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SUMMARY 
 
Dynamic interaction between electrical substation equipment connected by conductor cables is identified 
as a possible cause of damage to such equipment during earthquakes. The conductor cable is typically 
made of helically wrapped aluminum strands. Under bending, the strands tend to slide against each other 
when an imbalanced tension force in the strand exceeds the maximum friction force that can be generated. 
The result is a reduction in the flexural stiffness of the cable and energy dissipation under cyclic loading. 
Thus, the bending moment-curvature-tension behavior of the cable is analogous to the behavior of a rod 
made of an elasto-plastic material. Additionally, under dynamic loading, the cable experiences large dis-
placements and rotations. In this paper, a newly developed finite element model is described, which prop-
erly accounts for the material and geometric nonlinearities of the cable. This model is used to investigate 
the effect of dynamic interaction between pairs of equipment items connected by various cables. It is 
shown that, on account of the interaction effect, the response of an equipment item in the connected con-
figuration can be strongly amplified relative to its response in the stand-alone configuration. Slackness can 
be provided in the cable to reduce the interaction effect. However, amplification may occur in heavy ca-
bles with large slack due to the cable inertia. The results in this study provide guidance in selecting cable 
slackness and in assessing the seismic demand on connected equipment items. 
 

INTRODUCTION 
 
A typical electrical substation consists of a complex set of interconnected equipment items, such as trans-
formers, circuit breakers, surge arresters, capacitor banks, disconnect switches, etc., many of which sup-
port fragile elements such as ceramic bushings. These equipment items are usually connected to each 
other by rigid or flexible conductors. Due to their dissimilar characteristics, significant dynamic interac-
tion between the connected equipment items may occur during seismic disturbances. Post-earthquake field 
investigations have revealed that this kind of interaction is responsible for some of the observed damage 
in electrical substations in past earthquakes (Benuska [1], Hall [2], Schiff [3]). 
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This paper investigates the effect of interaction in equipment items connected by flexible conductors, 
commonly known as conductor cables. The conductor cable is typically made of multiple layers of heli-
cally wrapped aluminum strands with alternating lay angles, as shown in Figure 1. Under tension, friction 
forces develop between the strands. As the cable is bent, an imbalanced tension force develops in each 
strand segment, which tends to slide the strand relative to its neighboring strands. Sliding occurs when the 
imbalanced tension force exceeds the maximum friction force that can be generated. As a result of this 
phenomenon, the conductor cable has a nonlinear flexural behavior: Under a constant tension force, the 
flexural stiffness decreases as the cable curvature increases and more strands slide. Upon reversal of bend-
ing, the strands stop sliding and the initial flexural stiffness is regained. Thus, an elasto-plastic behavior in 
bending under constant tension is observed. For a typical conductor cable, the flexural stiffness varies be-
tween two extreme values, which can be different by as much as two orders of magnitude. In the first sec-
tion in this paper, we briefly describe a micro-scale flexural model of the helically wrapped conductor ca-
ble that has been developed in Hong [4] and Hong [5]. The model considers the state of each individual 
strand in the cable as a function of the cable curvature and average axial strain. 
  
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Typical helically wrapped conductor cable 
 
Under dynamic load, the conductor cable connecting two equipment items experiences large deforma-
tions. Therefore, in order to investigate the effect of interaction between two cable-connected equipment 
items, one needs to properly model the nonlinear flexural behavior of the cable cross section described 
above, as well as the nonlinear geometrical effects resulting from the large deformations of the cable. For 
this purpose, we have fitted a macro-scale flexural model to the micro-scale model of the cable and im-
plemented the element in the finite element code FEAP (Taylor [6]) for large-deformation dynamic analy-
sis. This model is briefly described in the second section below. The finite element model is then used to 
investigate the effect of interaction between electrical substation equipment with varying characteristics.  
 
In a previous study (Hong [7]), we investigated the effect of interaction between cable-connected equip-
ment items, where the effect of strand slippage was approximately considered by using a reduced flexural 
stiffness, which remained constant in time and along the cable. The present study aims at refining this 
analysis by using the elasto-plastic bending model of the cable, which properly accounts for the slippage 
of strands in the cable. Specifically, the flexural stiffness of the cable is allowed to vary along the cable 
and in time, depending on the curvature and tension force at each cross section of the cable and the history 
of loading. The effect of energy dissipation due to slippage of strands is investigated by comparing the 
response predictions based on the fully-slipped elastic and elasto-plastic models. The results show that, as 
a result of the dynamic interaction as well as cable inertia, the response of a connected equipment item can 
be strongly amplified in relation to its stand-alone response, particularly when the conductor cable has 
small slackness and large mass. These results confirm and extend our earlier findings in Hong [7].  
 

Core 

First layer 
 
Second layer 
 
Third (penultimate) layer 
 
Fourth (outermost) layer 
 
 
Lay angle 

 



FLEXURAL BEHAVIOR OF THE CONDUCTOR CABLE 
  
As shown in Figure 1, the conductor cable is made of a core and multiple layers of aluminum strand with 
alternating lay angles. Table 1 lists the main characteristics of two conductor cables commonly used in the 
power industry. Imax in this table refers to the moment of inertia of the cable cross section as a single solid, 
whereas Imin refers to the sum of the moments of inertia of the individual strands. As described below, the 
effective moment of inertia of a conductor cable under dynamic loading varies between these two extreme 
values. We use these cables in example connected systems later in this paper. 
 

Table 1.  Properties of selected conductor cables 

Property Valerian Trillium 

Young’s modulus, N/m2  
number of layers except core 
number of strands  
strand diameter, mm  
overall conductor diameter, mm 
cross section area, mm2  
mass per unit length, kg/m  
lay angle, degree 
Imax, mm4 

Imin, mm4 

70×109 

2 
19 

2.913 
14.57 
119 

0.323 
12 

1,496 
66 

70×109 

6 
127 

3.904 
50.75 
1,423 
3.859 

12 
227,305 
1,417 

 
Consider a differential segment of the cable under axial tension Tc and bending moment Mc, and a typical 
strand in the outermost layer of lay angle α , as shown in Figure 2. Due to the difference dy  in the verti-
cal distance from the centroidal axis of the cross section to the two ends of the strand, the bending stresses 
at the two ends of the strand element are slightly different. As a result, the resultant tensile forces acting at 
the two ends of the strand element are different by the amount dt. This “imbalanced” tension force tends 
to slide the strand in the direction of increasing tension. On the other hand, the tensile force in the 
wrapped strand induces a normal force dN on the strand element and a resulting friction force dF = µdN, 
as shown in the right side of Figure 2, where µ  is the friction coefficient. If dF = dt, the strand remains in 
a stick state;  if dF ≤ dt, the strand slides and a redistribution of forces occurs until equilibrium is reached. 
The situation is similar for strands in the inner layers, except that normal and friction forces act on both 
inner and outer surfaces of the inner strands. 
  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Forces acting on a differential element of the cable and strand 
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In Hong [4] and Hong [5], a detailed model of the helically wrapped cable is developed considering all the 
stick and slip states of the strands. Account is made of differing lay angles and strand diameters in differ-
ent layers. A full description of this model is beyond the scope of this paper. Instead, we provide a brief 
description of the general characteristics of the flexural behavior of the cable as predicted by this model. 
These predicted characteristics are consistent with experimental observations by, e.g., Raoof [8]. 
 
Initially, when the cable is in its straight configuration under tension, all the strands are in the stick state 
and the flexural stiffness of the cable is equal to the elastic modulus of the material times the moment of 
inertia of the cross section when it is considered as a single solid section. We denote this moment of iner-
tia as Imax. As the bending moment is applied and increased, strands start to slip as soon as the imbalanced 
force in a strand exceeds the maximum friction force that can be generated. It is found that slippage first 
occurs in the outermost layer in the strands located near the centroidal axis (slightly on the compression 
side of the bending) of the cable, where the differential vertical distance dy is largest. As the bending mo-
ment increases, slippage propagates to other strands in the tangential and radial directions on both sides of 
the cable. The slippage propagates radially inward because inner layers have larger normal and friction 
forces than the outer layers and, therefore, tend to slip under larger curvatures. Figure 3 shows the con-
figuration of strands in a partially slipped state of the cable. As the bending moment increases, more 
strands slip and the effective flexural stiffness of the cross section decreases. For large curvatures, effec-
tively all strands are sliding. In this case the flexural stiffness is slightly greater than the sum of the flex-
ural stiffnesses of the individual strands, denoted Imin in Table 1, because of the contribution of the fric-
tional forces. We note that the ratio Imax/Imin can be larger than 100. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Strands in a conductor cable in stick (un-shaded) and slip (shaded) states 
 
Figure 4 shows the bending moment-curvature relations for Valerian and Trillium conductor cables for 
different average axial strain values of the cable. These are computed by the micro-model in Hong [4] 
with the friction coefficient 3.0µ = . Figure 5 shows plots of the flexural stiffnesses as functions of the 
cable curvature for constant values of the average cable axial strain. It is seen that the bending behavior of 
the cable under tension is analogous to that of an elasto-plastic material. The initial stiffness is that of the 
fully stuck cable, whereas the post-yielding stiffness is that of the fully slipped cable. As mentioned ear-
lier, upon unloading at any point, the flexural stiffness reverts back to the fully stuck value. This is be-
cause the direction of impending motion then opposes the imbalanced force.       
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Figure 4. Bending moment-curvature relations for Valerian (left) and Trillium (right)  

conductor cables for varying average axial strain in the cable 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5. Flexural stiffness of Valerian (left) and Trillium (right) conductor cables  
for varying cable curvature and average axial strain 

 
 

FINITE ELEMENT MODEL FOR CABLE DYNAMICS    
 
To construct a finite element model of the cable, consideration should be given not only to the nonlinear 
bending moment-curvature-tension relation, but also to geometrical nonlinearities arising from large de-
formations of the cable under dynamic loading.  Because of its relatively small flexural stiffness, the cable 
experiences both large displacements and rotations. To address these nonlinear geometrical effects, it is 
convenient to utilize the general theory of elastic rods developed by Cosserat [9]. Simo [10] and Simo [11] 
have developed a finite element formulation based on this theory, but only for elastic rods. To deal with 
the nonlinear dissipative moment-curvature-tension relation, we model the cable as if it were a solid rod 
made of an elastic-plastic material, whose hysteretic behavior replicates that of the cable caused by the 
slippage of strands. The formulation by Simo and Vu-Quoc is extended to develop a finite element model 
that accounts for both the nonlinear moment-curvature-tension relation and the geometrical nonlinearity of 
the cable. The extended formulation is implemented in the finite element code FEAP (Taylor [6]), which 
is used for the analysis reported in this paper. For time-integration, the HHT algorithm by Hilber [12] is 
used.   
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In this study, we only consider the case where the motion of the cable is restricted to a fixed vertical plane. 
The geometrically exact rod theory that models this 2-dimensional problem of the cable and the elasto-
plastic constitutive law that mimics the nonlinear dissipative behavior of the cable are described in Hong 
[4]. The interested reader is referred to this publication for details on these developments. 
 

CABLE-CONNECTED EQUIPMENT SYSTEM 
 
To investigate the effect of dynamic interaction, we consider two equipment items idealized as single-
degree-of-freedom (SDOF) oscillators and connected by a conductor cable, as shown in Figure 6. Multi-
degree-of-freedom equipment items are idealized as SDOF oscillators by employing an appropriate dis-
placement shape, as described in Der Kiureghian [13]. Thus, each equipment item is characterized by its 
effective mass mi, natural frequency ωi, and damping ratio ζi, .2,1=i  Given these parameters, the effec-
tive stiffness of each equipment is obtained as 2

iii mk ω= . Let u1(t) and u2(t) denote the displacement re-
sponses of the two equipment items at their respective attachment points, as shown in Figure 6. The con-
necting cable is characterized by its compositional properties, i.e., the number of layers, the number of 
strands, the lay angles, strand and core diameters, the coefficient of friction between strands, the elastic 
modulus of the material, the weight w per unit length, and its geometric properties, i.e., the initial arc 
length s0, the initial span L0, and the vertical offset H. The last three parameters are defined in the static 
equilibrium position of the system. In this position, the cable is stressed under its own weight. Therefore, 
s0 is slightly longer than the un-stretched length of the cable, and L0 is slightly smaller than the distance 
between the equipment items when they are not connected. The initial chord length is given by 

.)( 2/122
00 HLc +=  The connected system is subjected to the horizontal base motion xg(t) in the plane of the 

cable.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6.  Model of cable-connected equipment items 
 
To quantify the effect of interaction, we define the response ratio, which was initially introduced in Der 
Kiureghian [13]. This is the ratio of the maximum displacement response of an equipment item in the 
connected system to its maximum response in the stand-alone configuration. Thus, denoting the response 
of the i-th equipment in its stand-alone configuration as ),(0 tui  the response ratio is  
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The response ratio provides a dimensionless measure of the interaction effect. A value greater than unity 
for the response ratio indicates that, on account of the interaction effect in the connected system, the re-
sponse of the corresponding equipment is amplified relative to its response in the stand-alone configura-
tion; also, a value smaller than unity for the response ratio indicates that the response of the corresponding 
equipment is deamplified relative to its response in the stand-alone configuration. It is noted that the in-
ternal forces in an equipment item, which is modeled as a single-degree-of-freedom system, are directly 
proportional to the displacement response. Hence, for the assumed model, the above ratios are equally ap-
plicable to force responses in the two equipment items. Since equipment items are typically qualified in 
their stand-alone configurations, the response ratio provides the kind of information that an engineer 
needs in order to determine whether the equipment item can withstand the amplified seismic demand in 
the connected system. 
 
While the response ratio provides a good measure of the interaction effect, it involves response quantities 
that require nonlinear dynamic analysis. For design purposes, it is important to identify simple predictive 
measures of the interaction effect. A quantity that strongly influences the degree of interaction between 
the cable-connected equipment items is the maximum distance that the two stand-alone equipment items 
move away from one another, when subjected to the same ground motion. This quantity is given by  
 

[ ])()(max 1020 tutu −=∆                                                          (2) 

 
Obviously, the larger ∆ is, the larger the interaction effect is likely to be. Another important measure is the 
amount of slack in the cable. This is measured in terms of the reserve cable length in excess of the chord 
length, i.e., s0 − c0. Now suppose one end of the cable is moved horizontally by the amount ∆, as shown in 
Figure 7. In this figure, the solid line indicates the initial position of the cable and the dashed line indi-
cates the displaced position, with s denoting the current cable length. For ∆ much smaller than the initial 
chord length, c0, the chord length will increase approximately by the amount ∆L0 / c0. One can regard this 
quantity as a measure of the seismic demand on the reserve cable length, s0 − c0, which can be regarded as 
the corresponding capacity. Obviously, if ∆L0 / c0 is small in relation to s0 − c0, then there will be little in-
teraction between the two equipment items. Conversely, if ∆L0 / c0 is of the same magnitude or greater 
than s0 − c0, one can expect significant interaction. It follows that the dimensionless parameter can 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 7.  Change in slackness due to relative displacement ∆ 
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serve as a predictive measure of the interaction effect, and we call it the interaction parameter. Other than 
∆, the parameters in the above expression are readily available from the geometry of the cable. Since ∆ is 
defined for the stand-alone equipment items, which by definition are linear and have single degrees of 
freedom, its determination requires relatively simple analysis. In particular, as shown in Der Kiureghian 
[13], ∆ can be conveniently computed by the response spectrum method. 
 
In our earlier study (Der Kiureghian [13]), using a catenary model for the cable, we argued that there will 
be little interaction between the two equipment items if β is smaller than about 1. On that basis, and to 
account for a degree of conservatism, we provisionally recommended selecting the cable slackness such 
that β is no greater than 1.  However, the catenary model did not account for the mechanical behavior of 
the cable, nor for the effect of the cable inertia. Our next study (Der Kiureghian [14], Hong [7]), where we 
used an elastic rod element for the cable, showed that there could be significant interaction for β values 
smaller than unity due to the effect of the cable inertia. Based on this study, we recommended selecting 
the cable slackness such that β is no greater than 1 and designing the equipment items for forces 50% 
higher than the forces obtained for the stand-alone configuration. In any case, the interaction parameter β 
remains a good predictor of the interaction effect. In this study, we continue to use this parameter in for-
mulating a predictive model for the response ratio. 
 

NUMERICAL INVESTIGATION OF INTERACTION EFFECT 
 
In this section, we investigate the effect of interaction by performing nonlinear time-history analyses of 
example cable-connected equipment systems subjected to selected ground motions. The systems are ana-
lyzed by both elastic and elasto-plastic finite-element models of the cable. For the elastic analysis, minI  is 
used as the effective moment of inertia of the cable, i.e., the cable is assumed to be in a fully slipped state 
with zero friction at all times and all cross sections. For the elasto-plastic analysis, the hysteretic model 
described earlier is used. In both cases, geometric nonlinearities resulting from large displacements and 
rotations are accounted for. The comparison between the results from the fully-slipped elastic and elasto-
plastic models reveals the influence of the variation in the flexural stiffness of the cable (in time and along 
the cable) in the elasto-plastic model, as well as the dissipation of energy resulting from the slippage of 
strands. Next, we carry out parametric studies to better understand the relation between the response ratios 
and the interaction parameter β  for different ground motions and conductor cables. 
 
First consider two equipment items connected by the Valerian cable having an initial span L0 = 5m (under 
static equilibrium conditions), the vertical separation H = 0, and the initial length s0 = 5.10m. The initial 
slackness of this cable is (s0−L0)/L0 = 0.02. This is a rather taut cable and represents perhaps an extreme 
case for connected electrical equipment. We select it to highlight the effect of interaction and the highly 
nonlinear nature of the response. Among the conductor cables used in practice, the Valerian is one of the 
most flexible having only two layers of strands and the smallest cross-sectional area and moment of inertia 
(see Table 1). Furthermore, for this cable the ratio of the maximum to minimum moment of inertia is 
Imax/Imin = 22.7, which is quite small. The equipment items, modeled as single-degree-of-freedom oscilla-
tors, are assumed to have the effective masses m1 = 1000 kg and m2 = 500 kg, natural frequencies ω1 = 2π 
rad/s and ω2 = 10π rad/s, and damping ratios ζ1 = ζ2 = 0.02. 
 
We first examine the response of the cable-connected system to the N-S component of the Newhall record 
of the 1994 Northridge earthquake, which is one of the motions shown in Figure 8. For this record, Figure 
9 shows the stand-alone responses, u10(t) and u20(t), of the two equipment items calculated by the HHT 
algorithm. The calculated maximum stand-alone displacements are max|u10(t)| = 0.3358m and  max|u20(t)| 



= 0.0159m, respectively, and the maximum relative separation between the two stand-alone equipment 
items is ∆ = max|u20(t)−u10(t)| = 0.3163m, yielding the interaction parameter value 16.3=β . The two 
stand-alone responses are significantly different because of the large difference between the equipment 
frequencies (1Hz and 5Hz, respectively). These time histories tend to have nearly symmetric peaks relative 
to the equilibrium positions with nearly zero averages over time. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.  Selected ground motions 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 9.  Stand-alone responses of equipment 1 (left) and equipment 2 (right) 
 
Figure 10 shows the displacement time histories u1(t) and u2(t) of the two equipment items in the con-
nected system for the fully-slipped elastic (gray lines) and the elasto-plastic (black lines) finite element 
models of the Valerian cable. The results of the analyses based on the two models are nearly identical for 
the lower frequency equipment item (equipment 1), as seen in the left plot in Figure 10. The results for the 
higher frequency equipment item (right plot in Figure 10) are also similar for the most part, with slightly 
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smaller peak values for the elasto-plastic case. These results imply that the moment of inertia in the elasto-
plastic model remains close to its lower bound at most locations and times. Furthermore, the effect of en-
ergy dissipation due to the slippage of strands is insignificant. Recalling that the ratio of moment of iner-
tias Imax/Imin = 22.7 is relatively small for this cable, these findings are not surprising. As we will shortly 
see, a different result is obtained for heavier conductor cables. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 10.  Displacement responses of equipment 1 (left) and equipment 2 (right)  
connected by the Valerian cable 

 
It is noted in Figure 10 that the displacement responses exhibit skewed peaks relative to the equilibrium 
positions, with non-zero averages over time and larger displacement peaks accruing towards the side that 
slackens the cable. This is a clear indication of interaction between the two equipment items. Comparing 
Figures 9 and 10, we observe a decrease in the peak response of equipment 1 (the lower frequency equip-
ment item) in the connected system (Figure 10 left) relative to its stand-alone response (Figure 9 left), and 
a large increase in the peak response of equipment 2 (the higher frequency equipment item) in the con-
nected system (Figure 10 right) relative to its stand-alone response (Figure 9 right). The response ratios for 
the two equipment items, based on the elasto-plastic analyses, are R1 = 0.703 and R2 = 3.71, respectively. 
It is clear that the dynamic interaction adversely affects the higher frequency equipment item. Similar ob-
servations were reported in our previous studies (Der Kiureghian [13]-[14], Hong [7]), where we used the 
catenary formulation or the elastic finite element model of the cable. As described below, it is possible 
that the lower frequency equipment item also experience amplification of its response due to the cable 
inertia. 
 
The above analysis is now repeated with the Trillium cable connecting the two equipment items. The Tril-
lium is one of the heaviest of conductor cables used in practice. As shown in Table 1, it has six layers of 
strands and the ratio of the maximum to minimum moments of inertia is Imax/Imin = 160. In view of these 
properties, the plastic energy dissipation of the Trillium cable is expected to be much larger than that of 
the Valerian cable. 
 
Figure 11 shows the displacement responses u1(t) and u2(t) of the equipment items in the connected sys-
tem for the fully-slipped elastic (gray lines) and elasto-plastic (black lines) finite element models of the 
cable. The two predicted responses now are significantly different. In particular, the peaks in the response 
time history of the lower frequency equipment item are much smaller for the elasto-plastic predictions, 
though the extreme peaks are nearly identical. Furthermore, the high frequency content in the response of 
the higher frequency equipment item has disappeared in the elasto-plastic prediction. These changes can 
be attributed to the significant energy dissipation that occurs in this cable due to slippage between the 
strands. Note that the maximum moment of inertia of the Trillium cable is 152 times larger than that of the 
Valerian cable as shown in Table 1 and, therefore, the yielding moment of the Trillium cable is much lar-
ger than that of the Valerian cable. This indicates larger energy dissipation capacity of the Trillium cable 
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relative to the Valerian cable. The energy dissipation is at least partly responsible for reducing the re-
sponse peaks and for damping out the higher-frequency components in the response of equipment 2. The 
response ratios for the two equipment items, based on the elasto-plastic analysis, are R1 = 0.466 and R2 = 
3.65. Interestingly, these ratios are not very different from the values observed for the more flexible Vale-
rian cable. 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 11.  Displacement responses of equipment 1 (left) and equipment 2 (right)  
connected by the Trillium cable 

 
To better understand the effect of interaction between the connected equipment items, we compute and 
plot the response ratios R1 and R2 for the above systems for the five ground motions shown in Figure 8, 
while varying the interaction parameter β defined in (3). Since the vertical separation between the support 
points is zero, we have c0 = L0 and the interaction parameter for this case simplifies to β = ∆/(s0−L0). All 
system parameters are kept constant, with the exception of the initial cable length 0s , which is varied to 

cover the range β = 0.1 to β = 2 of the interaction parameter. 
 
Figure 12 shows the response ratios R1 and R2 of the two equipment items as functions of the interaction 
parameter β for the system connected by the Valerian cable with the fully-slipped elastic (left) and elasto-
plastic (right) models of the cable. The response ratios based on the two models are nearly identical for all 
values of β. This is due to the high flexibility of the Valerian cable and provides further evidence that the 
effect of plastic behavior in this cable is practically insignificant. It is observed in this figure that there is 
virtually no amplification of either equipment response for β < 1. Based on this finding, in our previous 
study (Hong [7], Der Kiureghian [14]), we recommended a cable length corresponding to β < 1 to avoid 
an adverse interaction effect. This finding remains valid for the Valerian cable. 
 
Figure 13 shows the response ratios R1 and R2 of the two equipment items as functions of the interaction 
parameter β for the system connected by the Trillium cable with the fully-slipped elastic (left) and elasto-
plastic (right) models of the cable. The response ratios based on the two models are now entirely different, 
with the elasto-plastic model showing larger responses for both equipment items in the connected system, 
including for cases with β < 1. Recall that the elastic model uses the minimum moment of inertia, Imin, 
whereas the elasto-plastic model employs a varying moment of inertia with values ranging from Imin to 
Imax. It is clear that the larger effective flexural stiffness associated with the elasto-plastic model induces 
more interaction between the two equipment items. Another factor contributing to the larger response for 
small values of β is the mass inertia of the cable itself, which can be quite significant for the Trillium ca-
ble  when it has a large slack.  Resonance-type behavior in the  cable  is also possibly  causing  
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Figure 12.  Response ratios for equipment items connected by Valerian cable  
based on fully-slipped elastic (left) and elasto-plastic (right) models of the cable 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13.  Response ratios for equipment items connected by Trillium cable  
based on fully-slipped elastic (left) and elasto-plastic (right) models of the cable 
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some of the peaks in the R1 and R2 plots for this cable. Most importantly, it is clear from this finding that 
our previous provisional recommendation of determining the cable slackness based on β = 1 does not 
guarantee that there will not be an amplification of the response in the connected system relative to the 
stand-alone response for either equipment. It appears that for heavy conductor cables similar to the Tril-
lium, an amplification of both equipment responses by as much as a factor of 2 or larger can be expected 
for β < 1. 
 
It is clear from the above analyses that the interaction effect in cable-connected equipment items subjected 
to earthquake ground motions is a highly complex phenomenon. This effect depends not only on the 
equipment and cable characteristics, and this in a rather chaotic fashion, but also on the details of the 
ground motion. It has been shown (Der Kiureghian [15]) that for a linear connected system, the response 
ratios are entirely independent of the scaling (intensity) of the ground motion. For a nonlinear system, 
such as the one under investigation, this generally is not the case. Nevertheless, this observation suggests 
that the large variability observed in the response ratios in Figures 12 and 13 over the selected ground mo-
tions cannot all be attributed to the varying intensities of these motions (Figure 8). It appears that the in-
teraction effect in the cable-connected system is highly sensitive to the details of the ground motion, such 
as the frequency content, the evolution of intensity in time, the existence of acceleration or velocity pulses, 
or other such characteristics. In a design situation, it is impossible to correctly predict such detailed char-
acteristics of future earthquakes. Therefore, there is need to develop a method to predict the interaction 
effect in the cable-connected system, which does not require a detailed specification of the ground motion, 
but which also accounts for the inevitable variability in the future ground motions. In Hong [4], such a 
method is developed by use of statistical modeling techniques and simulations generated by the finite 
element dynamic analysis model described in this paper. Without providing the details, we present here 
the preliminary form of this predictive model: 
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In the above expression, R is the response ratio for an equipment item having an effective mass mself and 
natural frequency ωself, which is cable-connected to another equipment of effective mass mother and natural 
frequency ωother. H and L define the geometry of the cable as described in Figure 6, whereas β is the inter-
action parameter defined in (3). Note that the specification of the ground motion enters this formula 
through the parameter ∆, which is implicit in β. Finally, ε is a standard normal random variable (zero 
mean and unit standard deviation), which accounts for the variability in the response ratio arising from the 
stochastic nature of the ground motion as well as the chaotic nature of the response of the cable-connected 
equipment system. For given values of the system and ground motion parameters, this equation can be 
used to obtain a probability distribution for the response ratio, which can then be used to investigate the 
safety of the equipment item, or make design provisions. More details about this statistical model will be 
presented in a future publication.  
 

SUMMARY AND CONCLUSIONS 
 
The effect of interaction between electrical substation equipment connected by conductor cables is inves-
tigated. The conductor cable is made of helically wrapped strands and exhibits complex mechanical be-
havior due to slippage of the strands under friction. A recently developed model to describe the hysteretic 
flexural behavior of the conductor cable is briefly outlined. This model is implemented in a finite element 
formulation that accounts not only for the hysteretic behavior of the cable, but also for its large displace-
ments and rotations under dynamic loading. The finite element model is used to predict the response of 
example cable-connected systems under selected ground motions. It is found that the equipment response 



in the connected system can be much larger (by factors as large as 6) relative to the corresponding re-
sponse in the stand-alone configuration of the equipment. This finding has a serious implication for elec-
trical substation equipment, which are usually qualified only in their stand-alone configuration neglecting 
interaction effects.  
 
To reduce the interaction effect, one can increase the cable slackness. However, for heavy cables, this 
leads to increased influence from the mass inertia of the cable, as a result of which the equipment re-
sponse may also be adversely affected. A preliminary statistical predictive model is suggested, which at-
tempts to provide a probability distribution for the response amplification, accounting for the stochastic 
nature of the ground motion and the chaotic nature of the cable response. This formula may be used to 
predict the adverse interaction effect, so that adequate design provisions can be made.     
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