogonal basis of the homogeneous chaos [12, 13]. When the HC is trun-
cated at a finite order, the number of terms of polynomial chaos to consist the orthogonal basis of the HC
is also finite. LetNPC denote the total number of terms excluding the 0-th order termΨ0(ξ). ThenNPC

is uniquely determined by the truncation order of HC,NHC, and the number of independent stochastic
variables in consideration. Suppose we haveNKL stochastic variables, thenNPC is given as

NPC =

NHC∑

`=1

1
`!

(NKL + ` − 1)!
(NKL − 1)!

. (8)

SinceNPC is uniquely determined byNKL andNHC, we will specify the cases by KL order and HC order
without explicitly mentioning toNPC. For example, if we truncate Karhunen-Loève expansion at 2nd
order and homogeneous chaos by 2nd order, we simply write KL=2 and HC=2, implicitly meaning that
we haveNPC = 5.

A mean value, variance and probability density function (pdf) of the solution expressed in the from of PC
expansion can be easily evaluated. A mean value is given as the 0-th term. For example, a mean value of
displacement vectoru(θ) in Eq.(3) is given as

〈u(θ)〉 = u0. (9)

We denoten-th component ofu by un, and coefficient of i-th PC ofui by un
i . Then the variance ofn-th

component ofu is obtained as

〈{un − 〈un〉}2〉 =

NPC∑

i=1

〈Ψi(ξ)Ψi(ξ)〉(un
i )2 (10)

where the orthogonality of polynomial chaos, that is,〈Ψi(ξ)Ψ j(ξ)〉 = 0 for i , j is taken into consider-
ation. Pdf can be simply evaluated in a Monte Carlo Simulation-like manner. Generate numerous sets
of independent Gaussian variablesξi (i = 1,2, . . . ) and estimate the value of Eq.(3) for each of them.
Statistical distribution of those values represents pdf of Eq.(3).

Wave Propagation Analysis by SSFEM

Let us derive the formulation of SSFEM for the wave propagation problem in the uncertain media. We
consider an FEM formulation of equation of motion as

Ma(t, θ) + K(θ)u(t, θ) = p(t) (11)

whereM and K denote mass and stiffness matrices;a(t, θ),u(t, θ) and p(t) are acceleration vector, dis-
placement vector and external force vector, respectively.

We assume that the shear stiffness has a Gaussian uncertainty. We expand the shear stiffnessG(x, θ) by
KL expansion as in Eq.(1). We truncate the expansion of Eq.(12) at a finite KL orderNKL and we obtain

G(x, θ) = Ḡ(x) +

NKL∑

i=1

ξi(θ) Gi(x) (12)
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wherex denotes spatial coordinate;θ denotes an event in the probability space;Ḡ denotes the expected
value ofG(x, θ); ξi(θ) are orthogonal Gaussian random variables.Gi(x) is given as

Gi(x) =
√
λi fi(x) (13)

whereλi and fi(x) are an eigenvalue and an eigenfunction of the Eq.(2) withC(x, y) representing the
correlation function ofG(x, θ).

Let Kn(θ) denote a stiffness matrix corresponding to the shear stiffnessGn(x, θ), then the stiffness matrix
K(θ) can be expressed as

K(θ) = K0 +

NKL∑

n=1

ξn(θ)Kn. (14)

Since it is impossible to obtain the correlation function of solution a priori, KL expansion is not applicable
for the solution such as displacement, velocity and acceleration. They are expressed by PC expansion as
in Eq.(3) where summation is truncated atNPC.

Substitute in Eq.(11) the stiffness matrix and state variables which are expressed in the stochastic expan-
sion representation, we obtain

M
NPC∑

i=0

ai(t)Ψi(ξ) +

NKL∑

n=0

ξn(θ)Kn

NPC∑

i=0

ui(t)Ψi(ξ) = p(t). (15)

To approximate Eq.(15) in the space of homogeneous chaos truncated at a finite order, we project Eq.(15)
on the polynomial chaosΨ j(ξ). Since PC consist an orthogonal basis, this gives the best approximation
of Eq.(15) in the homogeneous chaos under consideration. This process gives equations to be solved.

NPC∑

i=0

〈
Ψi(ξ)Ψ j(ξ)

〉
Mai(t) +

NKL∑

n=0

NPC∑

i=0

〈
ξnΨi(ξ)Ψ j(ξ)

〉
Knui(t) =

〈
p(t)Ψ j(ξ)

〉
(16)

It can be also shown that PC expansion coefficients of accelerationa j(t), velocityv j(t) and displacement
u j(t) satisfy the relation of differentiation as

a j(t) =
d
dt

v j(t) =
d2

dt2
u j(t). (17)

Therefore Eq.(16) can be treated as an ordinary second order differential equation and it can be numerically
solved by conventional time integration schemes.

PARALLEL COMPUTATION OF SSFEM

Suppose that our problem hasNDOF degree of freedom and that the number of terms of polynomial chaos
to consist the basis of HC under consideration isNPC. Then the matrices of SSFEM to represent Eq.(16)
consist of (NPC + 1) × (NPC + 1) blocks where each block is of the size of the matrix of deterministic
FEM analysis,NDOF ×NDOF. It can be found recognized that SSFEM requires manipulation of such huge
matrices and it can make the computation expensive.

We propose an efficient algorithm for parallel computation of dynamic analysis of SSFEM. This is enabled
by using a non-iterative time integration scheme for FEM and also exploiting the sparseness of the matrices
of SSFEM.
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Non-Iterative Time Integration Scheme [14]
In order to implement an efficient computation of dynamic analysis of SSFEM, we utilize a non-iterative
time integration (NITI) scheme [14]. NITI scheme is implemented by combining implicit and explicit
time integration schemes, taking advantage of benefits of both schemes. Computational stability of NITI
scheme is comparable with that of implicit schemes under certain conditions, which allows us to take a
large time step to reduce the total number of updating steps. NITI scheme does not require iterative process
even when applied to nonlinear dynamic problems and computation load is decreased considerably.

In the following, we present formulation of NITI scheme applied to the dynamic analysis of a nonlinear
system, using central difference method as an explicit scheme and Newmarkβ method as an implicit
scheme. Let us consider an ordinary equation of motion as

Mü(t) + Cu̇(t) + Ku(t) = f (t, u) (18)

whereM,C andK denote mass, damping and stiffness matrices respectively;u is displacement;f (t,u)
is an external force and it is a function of timet and displacementu. Nonlinear problems that have
displacement-dependent stiffness can be written in the same expression by shifting the effect of nonlin-
earity to the right-hand side of the equation. The equation is discretized assuming the time step as∆t and
letting subscriptk denote the value at thek-th time step,tk = k∆t.

Let us illustrate the process by updating the time level fromt = tn to t = tn+1. We estimate the external
force at timet = tn+1 using the displacementun at the current time levelt = tn. Updating the equation using
Newmarkβmethod, we obtain the prediction of the displacement ˜un+1, velocity ˜̇un+1 and acceleration̈̃un+1

as

˜̈un+1 = −ün − 4
∆t

u̇n +
4
∆t2

(ũn+1 − un) (19)

˜̇un+1 = −u̇n +
2
∆t

(ũn+1 − un) (20)

ũn+1 =

(
K +

2
∆t

C +
4
∆t2

M

)−1

·
{

f (tn+1, un) + M
( 4
∆t2

un +
4
∆t

u̇n + ün

)
+ C

( 2
∆t

un + u̇n

)}
(21)

These prediction requires correction to compensate the difference of the external forcef (tn+1, un+1) and the
assumed external forcef (tn+1,un). Conventional implicit scheme requires iteration to estimate compensa-
tion terms. NITI scheme estimate the difference using the central difference method (CDM). Since CDM
is an implicit scheme, compensation can be taken into consideration without iteration process. Difference
of the external force∆ fu is simply given as

∆ fu = f (tn+1, ũn+1) − f (tn+1, un) (22)

Let ∆ün+1, ∆un+1 and∆u̇n+1 denote the responses of the system due to the external force∆ fu, and they are
given as

∆ün+1 =

(
M +

∆t
2

C

)−1

∆ fu (23)

∆u̇n+1 =

(
M +

∆t
2

C

)−1

∆ fu
∆t
2

(24)

∆un+1 = 0 (25)

Summation of the prediction and the correction yields the response at time levelt = tn+1 as

ün+1 = ˜̈un+1 + ∆ün+1 (26)

u̇n+1 = ˜̇un+1 + ∆u̇n+1 (27)

un+1 = ũn+1. (28)
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Eq.(25) indicates that displacement does not change in the compensating process and consequently the
external forcef (tn+1,un+1) does not change either. Therefore the relationship

f (tn+1, ũn+1) = f (tn+1,un+1) (29)

holds and, requiring no further interaction, Eqs.(26)–(28) give the solution for the time levelt = tn+1.

Parallelization of Computation

Matrices used in SSFEM analysis are huge and sparce. They consist from blocks, each of which is of the
size of matrices of ordinary FEM analysis. We write these blocks as

Mi j = 〈Ψi(ξ)Ψ j(ξ)〉M (30)

K i j =

NKL∑

n=0

〈ξnΨi(ξ)Ψ j(ξ)〉Kn (31)

Correspondingly, external force vector should be also divided into blocks as

p j(t) = 〈p(t)Ψ j(ξ)〉 (32)

Diagonal blocks of mass matrix are nonzero since〈Ψ2
i 〉 , 0, while its non-diagonal blocks are zero

matrices because〈ΨiΨ j〉 = 0 (i , j). Similarly, diagonal blocks of SSFEM stiffness matrices are non-zero
matrices due to the terms withn = 0. We decompose the stiffness matrix into the matrix consisting of the
diagonal blocks (i = j in Eqs.(30) and (31)) and the matrix consisting of the non-diagonal blocks (i , j).
The matrix containing diagonal blocks of the stiffness matrixK is denoted byKD and the matrix with the
rest blocks is byKND. By using these matrices, Eq.(16) can be written as

Mü + KDu = f (t,u) − KNDu. (33)

Exploiting the fact that both mass matrixM and stiffness matrixKD are block diagonal, Eq.(33) can be
separated into

Mii üi(tn+1) + K ii ui(tn+1) = pi(tn+1) −
∑

j, j,i

K i j u j(tn+1) (34)

wherei denotes the order of polynomial chaos to which the stochastic equation is projected and Eq.(34)
represents the equation of motion projected to thei-th polynomial chaos. Although Eq.(34) gives an inde-
pendent equation for eachi, since non-diagonal block matrixKND is not empty indicating the existence of
interactions, they are not independent of each other.

Now, for an efficient parallel computation, we can apply NITI scheme by regarding the second term of the
right-hand side of Eq.(34) as an external force which is a function of displacement.

The application procedure is simple. First, we solve Eq.(34) assuming the right hand side takes the value
at timet = tn to obatain

Mii üi(tn+1) + K ii ui(tn+1) = pi(tn+1) −
∑

j, j,i

K i j u j(tn). (35)

This computation can be conducted separately on different CPUs in parallel. Matrix used in the com-
putation on each CPU is of the size of deterministic FEM analysis. We obtain the tentative value of
displacement ˜un+1 for the time att = tn+1. We update the interaction using these displacement values to
obtain the increment of the external force as

∆ f i
u = −

∑

j, j,i

K i j {ũ j(tn+1) − u j(tn)}. (36)
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Figure 1: Flowchart of parallel computation of SSFEM.

Velocity and acceleration are respectively updated by Eqs.(23) and (24). Substituting them in Eqs.(26) –
(28) gives the value at time levelt = tn+1. This computation can be also conducted on each CPU in
parallel. The proposed scheme works efficiently especially because stiffness matrixK of SSFEM are
sparse. The interaction terms are not dominant and consideration of them does not require huge amount
of computation.

The total flow of the proposed parallel computation algorithm is summarized inFigure 1. The flow is
assumed to haveNPC processes to run parallelly. The 0-th process obtain the input data and distribute the
required information to all other processes. In every step of update, each process independently updates
the state variables on each of the spaces projected toNPC polynomial chaos, assuming the interaction of
the previous time level. The interaction is then estimated based on the computed displacement and their
values are cast to other processes. Based on the updated interaction, process on each processors parallelly
compensates velocity and acceleration. Updating process is conducted on each CPU independently except
communication of interaction forces. Communication has to be conducted only once for every time step
and most of the computation process can be conducted highly independently.

NUMERICAL SIMULATIONS

The performance of the proposed scheme is studied by applying it to the computation of SSFEM analysis
of the three dimensional wave propagation in the uncertain field.
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Figure 2: Problem Setup. Observation point OP (x, y, z) = (0.0, 0.0,0.1) and
observation plane OSz = 0.1
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Figure 3: Time history of the input motion

Problem Setup

The domain of [−0.5, 0.5]× [−0.5,0.5]× [−0.5,0.5] is considered and finite element model is generated by
dividing the domain into 40×40×40 = 64,000 elements and total degree of freedom is 207,763.Figure 2
illustrates the model under consideration. We set an observation point OP as (x, y, z) = (0.0,0.0,0.1) and
an observation plane OSz = 0.1 in the model. Displacement at this point and on this plane will be
discussed later.

All parameters except time are given as dimensionless. The unit weight is 1.0 and Poisson’s ratio is 0.25.
Shear stiffnessG is assumed to have uncertainty with Gaussian distribution. Its expectationḠ is set as 0.1
which gives corresponding shear wave velocity as 0.1[/sec]. Correlation function of stiffness is assumed
as

C(x1, y1, z1, x2, y2, z2) =
(
γḠ

)2
exp

{
− (|x1 − x2| + |y1 − y2| + |z1 − z2|)

b

}
(37)

whereb denotes a correlation length andγ denotes a magnitude of randomness. They are assumed as
b = 1.0 andγ = 0.1.

Ricker wavelet with a dominant frequency of 2 [Hz] is given as an explosive source at the center of the
domain. The time history of input motion is plotted inFigure 3. Time step is set as∆t = 0.01 [sec] and
analysis was conducted for 300 steps.
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(b) Parallel computation with 6 CPUs.

Figure 4: Time history of the expectation ofz-component of response displace-
ment at an observation point OP (0, 0, 0.1)

KL order and HC order are set asNKL = 2 andNHC = 2. It determines the highest order of PC asNPC = 5
and the total number of PC to be considered is 6 and we utilize the same number (6) of CPUs in the parallel
computation.

Computation Results

Computational Accuracy

Figure 4 compares the results obtaind by a single CPU and parallel computation. It plots the time histories
of the expectation ofz-component of displacement at observation point OP. It is oberved that they present
good agreement.

Figure 5 shows the temporal variation of expectation and variation ofz-component of displacement on the
plane OS. They are plotted for four time levels :t = 0.1,0.3,0.5 and 0.7 [sec]. In the figure, computation
results obtained by 6 CPU parallel computation using the proposed method is plotted with the results
obtained by a single processor and there observes no difference.

To discuss the accuracy of the proposed method quantitatively, let us define an index to represent the
“difference” as

(difference)=


∑N

1
{
(Results by 1 CPU)− (Results by 6 CPUs)

}2
∑N

1 (Results by 1 CPU)2


1/2

(38)
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Figure 5: Temporal variation of the distributions of the expectation and variation ofz-
component of displacement on the planez = 0.1. Comparison of the results obtained by a
conventional single CPU scheme and 6 CPU parallel computation. They are in good agree-
ment.
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Table 1: Speedup Ratio in terms of Elapse Time
# of CPU 1 6

Elapse Time [min] 257.2 69.7
Speedup Ratio 1 3.69

Table 2: Speedup Ratio in terms of CPU Time
# of CPU 1 6

CPU time [min] 257.2 45.0
Speedup Ratio 1 5.71

whereN denotes the total number of nodes. The “difference” of variance between the results by a single
CPU and by 6 CPUs are of the order of 10−7. It should be noticed that this “difference” index does not
mean the computational error due to the parallelization of computation process. Both conventional and
parallel schemes have accuracy of second order and error of that order should be considered as inherent.
The difference presented above are of the smaller order and our results indicate that the proposed parallel
computation algorithm for SSFEM assures sufficient accuracy for practical purposes.

Computational Efficiency

Improvement of computation efficiency is discussed by comparing the computation time. All computa-
tions are conducted on Pentium 4 processor with the clock frequency of 2.66 [GHz].

Table 1compares the execution (elapse) time and speed-up ratio, which is defined as a ratio of the elapse
time of the computation by a single CPU and that by plural CPUs. The speed-up ratio by using 6 processors
is 3.06, which is a fairly good score but still considerably lower than the number of processors, 6. It should
be naturally attributed to the overhead loss such as time for data communication among the processors. In
our algorithm, since computation load can be fairly distributed among the processors, load imbalance is
not a major reason of poor speed-up ratio.

Let us also estimate the efficiency of the proposed algorithm according to the Amdahl’s law. Most of
the computation process of the proposed algorithm can be parallelized and it can be observed inTable 2
which lists CPU time for those computed cases. The table shows that speed-up ratio in terms of CPU time
is 5.71 which is close to the number of CPUs. This indicates that computation (elapse) time can be further
shortened by employing faster hardware for data communication and improving the program codes.

CONCLUSION

We proposed an algorithm for the parallel computation of the dynamic analysis of spectral stochastic finite
element method (SSFEM) applied to the wave propagation analysis in the uncertain media.

In SSFEM, system equation is projected to a finite number of polynomial chaos which consist an orthog-
onal basis of a finitely truncated homogeneous chaos space. This generates a set of projected equations to
be solved. The proposed algorithm treats each of these projected equations separately on different proces-
sors. The interaction among them is taken into consideration as an external force, which enables efficient
computation by utilizing a non-iterative time integration (NITI) scheme [14, 15].

Accuracy and efficiency of the proposed algorithm are verified by the results of numerical simulations.
Three dimensional wave propagation problem in the uncertain media is analyzed by a conventional single-
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CPU scheme and the proposed parallel computation scheme. The difference of these computation results
are sufficiently small and the accuracy of the prposed parallel computation algorithm was verified.

Computational efficiency is also discussed by comparing the computation time required by a single CPU
computation and that by a parallel computation. Computation time is considerably reduced in terms of
the elapsed time. Parallel computation with six processors required less than 30% of that required by
an conventional algorithm with a single processor. Improvement of efficiency is clearly observed when
they are compared in terms of CPU time. The simulation shows that six-processor computation requires
the CPU time of 1/5.71 of that required by a single processor case. It indicates the possibility of further
reduction of computation time.
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