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SUMMARY 

Power, defined as the time rate of change of energy, has received little or no attention in the literature as a 
useful parameter for selecting critical ground motions for seismic design.  Power can be used to 
distinguish between distant and near-fault ground motions which may have approximately the same 
maximum input energy.  Furthermore, the rate at which energy is dissipated through either damping or 
yielding of the structure can be determined by calculating the damping and hysteretic power terms.  This 
study investigates the characteristics of power time histories for selected ground motions and an elastic-
perfectly-plastic SDOF oscillator.  Power spectra are also developed to investigate the variation of the 
maximum input power with the period of the structure and the assumed hysteretic model.  It is noted that 
short period structures tend to experience a constant input power regardless of the ductility demand. 

INTRODUCTION 

The use of energy concepts in earthquake-resistant design was first proposed by Housner [1]; however, 
little research has done in this area until the past 20 years.  Uang and Bertero [2] proposed the use of 
energy spectra, developed from single degree of freedom (SDOF) systems, for earthquake-resistant design 
and proposed methods of evaluating the energy capacity of structural materials.  To date, the majority of 
research has been directed toward correlating the input energy to the severity of the earthquake ground 
motion and the development of damage indices based, in part, on hysteretic energy demand.  Thus far, no 
significant research has been undertaken to study the rate of energy input into the structure (i.e. input 
power) and the rate at which energy is balanced by the various storage and dissipation mechanisms in the 
structure (i.e. hysteretic, damping, kinetic, and strain power).  Since pulse-type and long-duration ground 
motions can impart the same total input energy to a system, while requiring the energy to be dissipated at 
different rates, it may be beneficial to quantify and characterize the earthquake power when selecting 
critical ground motions.  Although not considered explicitly in calculations, the concept of power has 
been discussed by Housner and Jennings [3]: “If energy is fed to a structure at a sufficiently slow rate [i.e. 
low power], the dissipation due to damping will prevent the structural members from becoming 
overstressed, but during a high rate of energy input [i.e. high power] the dissipation by damping may be 
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inadequate to hold the energy level in the structure below the threshold of damage, and then plastic 
deformation, cracking, etc. may result.”   

The objective of this paper is thus to characterize near-fault (or pulse-type) ground motions and long-
duration ground motions, using the concept of earthquake power, and to a lesser extent, earthquake 
energy.  This will be accomplished through a description of the characteristics of power time histories and 
power spectra.  Earthquake power will be introduced for an elastic-perfectly-plastic (EPP) SDOF 
oscillator subjected to a series of recorded pulse-type and long-duration ground motions.  The influence of 
the assumed hysteretic model will also be investigated. 

This paper will present the use of power demand as a measure of the severity and damage potential of 
earthquakes.  In this context, power is viewed as the rate of change of energy and should not be confused 
with the power spectral density, which relates to the frequency content of an earthquake ground motion. 

ENERGY AND POWER EQUATIONS 

Energy 
The relative energy balance equation for a SDOF oscillator is determined by integrating the equation of 
motion with respect to relative displacement, u, Uang and Bertero [2]. 
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For Eq. (2.1), m is the mass, c is the coefficient of viscous damping, fS is the restoring force, gu&&  is the 
ground acceleration, and u , u& , and u&&  are the relative displacement, velocity, and, acceleration of the 
mass, respectively.  It should be noted that the restoring force, fS represents the spring force of the 
inelastic system.  From the left to the right side of Eq. (2.1), the first term is referred to as the relative 
kinetic energy EK, the second term is the damping energy, ED, and the third term represents the absorbed 
energy and consists of the elastic strain energy, ES, and the inelastic hysteretic energy, EH.  The term on 
the right-hand side of Eq. (2.1) corresponds to the relative input energy of the ground motion, EI, or the 
work done by the effective earthquake force, gum &&− .  Hence, the energy balance equation can expressed as 
follows, 
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For a non-stiffness degrading system, the strain energy can be expressed as: 
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where k is the initial elastic stiffness of the system.  For an EPP hysteretic model, the hysteretic energy 
can be expressed concisely as the product of the yield force level, FY, and the total cumulative plastic 
displacements, cum

p∆ , 

 cum

pYH FE ∆⋅=  (2.4) 

The differences between the absolute and relative formulations of the energy balance equation are 
discussed in detail by Uang and Bertero [2].  This study will concentrate on the relative formulation for 
two reasons.  First, relative energy terms may be considered more useful since the spring and damping 
forces in a structure are related to the relative displacements and velocities.  Second, for long period 
structures the absolute input energy will approach zero, and hence, is not useful for the design of such 



structures.  For very short period structures the relative input energy will approach zero; however, these 
structures require a strength-based design to avoid excessive ductility demands, and hence, energy 
concepts may be inappropriate.  Thus, for the remainder of this paper any reference to input energy and 
kinetic energy will refer to the relative input and kinetic energies. 

Power 
Power is physically defined as the time rate of change of energy.  The relative power equation governing 
the motion of the SDOF oscillator may be formulated by differentiating Eq. (2.1) with respect to time: 
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Carrying out the integration above, 
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Similar to the energy terms expressed in Eq. (2.2), the terms on the left-hand side of the equation 
correspond to the relative kinetic power, PK, the damping power, PD, and the absorbed power which 
consists of the elastic strain power, PS, and the inelastic hysteretic power, PH.  The term on the right-hand 
side of the equation defines the relative input power of the ground motion, PI.  As with the energy 
balance, the power balance can be rewritten as: 
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Note that the strain and hysteretic power terms for an EPP system can be calculated directly by 
differentiation of Eq. (2.3) and Eq. (2.4), respectively, 
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The spectral analysis program Bispec [4] was used throughout this study to calculate the numerical 
results. 

SELECTION OF GROUND MOTIONS 

For this study, two broad classes of ground motions have been considered: near-fault records from crustal 
earthquakes to represent pulse-type ground motions (Table 1), and records from subduction-type 
earthquakes to represent long-duration ground motions (Table 2).  All ground motions were selected from 
records used for the SAC Steel Project [5] and have a return period of approximately 475 years. 



Table 1.  Pulse-type ground motions [5]. 

SAC Name Earthquake Station Magnitude Scale Distance 
(km) 

Duration1 
(s) 

Year 

NF01 Tabas  7.4 1.00 1.92 43.18 1978 
NF03 Loma Prieta Los Gatos 7.0 1.00 5.6 16.42 1989 
NF05 Loma Prieta Lex. Dam 7.0 1.00 10.08 7.10 1989 
NF07 C. Mendocino Petrolia 7.1 1.00 13.6 20.96 1992 
NF09 Erzincan  6.7 1.00 3.2 12.26 1992 
NF11 Landers  7.3 1.00 1.76 34.29 1992 
NF13 Northridge Rinaldi 6.7 1.00 12 14.87 1994 
NF15 Northridge Olive View 6.7 1.00 10.24 11.34 1994 
NF17 Kobe Kobe 6.9 1.00 5.44 17.62 1995 
NF19 Kobe Takatori 6.9 1.00 6.88 23.10 1995 

1. “Duration” calculated based on bracketed duration for 0.05g [6]. 

Table 2.  Long-duration ground motions [5]. 
 

SAC 
Name 

Earthquake Station Magnitude Scale Distance 
(km) 

Duration1 

(s) 
Year 

SE05 West 
Washington 

Olympia 6.5 1.86 89.6 46.64 1949 

SE06 West 
Washington 

Olympia 6.5 1.86 89.6 31.38 1949 

SE07 West 
Washington 

Seattle 
Army Base 

6.5 5.34 128 63.13 1949 

SE08 West 
Washington 

Seattle 
Army Base 

6.5 5.34 128 64.91 1949 

SE15 East 
Washington 

Tacoma 
County 

7.1 8.68 96 44.00 1965 

SE16 East 
Washington 

Tacoma 
County 

7.1 8.68 96 47.72 1965 

SE17 Chile Llolleo 8.0 1.24 67.2 78.75 1985 
SE18 Chile Llolleo 8.0 1.24 67.2 78.58 1985 
SE19 Chile Vina del 

Mar 
8.0 1.69 67.2 73.13 1985 

SE20 Chile Vina del 
Mar 

8.0 1.69 67.2 71.78 1985 

1. “Duration” calculated based on bracketed duration for 0.05g [6]. 

 

ENERGY AND POWER TIME HISTORIES 

Energy and power time histories were produced for an SDOF oscillator with a period of 0.8 seconds and 
5% viscous damping.  The non-linear characteristics of the system were modeled using an EPP hysteretic 
model with a yield force level defined by a normalized strength of unity.  (The normalized strength is 
given by ( )PGAmF

Y
⋅=η , where PGA refers to the peak ground acceleration). 
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Figure 1.  Non-linear energy and power time history for NF17 ground motion (Kobe, 1995) (T = 0.8 sec, ζ = 5%). 
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Figure 2.  Non-linear energy and power time history for SE19 ground motion (Vina del Mar, 1985) (T = 0.8 sec, ζ = 5%). 

(Peak input energy equal to input energy for NF17 ground motion.  Power terms normalized to peak input power for NF17 ground motion) 



It should be noted that the observations presented may depend on the chosen characteristics of the 
particular systems, in particular the period of the SDOF, the hysteretic model, and ground motions 
evaluated.  The influence of such characteristics will be discussed in subsequent sections on energy and 
power spectra.  

The energy and power time histories for the NF17 pulse-type ground motion and the SE19 long-duration 
ground motion are presented in Figures 1 and 2.  The acceleration amplitude of the SE19 ground motion 
was scaled by 1.05 to achieve the peak input energy of the NF17 ground motion. To facilitate comparison 
of the results, the energy and power time histories for both ground motions were normalized to the peak 
input energy and the peak input power for the NF17 ground motion.  It should be noted that the response 
of both systems was computed with a normalized strength of 1.0; however the PGA of the NF17 ground 
motion was nearly twice that of the SE19 ground motion, and, for the same mass, the NF17 yield strength 
was thus nearly twice that of the SE19 yield strength. 

The NF17 and SE19 energy time histories illustrate some of the characteristic differences between pulse 
and long duration ground motions.  For example, the SE19 response requires approximately forty-five 
seconds, nine times longer than the NF17 response, to input the same amount of energy into the system.  
The proportion of the input energy dissipated by hysteretic energy is much larger for the NF17 response 
than for the SE19 response (in which the damping and hysteretic energy increase at roughly the same 
rate).  The hysteretic energy developed in the SE19 ground motion is built up over a much larger number 
of yielding events than in the NF17 response.   

Intuitively, the NF17 ground motion must impart the same amount of input energy as the SE19 ground 
motion over a much shorter time thus requiring a faster rate of energy delivery (i.e. higher power). The 
NF17 and SE19 power time histories indicate that the peak value of the SE19 input power is much 
smaller than the peak value of the NF17 input power.  Indeed, all of the power terms in the SE19 power 
time history are approximately 25% of their value in the NF17 power time history.  It should be noted, 
however, that the PH/PI ratio is only slightly higher, while the PK/PI and PS/PI are actually slightly lower 
for the NF17 response terms when compared with the SE19 response.  This suggests that each power term 
maintains an approximate proportion of the input power regardless of the ground motion, an observation 
that will be discussed further below. 

The power time history for the NF17 ground motion, shown in Figure 1, can be used to illustrate several 
interesting characteristics of the individual power terms.  From the lower right plot of Figure 1 it is clear 
that only one of the hysteretic and strain power terms is active at any one time; at the moment of yielding, 
the strain power drops to zero while the hysteretic power spikes to the same power magnitude as the strain 
power term immediately prior to yielding.  The variation in time of the strain and hysteretic power terms 
can be readily understood by considering the sum of the strain and hysteretic power terms, referred to 
herein as the “spring power”.  The kinetic power term and the spring power term are out of phase by 
approximately 180˚.  The damping power, which is relatively small, is out of phase with the kinetic and 
spring terms by approximately 90˚.  A negative increase in the strain power term corresponds to 
unloading of the SDOF elastically. 

It is also interesting to note from Figure 1 that all of the power terms converge to zero at the same time.  
This observation can be explained by noting that each power term in Eq. (2.6) is a function of the 
velocity.  Thus, if the velocity approaches zero, all of the power terms must also approach zero.  The 
damping power will always maintain a positive value due to the dependence on the square of the velocity.  
While the spring power is directly related to the velocity and must change signs when the velocity 
changes signs, the hysteretic power, according to Eq. (2.9), will always be positive since the time 
derivative of the cumulative plastic displacements is also always positive.  The hysteretic power will be 



zero when the SDOF unloads elastically at a peak in the displacement, and hence, at zero velocity. Thus, 
the spring power and hysteretic power will both be zero when the velocity is zero, thereby requiring the 
strain power to also be zero.  Also observed from Eq. (2.6), the input power is directly related to the 
ground acceleration and must necessarily become zero when the ground motion ceases. 

The acceleration records of five ground motions were scaled such that the peak input energy matched that 
of the NF17 response for three normalized strength values (with T = 0.8sec).  The relationship between 
the peak input power for each ground motion, at a given normalized strength, and the peak input power of 
the NF17 response is shown in Table 3.  The results suggest some dependence of input power on the 
ground motion.  The input power of the long duration ground motions (SE07, SE17, and SE19) is 
consistently less than the input power of the pulse-type ground motions (NF13, NF17, and NF19) 
regardless of the normalized strength.  This observation suggests that high values of input power may 
characterize pulse-type ground motions, while low values of input power may characterize long-duration 
ground motions.  

The results in Table 3 further suggest that the normalized strength influences the magnitude of PS/PI, 
PH/PI, and PK/PI.  The proportion PD/PI, however, appears to be roughly independent of the normalized 
strength and the characteristics of the ground motion.  Further analyses indicate that, regardless of period, 
PD/PI is approximately constant for ductility demands greater than 4.0.  It is also worthy to note that, with 
the exception of PK/PI for SE17, the peak kinetic, strain, hysteretic, and damping power values (expressed 
as a fraction of the peak input power) appear to be relatively independent of the selected ground motion. 

Table 3.   Peak power terms for six ground motions at a constant 
system period of 0.8s and a specified normalized strength. 

 
Normalized  
Strength 

Ground 
Motion 

Scale 
Factor 

PI/PI,NF17 PK/PI PS/PI PH/PI PD/PI 

NF13 1.45 1.63 0.71 0.13 0.24 0.15 
NF17 1.00 1.00 0.69 0.11 0.26 0.17 
NF19 0.89 0.54 0.60 0.09 0.28 0.25 
SE07 1.69 0.16 0.75 0.14 0.28 0.15 
SE17 1.38 0.25 1.24 0.27 0.43 0.14 

0.2 

SE19 1.03 0.19 0.84 0.12 0.29 0.15 
NF13 1.57 1.72 0.63 0.51 0.62 0.15 
NF17 1.00 1.00 0.77 0.47 0.64 0.16 
NF19 1.19 0.45 0.58 0.62 0.74 0.13 
SE07 1.72 0.16 0.79 0.54 0.73 0.16 
SE17 1.46 0.34 1.59 0.66 0.75 0.17 

0.6 

SE19 1.03 0.21 0.83 0.45 0.64 0.14 
NF13 1.63 1.49 0.91 1.01 1.06 0.18 
NF17 1.00 1.00 0.85 0.71 0.98 0.18 
NF19 1.55 0.84 0.58 0.87 0.99 0.12 
SE07 1.85 0.19 0.98 0.99 1.15 0.19 
SE17 1.52 0.40 1.75 1.12 1.08 0.21 

1 

SE19 1.06 0.23 0.98 0.81 0.93 0.17 
 

ENERGY AND POWER RESPONSE SPECTRA 

The previous sections investigated the power and energy response of an arbitrarily selected elastic-
perfectly-plastic SDOF oscillator with a period of 0.8 seconds.  Power and energy response spectra are 



discussed in the following sections to investigate the dependence of the maximum response on the 
oscillator period.  The discussion presented herein is limited to the input terms; investigation of hysteretic 
power and energy spectra can be found elsewhere [7].   

Input energy and input power spectra 
It is convenient to express the input energy and input power as a dimensionless quantity.  To achieve this, 
both terms are normalized by the input energy and input power for long period structures since both long 
period terms converge to a specific value depending only on the properties of the ground motion and the 
system mass.  Recalling that the relative displacement approaches the ground displacement for long 
period structures, the long period input energy can be formulated as follows: 
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Thus, the maximum long period input energy is given by, 
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where PGV is the peak ground velocity.  Similarly, the long period input power can be formulated, from 
Eq. (2.6), as 
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Finally, the maximum long period input power is given by, 

 ( )
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Note that Eq. (5.4) represents the maximum value of the product of the ground acceleration and ground 
velocity, not the product of peak ground acceleration, PGA, and the PGV.  Since the long period input 
energy and input power are dependent only on the characteristics of the ground motion, their 
independence of system strength, hysteretic model, and other system specific parameters recommends 
their use as a means of quantifying the properties of ground motions.  Table 4 presents the long period 
input energy and input power for the ground motions listed in Tables 1 and 2. Note that the long period 
input energy and long period input power are much larger for the pulse-type ground motions than for the 
long-duration ground motions, likely as a result of the larger ground acceleration and velocity amplitude 
characteristic of near fault ground motion.   

Table 4.  Long period input energy and input power for  
near fault and subduction event ground motions.  

 
 EI 

(kN m) 
PI 

(kN m/s) 
 EI 

(kN m) 
PI 

(kN m/s) 
NF01 107.7 991.8 SE05 8.0 122.4 
NF03 261.9 1123.7 SE06 11.0 119.5 
NF05 279.6 1268.9 SE07 11.6 103.5 
NF07 138.6 913.6 SE08 14.9 131.5 
NF09 124.5 562.1 SE15 5.9 90.7 
NF11 162.2 1571.2 SE16 24.7 251.3 
NF13 267.7 1783.8 SE17 19.9 245.0 
NF15 130.9 903.5 SE18 12.5 245.1 
NF17 226.3 1609.2 SE19 33.2 306.4 
NF19 264.6 1261.6 SE20 9.6 96.7 
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Figure 3: Averaged linear input power and individual ground motion input power for  
(a) pulse-type ground motions and (b) long-duration ground motions 
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Figure 4.  Constant ductility input energy and power spectra for  
pulse-type ground motions. 

 
Input energy and input power spectra, normalized to the input energy and input power at long periods, 
were generated for the twenty ground motions presented in Table 1 and Table 2, above.  The normalized 
near fault input energy and input power spectra were subsequently averaged together to produce a data set 
characteristic of pulse-type ground motions in general, and likewise for the long-duration ground motions. 
Figure 3 illustrates the variability between the individual linear input power spectra and the average 
spectra for both pulse-type and long-duration ground motions. 

The averaged input energy and input power spectra for the pulse-type ground motions are presented in 
Figure 4.  Both the non-linear input energy and input power appear to converge to the linear input energy 
and input power at short periods; however, this convergence is much more pronounced for the input 
power and occurs, according to Figure 4, for all periods less than 0.66s.  From the individual ground 
motion spectra (not shown), the input power convergence is more pronounced for some ground motions 
than for others and the period at which divergence occurs varies from approximately 0.3 sec to 0.8 sec.  A 
similar convergence was observed for the linear and non-linear averaged spectral velocity, normalized to 
PGV, over approximately the same period range. Recalling Eq. (2.6), it is noted that the input power and 
system velocity are directly related. 
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Figure 5.  Monotonic hysteretic energy (λ) and normalized displacement (γ)  
for pulse-type ground motions 

 
Figure 5 illustrates the applicability of equal energy and equal displacement rules [7] for the selected 
pulse-type ground motions.  Shown on the left is the normalized monotonic energy for an EPP system, λ:  
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where fe is the maximum force level of the equivalent linear system and inelasticu
max

 is the peak inelastic 
displacement.  The equal energy rule is satisfied when λ ≈ 1.0.  Shown on the right of Figure 5 is the 
normalized displacement, γ , defined as the quotient of the peak inelastic displacement, inelasticu

max
, and the 

peak elastic displacement of the equivalent linear system, elasticu
max

: 
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The normalized displacement, γ, will approach unity when the equal displacement rule is applicable. 

Comparing Figures 4 and 5, the non-linear and the linear input power are convergent during the same 
period range (0.1 sec to 0.66 sec) over which λ diverges dramatically.  Note that λ converges to 1.0 (i.e. 
“equal energy”) at a period of approximately 0.66 sec, and that the linear and non-linear input power 
terms diverge for periods greater than 0.66 sec.  Furthermore, the figures suggest that the equal energy 
rule has only a small range of applicability for pulse-type ground motions and that linear input power, or 
linear spectral velocity, may be a better means of characterizing the non-linear response of near fault 
ground motions at shorter periods.  Note also that γ approaches unity beyond a period of 1.0 sec, 
supporting the equal displacement rule for long period structures. 

In contrast, the averaged input power for long-duration ground motions, Figure 6, displays convergence to 
the linear input power up to a period of only 0.22 sec.  Figure 7, showing λ and γ for the long-duration 
ground motions, suggests a convergence to λ = 1.0 at a period of 0.22 sec.  Note also that λ remains 
closer to unity for a broader period range (0.22 sec to 0.6 sec) than for the pulse-type ground motions.  
This suggests that the equal energy principle may be satisfied for long-duration ground motions over a 
larger period range than for pulse-type ground motions.  Figure 7 further suggests that the equal 
displacement rule (γ ≈ 1.0) holds for periods greater than approximately 0.6 sec.  



0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

1.0

2.0

3.0

4.0

Period (s)

N
or

m
al

iz
ed

 I
np

ut
 P

ow
er

µ = 1
µ = 2
µ = 4
µ = 8

 

Figure 6.  Averaged, normalized constant ductility input power spectra for  
long-duration ground motions. 
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Figure 7.  Monotonic hysteretic energy (λ) and normalized displacement (γ)  
for long-duration ground motions 

 
In summary, for the limited ground motions considered in this study, the nonlinear SDOF response can be 
approximated by different linear response parameters depending on the period range and the general type 
of ground motion as shown in Table 5.  Further study of these characteristics is required to determine if 
similar trends are observed for a larger database of ground motions. 

Table 5.  Summary of period ranges for different 
approximations to nonlinear response based on linear response. 

 
Type of  
Ground Motion 

Equal Max 
Input Power 

Equal Max 
Energy 

Equal Max 
Displacement 

Pulse-type T < 0.66 sec 0.66 sec ≤ T < 1.0 sec T ≥ 1.0 sec 

Long-duration T < 0.22 sec 0.22 sec ≤ T < 0.6 sec T ≥ 0.6 sec 

 



Sensitivity to Hysteretic Model  
To investigate the sensitivity of the power quantities to the assumed hysteretic model, analyses were 
conducted with a bilinear model with 10% strain hardening and a Clough-type stiffness degrading model 
[8]. Figure 8 suggests that the input power is relatively insensitive to the hysteretic model, since the input 
power spectra for each model is nearly identical, both in terms of salient characteristics and magnitude. 
The Clough hysteretic model appears to have the effect of “smoothing out” the input power spectra, but 
overall, the spectra correlate very well.  Note that the input power spectra still converge for periods less 
than 0.66 sec, regardless of the assumed hysteretic model.  Similarity between the results for the three 
hysteretic models suggests that the conclusions from the previous sections still hold for the bilinear and 
Clough hysteretic models.   
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Figure 8.  Input power spectra for three hysteretic models 
(EPP = Elastic perfectly plastic; SH = 10% Strain hardening; Clough = Clough-type stiffness degrading) 

 

CONCLUSIONS 

This study highlights the importance of evaluating earthquake power demands in conjunction with 
earthquake energy demands.  Generally, the input power demand was observed to depend on the nature of 
the ground motion, and in particular, pulse-type ground motions appear to be characterized by higher 
input power demand than long-duration ground motions for a constant input energy.  The peak value of 
the strain, hysteretic, kinetic, and damping power terms normalized by the peak input power appear to be 
relatively independent of the characteristics of a given ground motion.  However, since the input power is 
dependent on the ground motion, the absolute value of the power terms is also on the ground motion. The 
long period peak input energy and input power depend only on the ground velocity and ground 
acceleration and thus provide another means of characterization.  It was observed that the long period 
input energy and input power for pulse-type ground motions tend to be considerably larger than for long-
duration ground motions. 

The inelastic input power was observed to converge to the linear input power for short period structures.  
The period range over which the non-linear and linear input power terms converge was observed to be 
larger for the pulse-type ground motions, compared with the long-duration ground motions.  Additionally, 
it was noted that neither the equal energy nor equal displacement principle were valid within the period 



range of convergence for the input power.  Further study is required to confirm if the above observations 
are supported by a larger sample of ground motions. 

REFERENCES 

1. Housner, G.W., 1956, “Limit Design of Structures to Resist Earthquakes,” Proceedings. of the 1956 
World Conference on Earthquake Engineering.  Earthquake Engineering Research Institute: Oakland, 
California. 

2. Uang, C.-M. and Bertero, V.V., 1988, “Use of Energy as a Design Criterion in Earthquake Resistant 
Design,” UCB/EERC-88/18.  University of California: Berkeley, California. 

3. Housner, G.W. and Jennings, P.C., 1977, “The capacity of extreme ground motions to damage 
structures,” Structural and Geotechnical Mechanics (ed. W.J. Hall), Prentice Hall, Englewood Cliffs, 
NJ, p. 102-116.  

4. Hachem, M., 1999, “Bispec: Interactive Computer Program for Computation of Bidirectional 
Nonlinear Spectra," NISEE Software Library: Berkeley, Calif., (http://nisee.berkeley.edu/software). 

5. Somerville, P.G., 1997, “Develop Suites of Time Histories – Draft Report,” SAC Joint Venture Steel 
Project. 

6. Bolt, B.A., 1969, “Duration of strong ground motion,” Proceedings. of the Fourth World Conference 
on Earthquake Engineering. Santiago, Chile, pp. 1304-1315. 

7. Elwood, K.J., and Niit, E.J., 2004, “The Use of Power and Energy in The Characterization of 
Earthquake Ground Motions,” Journal of Earthquake Engineering (submitted for review). 

8. Newmark, N.M. and Hall, W.J., 1982, “Earthquake Spectra and Design,” Monograph, Earthquake 
Engineering Research Institute. 

9. Clough, R.W., 1966, “Effect of stiffness degradation on earthquake ductility requirements”, Report 
66-16, Structural and Materials Research, Structural Engineering Laboratory, University of 
California, Berkeley. 

 


	Return to Main Menu
	=================
	Return to Browse
	================
	Next Page
	Previous Page
	=================
	Full Text Search
	Search Results
	Print
	=================
	Help
	Exit DVD



