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SUMMARY 
 
    
 
The higher order Born approximation combined with the Indirect Boundary Element Method using the 
sparse matrix approximation and the conjugate gradient approach is proposed breaking through the 
difficulty that the boundary methods have. The sparse matrix approximation can be a countermeasure for 
the weakest point of the boundary methods, i. e., requirement of huge memory allocation and unacceptable 
long CPU time consumption. The elimination of relatively small matrix elements, however, may result in a 
considerable distortion of calculated wave field. The higher order Born approximation is expected to be 
able to restore it. Therefore, their combination has a possibility to improve the efficiency and accuracy 
together for conventional IBEM. 
It is shown that the third order Born approximation provides an enough accurate solution and at the same 
time reduces drastically the required CPU time and memory allocation in a case study and that the 
contribution of boundary elements nearer than the wavelength at the peak frequency have to be integrated.  
The calculated results show that the distortion of the main phases that correspond to the interaction 
between the boundary elements relatively near each other can be recovered. This implies that the 
refinement of synthetic seismograms may work better for the problems, in that surface waves and interface 
waves do not play important role. Possible example may be the body waves in relatively high frequency 
range that propagate through irregular interfaces, e. g., acceleration observed on irregularly layered 
sediment that is important in Earthquake Engineering. 
 

INTRODUCTION 
 
For many years, researchers of boundary methods such as the Boundary Element Method and the Indirect 
Boundary Element Method (abbreviated IBEM, a detailed review is given by Yokoi [1]) have attempted to 
make them practically usable to compute complete wave fields for the problems of irregular interface and 
boundaries. Especially for the interest of Earthquake Engineering, the body waves coming up through 
irregular interfaces just beneath the observation point and the basin induced surface waves that come from 
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mountain-plain borders far away. Trying to handle both of them has made the requirement for the 
boundary methods unrealistic, because the body waves at the frequency range as high as the natural 
frequency of usual dwellings have to be calculated in huge sedimentary basins that corresponds a huge 
number of small boundary elements and huge Green’s function matrices for simultaneous linear equations 
that require unacceptable long CPU time consumed. This is the reason why boundary methods are still in 
the way of research at present, while domain methods, such as the Finite Element (e. g., Bielak [2]) and 
the Finite Difference Method (e. g. Graves [3] and Sato [4]) are being applied to realistic cases already. 
The boundary methods, however, are still attracting researchers, because of the possibility for substantial 
improvement in cost performance and accuracy, not only by advances in computer’s hardware technology, 
but also by the wisdom and effort of the researchers. 
 
POSSIBLE BREAK THROUGH 
A possibility can be seen to break through this difficulty for the boundary methods in separation of wave 
types, e. g., relatively large boundary elements required to cover a wide sedimentary basin for long period 
surface waves or relatively narrow spatial extent to be covered by small boundary elements for the body 
waves of short period.  
Researchers of wave propagation in Earthquake Engineering have paid much attention on the former 
during 80’s and 90’s decade, because these are the hard evidences confronting to the myth in Earthquake 
Engineering, i. e., the engineering bedrock that might provide laterally homogeneous input ground motion 
in regional extent to the shallowest sedimentary layers (e. g., Bielak [2], Sato [4]).   
The latter one has not been considered much, although it is widely recognized that the acceleration of 
ground motion at close epi-central distance is composed mainly of body waves and can be affected 
strongly by irregularities along the underground interfaces. 1D wave propagation in 1D velocity structure, 
i. e., vertically upcoming S-wave in horizontally layered media has been and is being used popularly for 
the seismic response of the shallowest sediments over the engineering bedrock. For deeper underground 
velocity structure, 3D wave propagation in 1D structure is sometimes used with the velocity distribution 
beneath the observation point. They can provide the calculated results that are not bad except special 
extreme cases such as huge and deep sedimentary basin. Even these cases, the long period surface waves 
induced by basin do not affect to usual dwellings, because of the difference of frequency range. Therefore, 
it seems appropriate to concentrate attention to the directly coming body waves in consideration on 
seismic risk mitigation strategy. The next step for this approach may be to glade up the approximation for 
irregularly layered media. 
  
Yokoi [5] shows the way, with IBEM formulation, how to handle the waves passing through irregular 
interfaces. It follows almost similar formalism as that for stacked layers with flat interfaces (e. g., Kennett 
[6]). These body waves accompanied with scattered ones by irregularities along interfaces can be 
separated from the long period surface waves propagating from far a way. The performance of calculation, 
however, remains un-improved. A set of simultaneous linear equations have to be solved for wave passing 
through each interfaces. 
 
NUMERICAL APPROXIMATION 
The main difficulty still remains in huge coefficient matrices resulting from the simultaneous linear 
equations composed in order that the boundary conditions in discrete form are fulfilled. An extensive 
memory is required to handle and store them, and a considerable CPU time to solve the corresponding 
simultaneous linear equations.  
 
Few mathematical ways are proposed to make that solution relatively easier, such as the bi-conjugate 
gradient approach widely used today because of their efficiency against the conventional Gauss – Jordan 
approach. The sparse matrix technique (e. g. Press [7]) handles matrices with many zero elements faster 



than other techniques. Unfortunately, coefficient matrices used in the boundary element method, however, 
are full ones. Therefore, more approximation is necessary to apply it for IBEM.  
 
SPARSE MATRIX APPROXIMATION 
It is a matter of course that the elimination of relatively small matrix elements can speed up the solution of 
simultaneous linear equations. An example is shown for a boundary integral scheme using the threshold 
criteria based on the significant spatial decay (~1/r) of Green’s functions, especially in three dimensional 
problems (Bouchon [8]). Órtiz-Alemán [9] takes this approximation with the frequency into account, and 
shows a threshold criteria to truncate the contributions from relatively far elements, for IBEM. The 
number of matrix elements can be reduced significantly by this combination and consequently the 
required memory and CPU-time for the overall solution. 
  
A careless application of this approximation, however, may result in considerable distortion of the 
calculated seismic wave field, because the small matrix elements correspond to the interaction between 
the boundary elements far of each other that sometimes play important roles. Although the sparse matrix 
approximation is attractive by its calculation performance, a way to compensate the distortion of wave 
field is required.  
  
HIGHER ORDER BORN APPROXIMATION 
Igel [10] shows that the higher order Born approximation explained in the following can improve 
efficiently the accuracy of the solution for problems of wave propagation in global scales, obtained by the 
Finite Difference Method. 
The simultaneous linear equations  
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may be solved by the iterative algorithm,   
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where A(0) is the principal part of  A, δA the difference of A(0) from A, c(0) the zero-order approximation of 
the solution c, δc(1) the first order one, δc(2) the second order one, and so on (Takeuchi [11]) .  
The sum of both members of above equations gives 

( )( ) ( ) ( ) ( )( ) .2100 gcccAA −=++++ Lδδδ                                                                                  (3) 

The stack of the solutions c(0) and δc(k) gives an iterative improvement of c, if it converges.  
( ) ( ) ( ) .210

L+++= cccc δδ                                                                                                  (4) 
The condition for convergence given by Igel [10] is that the absolute values of every eigen values of the 
matrix ( )( ){ }AA δ10 −  must be less than unity. 

Considering its theoretical base, it seems possible to apply it to the IBEM in cases that the 
elimination of small elements may affect the calculated wave field. The coefficient matrix used 
by Igel [10], however, corresponds to the differential operator, while that of the IBEM 
corresponds to the integral operator. 



VALIDATION 
A numerical validation check using a three 
dimensional semi-spherical canyon is performed in order 
to quantify the accuracy and efficiency of the IBEM 
incorporating the higher order Born approximation in 
threshold criteria to eliminate small matrix elements. 
The geometry of the surface model and the element 
distribution are shown in Fig.1. The non-dimensional units 
that scale everything to the semi-spherical canyon's radius 
that is unit are employed. The shear wave velocity and the 
density of the material are 1.0 km/sec and 1.0 gr/cm3, 
respectively. Poisson ratio is 0.25, and the quality factor of 
P and S waves Qα=Qβ=100, respectively. Then, the 
threshold criterion given by Órtiz-Alemán [9] is applied, 

,max INr επη≈                                  (5) 

where βλπβωη /2/max aa ==  is the normalized frequency, 

a radius of the canyon, βλ the wavelength of the shear wave corresponding to the maximum frequency 

considered in the computation, NI the total number of the boundary elements, β the shear wave velocity. 
The contributions of the boundary elements within this threshold distance are assembled in A(0), and those 
farther in δA. ε denotes the given control parameter for threshold. 
The Ricker wavelet is used for the time dependency of the incident wave with the peak non-dimensional 
frequency 2/ == πβωη app . The incidence of plane S wave polarized in y-direction is of a null azimuth 

from the x-axis and incident angle 30 degrees from the vertical (positive down). Vertical components 
observed at stations along the line x=y are used for comparison, because this does not have the direct 
contribution of the incident wave and hence facilitates to check the accuracy of the solution. 
 
The IBEM formulation is given as follows. The total wave field is composed of the reference wave field 

solution  ( ( )xu , ( )xt ) in a homogeneous half space V0 upon the incident wave, and of the diffracted wave 
field given by the boundary integrals of the product of displacement and traction Green's function 

( ) ( )ξξ ;,; xhxg , and the imaginary force ( )ξφ  distributed along the lower face of the free surface. 
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The traction free boundary condition along the irregular surface SI is given as 
( ) ( ) ( ) .,0; IS

i Sxdxhxt
I

∈=+ ∫ ξξφξ                                                                                       (7) 

In discrete form, integral operator is substituted with matrix and the simultaneous linear equations to be 
solved are given as follows.  

.III tH −=Φ                                                                                                                       (8) 
The coefficient matrix HII corresponds the original matrix A in Eq. (1). The higher order Born 
approximation (Eqs (2) and (3)) is applied to solve this simultaneous linear equations. The displacement 
at the surface is given by the following formula. 

.Φ+= IIII Guu                                                                                                                  (9) 
The formulation to calculate the elements of Green's function matrices is given by Sánchez-Sesma [12] 
and Yokoi [1] for three dimensional problems. 
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Fig.1 Boundary element model for the 

irregular surface SI . 



 
 
Fig. 2 Solution with elimination of small elements (left: ε = 0.1, center: ε=0.2, right: ε=0.5). 
Top: zero order, middle: first order, bottom: third order Born approximation applied. 
Vertical components observed along the line x=y are shown. Ticks on the vertical axis show 
the edge of the semi-spherical canyon. Grey traces denote “the exact solution”, i. e., the full 
matrix solution (ε=0.0).  

 

Table 1 Performance of calculation 
 

Value of ε 0.0 0.1 0.2 0.5 

Storage (%) 100 6.1 1.6 0.4 

Order 0 0 1 3 0 1 3 0 1 3 

CPU time (%) 100 0.6 2.7 6.8 0.4 2.6 6.8 0.3 2.6 6.8 

Error (%) 0.0 51.3 34.0 22.7 63.1 47.3 51.6 63.1 49.9 75.4 

 

ε=0.1, 0th-order 

ε=0.1, 1st-order 

ε=0.1, 3rd-order 

ε=0.2, 0th-order 

ε=0.2, 1st-order 

ε=0.2, 3rd-order 

ε=0.5, 0th-order 

ε=0.5, 1st-order 

ε=0.5, 3rd-order 



First, a calculation without elimination of small elements (ε = 0.0) is performed and the solution is used as 
"the exact solution", i. e., the full matrix solution, for comparison with other cases. The full coefficient 
matrix A has 2592 X 2592 elements that correspond to 864 triangular boundary elements shown in Fig. 1. 
 
Then, a series of calculation are performed using the zero, first and third order Born approximations, for 
the three values of ε = 0.1, 0.2 and 0.5. The ratio of the critical distance, within that the contribution of the 
boundary elements is taken into account, to average size of the boundary elements is 4.1, 2.0 and 0.8, 
respectively. In the extreme case of ε = 0.5, e. g., only the contribution from the neighboring boundary 
elements is taken into account to compose A(0) . 
 
Fig. 2 show the vertical components of synthetic seismograms observed along the line x=y that correspond 
to ε = 0.1, 0.2 and 0.5, respectively, in comparison with “the exact solution” (drawn in gray). The incident 
wave does not appear in the vertical component and the diffracted wave field obtained by IBEM is clearly 
seen in them. The all of three top panels clearly show the consequence of elimination of small elements. 
The discrepancy is considerable not only in later phases of small amplitude, but also around the main 
phases.  
For all three values of ε, the waveforms due to the higher order Born approximation show the smaller 
deviations from "the exact solution", and these deviations appear enhanced later along the time axis. The 
small deviations before the first arrival are artifact due to FFT wrap around.  
 
The quantitative estimation of performance is summarized in Table 1. The full matrix A is too big to fit the 
main memory of the computer, whereas its principal part A(0) can be stored in it. The matrix δA, however, 
has similar size as A and must be calculated in each iteration as well as A. The storage percentage shown 
in Table 1 is the ratio of the number of non zero elements in A(0) to the number of all elements of the 
original full matrix A. The error is the value biggest among the maximum values of the ratios calculated 
for each synthetic seismogram for whole trace, i. e., the maximum absolute value of the deviation divided 
by the maximum absolute amplitude of "the exact solution", where the deviation is "the exact solution" 
minus the solution given by the Born approximation. 
 
For the zero order approximation shown in the top panels, the errors are more than a half of the maximum 
absolute amplitude of "the exact solution" (Table 1). Therefore, these results are not acceptable at all, 
although the CPU-time consumption and storage are substantially reduced.  
 
The discrepancy is suppressed more in the case of the higher order of Born approximation. The 
waveforms of the third order approximation for ε = 0.1 show the best fitting with "the exact solution" 
among the panels of Fig. 2. The error is 22.7% for whole traces, however, 9.0% for the time window from 
t=0.5 to t=3.5. This means that main phases are approximated well, as shown in the bottom panel. This 
tendency can be observed in the panels for ε = 0.2. The big false pulse that appears clearly at around 
t=3.0 in the top panel is suppressed in the bottom panel and the fitting of the main phases is bettered by 
the third order Born approximation, whereas the discrepancy in the latter phases remains. The traces for 
ε = 0.5, however, are not acceptable, because the above mentioned false pulse is kept in the traces 
obtained by the third order approximation.  
 
This numerical example shows that the higher order Born approximation introduced for the simultaneous 
linear equations corresponding to differential operator (Igel [10]) is applicable also to those corresponding 
to the integral operators for IBEM. The distortion of calculated waveform can be restored by the third 
order Born approximation except extreme cases like ε=0.5. 
 
 



DISCUSSION AND CONCLUSION  
It is shown by a numerical example that the higher order Born approximation can improve the accuracy of 
the IBEM affected by the elimination of small matrix elements, but it can not work well in the case of an 
extreme elimination, such as ε = 0.5. The case of the best fit (ε=0.1, third order) corresponds to the ratio 
of the distance, within that the contribution of the boundary elements is taken into account, to average size 
of the boundary elements 4.1. Considering the configuration of boundary elements in Fig. 1, this means 
that the contribution of the boundary elements within the distance approximately equal to the wavelength 
at the peak frequency is taken into account for composing A(0). The CPU time consumed and storage 
required are approximately 1 sixteenth of those necessary for the full matrix solution. 
 
The performance of CPU-time consumption has a possibility for further improvement. In the case of a 
huge number of the boundary elements, the time to calculate δA is large, because of the huge size of δA. 
The strategy to reduce the number of cases, i. e., the number of combinations between sources and 
receivers for calculation of Green’s functions would be so-called Fast Multipole Method (Fujiwara [13]). 
The combination, IBEM - the higher order Born approximation - Fast Multipole Method would make the 
calculation of IBEM faster, and should be considered for future work. 
 
The elimination of relatively small boundary elements means the truncation of the interaction between 
boundary elements relatively far each other, in term of wave propagation theory. Typical examples of this 
interaction are the surface waves secondary generated at the irregularity in topographic problems and the 
waves propagating along the buried interfaces in problems of irregularly layered media. The slow 
reduction of discrepancy in the latter phases clearly shown in Fig. 3 (left and center) supports this 
consideration. The distortion of the main phases that correspond to the interaction between the boundary 
elements relatively near each other can be recovered by the higher order Born approximation as well as 
shown in Fig. 3  (left and center), except such extreme case as shown in Fig. 3 (right). This implies that 
the refinement of synthetic seismograms by the higher order Born approximation may work better for the 
problems, in that surface waves and interface waves do not play important role. Possible example may be 
the body waves in relatively high frequency range that propagate through irregular interfaces and distorted 
by the irregularities, e. g., acceleration ground motion observed on irregularly layered sediments, that is 
important in Earthquake Engineering.  
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