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SUMMARY 
 
A constitutive model of reinforced concrete for cyclic or dynamic loading analysis is developed based on 
existing experimental results. The proposed model features hysteretic characteristics of concrete in 
tension, compression, shear along crack direction, and the bond between concrete and reinforcing bars. A 
non-orthogonal multi-directional smeared crack model is also developed for both biaxial and tri-axial 
stress states for realistic representation of concrete cracking under stress reversals. The applicability and 
efficiency of the proposed models are demonstrated through simulation analyses with various types of 
reinforced concrete specimens subjected to cyclic loads or seismic excitation on a shaking table. 
 

INTRODUCTION 
 
Recent developments in nonlinear finite element analysis of reinforced concrete are remarkable, but very 
few reports have attained precise simulation of dynamic responses including their inelastic behavior. 
Several reasons exist: concrete is characterized by its strong nonlinearity induced by cracking, softening or 
crushing; moreover, it exhibits a complex hysteretic stress - strain relationship under alternated reversals. 
Numerous attempts at hysteretic modeling of concrete have been made, but it is difficult to reproduce 
actual behavior with a rough model in which unloading and reloading responses are simplified to be linear 
with constant stiffness. Another reason is that modeling of concrete cracking under seismic conditions 
requires elaborate work because cracks occur in different directions because of reversed cyclic loads. Two 
or more cracks must be considered in a single point when simulating seismic responses. In addition, 
closing or reopening of those cracks must be judged appropriately in accordance with stress histories. 
Three-dimensional analysis requires a sophisticated crack model under tri-axial stress state. Furthermore, 
as widely recognized, time history response analysis of reinforced concrete is extremely sensitive to the 
time increment and is apt to diverge easily because of its strong nonlinearity. A stable solution scheme is 
indispensable for precise simulations. 
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This study is intended to develop constitutive models for reinforced concrete and a nonlinear analysis 
method that are applicable to cyclic loading or dynamic response analysis in the practical use, and to 
demonstrate their applicability and accuracy through simulation analyses of past experiments. 
 

MATERIAL MODELING 
Concrete 
Basic concept 
Concrete is idealized using the orthotropic model based on equivalent uniaxial strain concept [1]. The 
model employs hypo-elastic constitutive relationships (nonlinear elasticity). The axes of orthotropy 
coincide with the current principal direction before occurrence of cracking. After cracking, the material 
axes are fixed to the crack direction. 

Failure criteria 
In plane stress analysis, Kupfer-Gerstle’s criterion [2] is applied for failure in biaxial compression and in 
tension-compression. Uniaxial tensile strength is used for judging cracks under uniaxial and biaxial 
tension. Degradation of compressive strength after cracking is incorporated. A compressive degradation 
model has been derived from in-plane shear loading tests of RC panels [3]. The reduction ratio of 
compressive strength is defined as a function of the uniaxial compressive strength of concrete and acting 
normal stresses along reinforcing directions. Three-dimensional analysis employs Ottosen’s four-
parameter model [4] for the failure criterion under a triaxial stress state. 

Stress - strain envelopes in tension and compression 
In the tension zone, the stress - strain relationship is assumed to be linear up to cracking; the tension 
stiffening envelope after cracking is modeled on the basis of RC panel tests, as shown in Fig. 1. The 
tension stiffening envelope comprises two parts: a descending part and a flat part. The reinforcement ratio 
and the uniaxial compressive strength of concrete are determining factors for a transition point from the 
descending part to the flat part. The stress σm and strain εm at the transition point are given as: 
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where ps is the reinforcement ratio and σT and σB are the tensile and compressive strengths of concrete, 
respectively. Furthermore, stress on the flat part is diminished along with degradation factor β , which is 

0/ EEC=β ,･･････････････････････････････････････････････････････････････(3) 

where EC is the tangential stiffness of concrete along the crack direction and E0 is the elastic modulus. 

(a) Reinforcement ratio variation

Fig. 1  Tension stiffening model of concrete
(b) Concrete strength variation (c) Compressive degradation effect
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Both ascending and descending curves are expressed by the following equations in the compression zone. 
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Therein, σP and εP are stress and strain at the peak point, respectively, σB is the uniaxial compressive 
strength, E0 is the elastic modulus, and EB and EP are secant moduli corresponding to σB and σP, 
respectively. The above equations were proposed originally by Ahmad et al.[5]. Coefficients X, A and D 
are modified to express curve shape differences because of the difference in compressive strength or 
amount of confining stress, as shown in Fig. 2. The model represents actual behavior precisely. 

Stress - strain relationship under stress reversals 
Unloading and reloading response of concrete in compression is not linear. The unloading stiffness 
becomes lower as the strain at the unloading point exceeds the elastic limit. Unloading and reloading 
curves are represented using quadratic equations while considering those features, as shown in Fig. 3. We 
define point E on the compression envelope curve, point Z where plastic strain remains after all stress is 
released, and εE and εZ as corresponding strains at points E and Z, respectively. Plastic strain εZ is 
expressed by the following equation proposed by Karsan and Jirsa [9]. 

( ) ( )( ) PPEPEZ εεεεεε ⋅⋅+⋅= /13.0/145.0 2
････････････････････････････････････････(11) 

According to Eq. (11), the strain εZ exceeds the unloading point strain εE when εE is larger than roughly 
6εP. The following equation is employed in cases where εE is 4εP or larger to avoid this unreasonable 
defect. 

Fig. 2  Comparisons of stress - strain envelopes of concrete in compression
(a) No confinement (c) High confinement(b) Low confinement
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The unloading curve is assumed to be linear with stiffness EE before it reaches point C, which is called the 
“common point” where the reloading curve crosses the unloading curve. Stress at point C is defined by the 
following equations proposed by Darwin et al. [10]. 
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Stiffness EE is assumed to be proportional to secant modulus EEZ between points E and Z. It is written as:  

EZE EE 1α=  ( :0E≤  Elastic modulus). ･････････････････････････････････････････(14) 

Coefficient α1=1.5 is recommended on the basis of existent experimental results; EE does not exceed the 
elastic modulus E0. The unloading curve starting at point C toward point Z is expressed as 

cba ++= εεσ 2 ,･･････････････････････････････････････････････････････････(15) 

where a, b and c are constants that are defined by the condition that the curve passes points C and Z and 
having stiffness EE at point C. One limitation of Eq. (14) is that the stiffness at point Z is not less than 
zero: 
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The turning point R is defined where the condition changes from unloading to reloading. Stiffness at the 
beginning of reloading is assumed to be α2 times unloading stiffness at point R. Coefficient α2 is 1.0 when 
point R coincides with point C, and α2 =α2z at point Z, where α2z is defined by the following equations. 
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Interpolating between points C and Z, α2 is calculated as 
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Comparisons of the model with corresponding experimental results are shown in Fig. 4. The model 
reproduces observed stress - strain responses of cyclic compression tests [9]. 



Figure 5 shows that the unloading and reloading curves are represented in the same manner in the tension 
zone as in the compression zone. Points T, G, and H correspond to points P, E and Z in compression, 
respectively. The secant modulus EGH between points G and H becomes lower as the strain at point G 
increases. EGH is assumed to be proportional to the ratio of strain at point T to point G. It is 
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The unloading curve is assumed to be linear with stiffness EG before it reaches point L, where the 
reloading curve meets the unloading curve. Stress at point L is defined expediently as 
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The unloading curve is expressed by Eq. (15). The stiffness at point G is defined as 
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Coefficient α3 is set to 1.5 and does not exceed the elastic modulus E0 in a similar way with α1 in Eq. (14). 
The reloading curve starts at point R. The stiffness at the beginning of reloading is assumed to be α4 times 
unloading stiffness just before point R. Coefficient α4 is 1.0 when point R coincides with point L; α4 =α4H 
at point H, where α4H is defined by the following equation. 
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Interpolating the values at points L and H, the coefficient α4 is expressed as 
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Comparisons of the model with test results of cyclic tension [11] are shown in Fig. 6. 

When unloading continues beyond point H, the curve goes into compression regions. Figure 7 illustrates 
hysteretic rules between tension and compression. Point J is a transition point from unloading in tension 
to reloading in compression. Point K is a transition point from unloading in compression to reloading in 
tension. The following logarithmic equation expresses the curve from point H toward point J. 

( )( ) cbae ⋅++= εσ log ･････････････････････････････････････････････････････(24) 

Therein, coefficients a, b, and c are determined by the condition that the curve passes points H and J and 
having stiffness EH at point H. 

Fig. 5  Unloading/reloading model of
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Fig. 7   Stress - strain curves under stress reversals between tension and compression
(a) Compression after cracking (b) Cracking after compression
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Stress at point J is assumed to be proportional to the tensile strength σT. It is written as 

TJ σασ 5−= . ･････････････････････････････････････････････････････････････(25) 

Coefficient α5 is given by the next equation considering that σJ increases with increasing strain at point L: 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −+=
T

TL

ε
εεα 02.00.15 . ･･･････････････････････････････････････････････････(26) 

Stress at point K is given by the following assumption, which best describes past experimental results. 

JK σσ 5.0= ･･････････････････････････････････････････････････････････････(27) 
When a crack occurrs after unloading from the compression zone, as shown in Fig. 7b, the tensile strength 
σT is reduced considering the damage induced by the compression, as 

0E

EEZ
ToT σσ = , ････････････････････････････････････････････････････････････(28) 

where σTo is the tensile strength of intact concrete. Strain at point T is shifted in accordance with the strain 
at point Z. The line from point Z toward point T is set to be linear with stiffness at point Z. 

Non-orthogonal multi-directional crack model 
The smeared crack model with a fixed angle concept expresses cracking of concrete. Once a crack is 
formed in an element, a crack axis is introduced and the material axis is set to coincide with the crack axis. 
One set of crack axes is able to represent two orthogonal cracks in plane stress analysis and three 
orthogonal cracks in three-dimensional analysis at the maximum. Another crack axis is introduced in the 
newly cracked direction to reflect subsequent cracks that occur with an acute angle against the existent 
crack resulting from stress redistribution or change of loading direction. Three crack axes are introduced 
at the maximum; six cracks, three sets of two orthogonal cracks, are taken into account in a single point in 
plane stress analysis, as shown in Fig. 8a. Nine cracks, three sets of three orthogonal cracks, are 
considered in three-dimensional analysis, as illustrated in Fig. 8b. 

First crack axis

(a) Plane stress condition

Second crack axisThird crack axis

Fig. 8  Non-orthogonal multi-directional crack model
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Shear stress - shear strain relationship after cracking 
Shear transfer action is expressed by the average shear stress - shear strain relationship along the crack 
direction. The shear stress - shear strain envelope is determined as a function of the concrete strength, the 
amount of reinforcing steel crossing the cracks, and tensile strain perpendicular to the crack direction [3]. 
The hysteretic rule on shear stress - shear strain relationship is modeled as shown in Fig. 9. Both 
unloading and reloading curves are expressed as 

( )4ba −= γτ , ･････････････････････････････････････････････････････････････(29) 

where a and b are constants that are determined by assuming that the curve passes two points. Point U is 
an unloading point on the envelope, point Z is on the unloading curve when all stress is released, point R 
is a turning point from unloading to reloading, and point C is a crossing point between the unloading and 
the reloading curves. The strain at point Z is assumed to be proportional to the unloading point strain as 

UZ γγ 5.0=  (
0

4

G
U

U

τγ −≤ ) . ･････････････････････････････････････････････････(30) 

The limitation in the above parenthesis is derived from the condition that the stiffness at point U does not 
exceed the elastic shear modulus G0. After reaching point Z, the curve has no stiffness unless the shear 
strain keeps on decreasing. When the strain changes from decreasing into increasing, shear stress starts to 
increase and goes up toward point C, where shear stress is defined as 

UC ττ 9.0= . ･･････････････････････････････････････････････････････････････(31) 

Figure 10 shows a comparison of the model with the experimental result obtained from cyclic shear 
loading tests on the cracked plane under constant crack width [12]. 

Reinforcing steel 
Incremental plasticity theory is applied 
for steel material. The von Mises yield 
surface is employed to judge yielding 
under a multi-axial stress field along 
with the associated flow rule for 
isotropic hardening. 

The stress-strain relationship under 
stress reversal follows Ciampi’s model 
[13]. This model gives a good 
representation of actual stress - strain 
relationships under cyclic stresses, as 
shown in Fig. 11. 

Fig. 11  Comparisons of Ciampi's model with test results 
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Bond between concrete and reinforcement 
Figure 12 depicts the conceptualized unloading and reloading rules on the bond stress - slip relationship. 
This model is derived from past experiments focussing on bond slip behavior. The envelope curve for 
bond stress τ and slip S is expressed as 

max
2

max

maxmax

0.1

)0.2(

S

S

S

S
Sd

Sd

⎟⎟
⎠

⎞
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⎛
+⋅−

⋅−
=

ττ , ･･･････････････････････････････････････････････(32) 

where τmax and Smax are the stress and the slip at the peak point, respectively, and d is a coefficient which 
determines the shape of the curve. Differentiating Eq. (32) by the slip S, and substituting S=0.0, the initial 
stiffness is obtained. It is inferred to be 20.0 Ks, which is the secant modulus toward the peak point. 
Therefore, the coefficient d is calculated using the above assumption. The unloading curve from point E 
on the envelope toward point N, where the stiffness of the curve becomes zero, is given as 

( ) NNSSa ττ +−= 4 ,･････････････････････････････････････････････････････････(33) 

where SN and τN are the slip and the stress at point N, respectively. Morita and Kaku [16] propose τN as 

EN ττ ⋅−= 18.0 . ･･･････････････････････････････････････････････････････････(34) 

The slip SN and coefficient a in Eq. (33) are determined from the condition that the unloading curve passes 
point E and the stiffness at point E equals K0. When the unloading curve reaches point N, it loses stiffness 
and moves with constant stress τN until it meets the envelope in the negative zone. The reloading curve 
from point R to point M is also expressed by Eq. (33), where point M is a transition point. The stress at 
point M is determined by Eq. (34) with τN instead of τE. The curve from point M to point C is defined in 
the same way. The stress at point C follows the proposal by Morita and Kaku [16]. 

EC ττ 9.0= ･･･････････････････････････････････････････････････････････････(35) 

When reloading starts before reaching point N, the reloading curve is assumed to be anti-symmetric with 
the unloading curve. It increases toward point E with initial stiffness K0 at point R. In case reloading 
continues after unloading in the opposite domain, transition point M is located on the vertical axis where 
the slip equals zero. 

Figure 13 shows comparisons between the model and experimental results [16]. The model represents the 
observed bond hysteretic behavior with sufficient accuracy. 

Fig. 12   Unloading/reloading model of bond behavior
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MODEL VERIFICATION UNDER CYCLIC LOADING CONDITION 
 
All models described here are incorporated into a finite element program for concrete structures FINAL. 
For the first stage of verification, two reinforced concrete specimens are analyzed statically under a cyclic 
loading condition. One specimen requires constitutive models under a biaxial stress state; the other 
requires those under a triaxial stress state. 
 
Reinforced concrete box wall subjected to cyclic horizontal force 
The specimen is a box-shaped reinforced concrete wall with slabs at the top and bottom [17]. Half of the 
specimen is modeled using quadrilateral shell elements using the symmetric condition on the shape and 
loading. Top and bottom slabs are modeled by thickened elements and are assumed to behave elastically. 
Reinforcing bars in the wall are all replaced by equivalent layers with stiffness in the bar direction and 
superimposed on the shell elements. 

Figure 14 shows comparison of load - displacement relationships of the test and the analysis. The analysis 
reproduces actual hysteresis loops not only for small displacement cycles, but also for large displacement 
cycles. It is particularly emphasized that the analysis shows the slight drop of the peak load after the same 
displacement cycle as well as the experiment does. 
 
Reinforced concrete beam-column joint subjected to cyclic shear 
As an entirely three-dimensional example, a reinforced concrete beam - column joint specimen is analyzed 
under the triaxial stress state. The specimen has beams connected eccentrically with the column in three 
directions. Testing was conducted by applying constant axial compression force on the column, then 
increasing shear forces at both ends of the beam. The specimen showed flexural yielding of the beam 
during the experiment. Concrete is modeled using hexahedral elements; the main bars in the column and 
the beams are explicitly modeled using truss elements. Hoops and stirrups are represented by embedded 
smeared reinforcements. Joint-type elements are inserted between hexahedral elements and truss elements 
for beam main bars for the purpose of incorporating bond slip behavior. The bond strength is determined 
on the basis of measured strain distributions of the beam main bars in the joint region, and the mean value 
7.05 N/mm2 is adopted in the analysis. Bond slip corresponding to the bond strength is assumed as 1.0 
mm, referring to the study by Elmorsi et al. [18]. 

Relationships between shear force of the beam and story drift angle are compared in Fig. 15. Although the 
analytical maximum load is slightly higher than the experimental one, close agreement is obtained for 
hysteresis loops between the two. 

(a) Test
Fig. 14  Comparison of load - displacement curves of box wall specimen
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Fig. 15  Comparison of story shear force - drift angle relationships of beam - column joint specimen
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DYNAMIC RESPONSE ANALYSIS 

 
For the next stage of verification, simulation analyses are performed for two reinforced concrete scale 
models subjected to seismic excitation on a shaking table. Dynamic response analyses are conducted as 
the following procedure. First, initial stress is calculated statically for self-weight. Secondly, eigenvalue 
analysis is performed using the subspace iteration method. Thirdly, time history response analyses are 
conducted using Newmark-β time integration method with parameters γ=0.5, β=0.25. Internal viscous 
damping is assumed to be proportional to initial stiffness. Analyses are performed with uniform 1% 
damping for the first natural period of each model. That damping is kept constant throughout the 
calculation. 
 
Reinforced concrete H-sectioned wall 
The specimen is an H-sectioned wall constructed on a base slab with a top slab and additional masses, as 
shown in Fig. 16. The shaking table test was conducted as RUN1 through RUN5, applying horizontal 
excitation in a direction parallel to the web wall [19]. The specimen showed typical shear sliding failure at 
the lower part of the web wall during RUN5 in the test. 

The finite element model is half-symmetric and assembled with shell elements for the wall and hexahedral 
elements for both the slabs and masses. The first eigenvalue of the analysis shows a slightly higher 
frequency of 13.4 Hz than the measured value of 13.2 Hz before RUN1. The calculated first eigenmode is 
shear-dominated deformation of the web wall, as shown in Fig. 17. 

Time history analyses are performed continuously in the same sequence with the shaking table test. Time 
increment size of the analysis is set to 0.005 s. However, the response and residual stresses were too large 
when input acceleration changed drastically. Therefore, the time increment is reduced to a smaller value 
automatically if the input acceleration increment exceeds the prescribed upper limit. The upper limit is 
stipulated as 100 mm/s2 per each increment in this analysis; the allowable minimum time increment is set 
to 0.0001 s. This time increment control contributes to stable calculation in incremental analysis of 
concrete materials that exhibit strong nonlinearity. 

Figure 18 shows comparisons between calculated and measured acceleration responses of the top slab in 
RUN1, RUN4, and RUN5. Regarding RUN1, the specimen responds within the elastic range. The 
analysis reproduces the observed waveform, maximum acceleration, and its occurrence time quite well. 



Fig. 16  Configuration of H-sectioned wall specimen
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In RUN4, the waveform transforms into a long-period 
type because of cumulative stiffness degradation 
resulting from concrete cracking and steel yielding. 
This tendency is well represented by the analysis. 
Nevertheless, the latter half of RUN4 shows a 
difference between the analysis and test results. 
Presumably, the specimen underwent much damage in 
the analysis when it showed larger maximum 
acceleration than the measured value around 4.5 s. 

The specimen failed at about 4.0 s in the test in the 
final excitation RUN5. The acceleration response 
changed to small amplitude and included long-period 
components after failure. The analysis reproduces that 
change precisely. 

Figure 19 shows the relationships between inertial 
force and horizontal displacement of the top slab. 
Therein, the inertial force is defined as a product of 
the weight of the top slab, including the masses, and 
its acceleration response. Hysteresis loops tend to 
become larger as a result of progress in nonlinearity in Fig. 19   Comparisons of hysteresis loops
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RUN4. They grow remarkably large in RUN5, 
especially after reaching the maximum load. The 
maximum inertial forces and the maximum 
displacements of the test and the analysis show good 
respective correspondence. 

Acceleration response spectra at the top slab are 
compared for the test and the analysis in Fig. 20. 
Regarding RUN4, slight differences appear in the 
peak periods. However, dynamic characteristics of 
response spectra agree well with each other. Several 
peaks, those indicating the progress of nonlinearity 
and failure, can be found in RUN5 for both the test 
and the analysis. 

Non-stationary spectra of RUN4 and RUN5 are 
shown in Fig. 21 to elucidate the historical changes in 
dynamic characteristics of the specimen. This figure 
shows changes in the natural frequency. Dominant 
frequencies and historical changes mutually concur 
well. Moreover, gradual decreases in the dominant 
frequencies are revealed from the time of 2.0 s 
through 6.0 s. In RUN5, marked decreases from the 
time of 2.0 s through 4.0 s imply the specimen failure, 
which is represented well by the analysis. 
 
Prestressed concrete containment vessel model 
The specimen is a 1:10 scaled model of a prestressed concrete containment vessel [20]. Figure 22 shows 
the specimen configuration. The specimen consists of a prestressed concrete cylindrical wall with two 
circular openings, a reinforced concrete base slab, and a top slab attached by additional masses. Steel 
lining plates are anchored to the inside surface of the cylindrical wall. 

The shaking table test comprised 14 excitations, including horizontal and vertical excitations with and 
without internal pressure. The final excitation was continued until the specimen failed. Input motions to 
the shaking table are standard design earthquakes designated as "S1" and "S2" for nuclear facilities in 
Japan. The maximum input acceleration in S2 excitation is 4.22 m/s2. The excitation cases were named as 
"4.0S2", "5.0S2", indicating that the amplitudes of input acceleration were multiplied by four and five, 
respectively. 

In the early stage of analysis, a whole model was made and analyzed for several excitations. That method 
was very time consuming. Therefore, the finite element model was simplified and reduced to a half model, 
as shown in Fig. 23. The model does not include the base slab. It is fixed to the bottom of the cylindrical 
wall. The height of the additional masses around the wall is adjusted to the top slab thickness. The effect 
of these simplifications on calculation was investigated by comparing analysis results of both models for 
several excitations. It was shown to be negligible. 

First, eigenvalue analysis is performed. The first mode is dominated by horizontal translation and its 
natural frequency is 11.4 Hz, which is slightly higher than the observed value of 11.1 Hz. This difference 
in the natural frequencies can be attributed mainly to the fixed condition at the bottom of the specimen. 
Generally, actual fixed condition is not perfect as it is in the analysis. 

Secondly, static analysis is conducted for self-weight and prestressing loads. Subsequently, time history 
analyses are performed according to the actual test sequence. 

(a) RUN4
Fig. 21  Comparisons of non-stationary spectra 
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Fig. 22  Configurations of PCCV model
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Automatic time increment control is adopted and the basic time increment is set to 0.005 s, as with the 
analysis of the H-sectioned wall. However, control by the upper limit of the input acceleration increment 
was inadequate: it caused premature specimen failure, probably because of the delay in the response of 
heavy top portion. In other words, the response depends to a large extent on the former input acceleration. 
Another control scheme is introduced to overcome this problem: if acceleration or displacement response 
of the top slab exceeds the prescribed upper limit, then a control scheme reduces the time increment size 
and recalculates with a new increment size. In this analysis, allowable maximum responses in acceleration 
and displacement at the center of the top slab are 500 mm/s2 and 0.05 mm, respectively. This cutback 
scheme engendered a stable solution and did not require control by the limit of input acceleration 
increment. 

In analyses for the design level horizontal excitation, calculated responses for "S1" and "S2", in which the 
specimen responds almost elastically, differed from the measured responses. Detailed examination of the 
measured responses revealed that the base slab rotated during horizontal excitations. To incorporate the 
rotational motion in the analysis, average rotational acceleration at the wall bottom is evaluated according 
to the following procedures. First, the difference in vertical acceleration of two measuring points along the 
shaking direction is calculated. Then the average rotational acceleration is obtained by dividing the 
vertical acceleration difference by its distance. That acceleration is applied to the specimen as shown in 
Fig. 24. Rotational acceleration is applied to each node of the model as translational acceleration 
according to the angle and the distance from the center of rotation, which is inferred to be the midpoint of 
two measuring points. 

Comparison of horizontal acceleration responses of the top slab by "S2" horizontal excitation, in which a 
few cracks are observed both in the test and the analysis, is shown in Fig. 25a. The acceleration waveform 
calculated by the analysis represents the measured one with quite good accuracy. Figure 25b compares 
measured and calculated acceleration responses of the top slab in "4.0S2" horizontal excitation whose 
duration time is extended four times longer than the original "S2". Both results agree well except that the 
calculated acceleration is somewhat larger than the measured one around 7 s and 55 s. Horizontal 
accelerations of the top slab in "5.0S2" horizontal excitation are compared in Fig. 25c. Excitation caused 
shear failure of the specimen at 5.7 s. Analysis showed the same type of failure from 5.5 s through 6.0 s. 



0 20 40 60
-30

0

30

0 20 40 60
-30

0

30

Time (s)

4.0S 2

Fig. 25  Comparisons of horizontal acceleration response

Time (s)

4.0S  2

Test

Analysis

(b) 4.0S  excitation2

-12

0

12

0 5 10 15 Time (s)

Test

S 2

-12

0

12

0 5 10 15 Time (s)

Analysis

2(a)  S  excitation
2

0

0

0 3.0 6.0

0 3.0 6.0
-30

30

-30

30

Time (s)

Time (s)

Analysis

5.0S 2

Test

(c) 5.0S  excitation

S 2 5.0S2

Acceleration (m/s  )2

Acceleration (m/s  )2

Acceleration (m/s  )2

Acceleration (m/s  )2 Acceleration (m/s  )2

Acceleration (m/s  )2

 

Final cracking patterns on the outer surface of 
the cylindrical wall are compared in Fig. 26. 
The specimen showed shear failure of the 
cylindrical wall during "5.0S2" excitation. The 
failure was initiated near the opening, then 
progressed in the upper part of the wall. Crack 
directions and the failure region of the analysis 
correspond well with the observed ones. 

Figure 27 shows a comparison of the transfer 
functions calculated from the acceleration 
response of the top slab and the bottom of the 
cylindrical wall. Although the transfer function 
obtained from analysis of "4.0S2" excitation 
showed a steep peak compared with the test 
result, a complex shape and several peaks are  
found both in the test and the analysis. With 
regard to "5.0S2" excitation, some differences 
are seen in the peak frequencies. However, the 
magnification factor and the change of 
frequency characteristics obtained from the 
analysis correspond well with those of the test. 
 

CONCLUSIONS 
 
Constitutive models that feature hysteretic characteristics of reinforced concrete and the method for time 
increment control and rotational acceleration input are developed and applied for simulation analyses of 
various types of experiments. The results are summarized as follows: 

1) The static cyclic analyses reproduced observed load - displacement relationships and cyclic 
degradation characteristics of the specimens with sufficient accuracy. 

2) In time history analyses, a consistent method; 1% uniform damping for all excitations; can simulate the 
actual response not only in the elastic range, but also in the nonlinear domain. 

3) Time increment control by the upper limit of acceleration and displacement response contributes to 
obtaining reliable solutions in nonlinear dynamic analysis. 

4) Rotational motion of the shaking table can be considered in the analysis by the proposed method. It 
leads to precise simulation of the shaking table tests. 

0 27090

(a) Test

Open crack

Concrete failure

Closed crack

Fig. 26  Final crack patterns on the outer surface of
(b) Analysis

(Hidden by mass)
Not observed

 the cylindrical wall

(a) 4.0S  excitation  2 (b) 5.0S  excitation2

Frequency (Hz) Frequency (Hz)
5 10 15 200

2

4

6

0 5 10 15 20

2

4

6

(Up to 5.5 s)

Test
Analysis

24.0S 25.0S  

Fourier spectral ratio Fourier spectral ratio

Test
Analysis

Fig. 27  Comparisons of transfer functions



ACKNOWLEDGEMENT 

The authors would like to express their gratitude to the Nuclear Power Engineering Corporation (NUPEC) 
for providing us with valuable experimental data on the shaking table tests. 
 

REFERENCES 

1. Darwin D and Pecknold DA. “Nonlinear biaxial stress-strain law for concrete.” J. Eng. Mech. Div., 
ASCE 1977; 103(EM2): 229–241. 

2. Kupfer HB and Gerstle KH. “Behavior of concrete under biaxial stresses.” J. Eng. Mech. Div., 
ASCE 1973; 99(EM4): 853–866. 

3. Takeda T, Yamaguchi T and Naganuma K. “An analytical model of reinforced concrete panel under 
in-plane shear stress.” Trans. 11th Int’l. Conf. Struct. Mech. in Reactor Tech. (SMiRT11) 1991; 
H14/3: 413–418. 

4. Ottosen NS. “A failure criterion for concrete.” J. Eng. Mech. Div., ASCE 1977; 103(EM4): 527–
535. 

5. Ahmad SH and Shah SP. “Complete triaxial stress-strain curve for concrete.” J. Struct. Div., ASCE 
1982; 108(ST4): 728–742. 

6. ACI Committee 363 “State-of-the-art report on high strength concrete.” ACI Journal 1984; 81(4): 
364–411. 

7. Hatanaka S, Kosaka Y and Tanigawa Y. “Plastic deformational behavior of axially loaded concrete 
under lateral pressure (Part 1).” J. Struct. and Const. Eng. 1987; (377): 27–40. 

8. Richart FE, Brandtzaeg A and Brown RL. “The failure of plain and a spirally reinforced concrete in 
compression.” Bulletin (190). Univ. of Illinois, 1929. 

9. Karsan ID and Jirsa JO. “Behavior of concrete under compressive loadings.” J. Struct. Div., ASCE  
1969; 95(ST2): 2543–2563. 

10. Darwin D and Pecknold DA. “Inelastic model for cyclic biaxial loading of reinforced concrete.” 
Civil Eng. Studies, SRS 1974; (409). Univ. of Illinois. 

11. Yankelevsky DZ and Reinhardt HW. “Uniaxial behavior of concrete in cyclic tension.” J. Struct. 
Div., ASCE 1989; 115(1): 166–182. 

12. Watanabe F, Kono S and Muguruma H. “Aggregate interlock along a cracked surface and its 
modeling.” Proc. of the Japan Concrete Inst. 1989; 11(1): 311–316. (in Japanese) 

13. Ciampi V. et al. “Analytical model for concrete anchorages of reinforcing bars under generalized 
excitations.” Report No.EERC-82/23, Earthquake Eng. Res. Ctr., Univ. of Cal., 1982. 

14. Panthaki FD. “Low cycle fatigue behavior of high strength and ordinary reinforcing steels.” MS 
Thesis, Dept. of Civ. Eng., Univ. of New York, 1991. 

15. Viwathanatepa S. et al. “Effects of generalized loadings on bond of reinforcing bars embedded in 
confined concrete blocks” Report No.EERC-79/22, Earthquake Eng. Res. Ctr., Univ. of Cal., 1979. 

16. Morita S and Kaku T. “Local bond stress - slip relationship under repeated loading.” IABSE 
Symposium on Resistance and Ultimate Deformability of Structures acted on by well defined 
Repeated Loads, Reports of the Working Commissions 1973; 13: 221–227. 

17. Inada Y, Akino K and Sugita K “Model tests for restoring force characteristics of reactor buildings, 
Part 4 Tests of B1 series.” Summaries of Technical Papers of Annual Meeting, Architectural Inst.  
of Japan, Struct. Div., 1982: 963–964. (in Japanese)  

18. Elmorsi M, Kianoush MR and Tso WK. “Modeling bond - slip deformation in reinforced concrete 
beam-column Joints.” Can. J. of Civil Eng. 2000; 27: 490–505. 

19. Committee on the Safety of Nuclear Installations “Seismic Shear Wall ISP: NUPEC’s seismic 
ultimate dynamic response test: Comparison Report.” OECD Nuclear Energy Agency, 1996. 

20. Tsurumaki S. et al. “Seismic proving test for concrete containment vessel (I.PCCV) Parts 6–9.” 
Summaries of Technical Papers of Annual Meeting, Architectural Inst. of Japan, Struct. Div., 1998: 
1079–1086. (in Japanese) 


	Return to Main Menu
	=================
	Return to Browse
	================
	Next Page
	Previous Page
	=================
	Full Text Search
	Search Results
	Print
	=================
	Help
	Exit DVD



