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SUMMARY 
 
In this paper, a technique of analyzing the vibration problem of reinforced concrete beam members 
including bond-slip of the reinforcements is proposed. A displacement field is introduced to formulate the 
vibration problem of reinforced concrete beam members including bond-slip of reinforcement, consisting 
of 2+m independent variables corresponding to the longitudinal and vertical displacements u  and w , as 
well as, the bond-slip displacements 1S , 2S , … , mS  for the “ m ” steel layers. 
The paper derives a finite element formulation of the problem and concludes with numerical examples 
with selected bond moduli and damping resulting from bond-slip, to examine the effects of bond-slip on 
the bending vibration of reinforced concrete beams. 
 

INTRODUCTION 
 
Reinforced concrete  (RC) members require good bond between the concrete and reinforcement in order 
to function as hybrid elements. In general, the assumption of perfectly bonded behavior is reasonable only 
for the elastic response of RC members. The bond-slip phenomenon becomes important for RC members 
after cracks form, or for RC members with unbonded tendons. 
Recently, there has been increased interest in structural framing systems which make use of concrete 
members post-tensioned with unbonded tendons, for example PRESSS [1]. One of the authors has 
conducted research on the analytical methods for concrete beams [2][5][7][8] and concrete slabs 
[3][4][6][9] taking into account the bond-slip of reinforcement including material non-linearity and 
geometrical nonlinearities. This research has been based on only statics. To date, there has been little 
research considering the vibration analysis of RC members with bond-slip of reinforcement. 
This paper deals with the free-vibration analysis and sinusoidal dynamic analysis of reinforced concrete 
beam members considering the bond-slip of reinforcement. 
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FORMULATION FOR RC BEAM MEMBER INCLUDING BOND-SLIP OF 
REINFORCEMENT 

 
Fundamental assumptions for analysis 
The following fundamental assumptions were made for the present analysis: 

(1) The proposed analytical method is based on small displacement theory, with the additional 
assumption that bending and axial forces dominate the deformation of the beam members. Here, 
transverse shear deformations are not taken account. 

(2) Concrete is assumed to behave elastically with cross sections remaining plane when deformed. 
(3) Reinforcement is assumed to be elastic bar members carrying only axial load. The reinforcement 

is arranged in m -layers in the concrete cross section along the span direction. 
(4) Bond-slip occurs along the curve of the reinforcement, between the concrete and each 

reinforcement layer. The relationship between bond stress and slip displacement is assumed 
linear. 

 
Displacement fields 
Displacement fields we must establish are axis displacement u  in the axial direction, bending 
displacement w  in the vertical direction perpendicular to the axis, and bond-slip displacements Si (i=1, … 
, m ), for a total of 2+ m  independent variables. 

 
 
 
 
 
 
 
 
 
 

 
 
Displacement, acceleration, strain, and stress in concrete and reinforcement 
Concrete 
With reference to the coordinate system in Fig. 1, the displacement cu and acceleration cu&&  in concrete are 

given by, 
 

 
 
Strain and stress at the point are given by, 
 

        
 
where z  is height from center of RC beam section, and cE  is the Young’s modulus of concrete. 

 
Reinforcement 
The displacement Siu and acceleration Siu&&  of an arbitrary i th-layer of reinforcement are given by,  
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Fig. 1 Coordinate System and Symbols of Element 

(1) 

(2)



 
 
Strain and stress at the point are 
 

       
 
where Siz  is height of i -layer of reinforcement from center of RC beam section, and SiE is the Young’s 

modulus of the i th-layer of reinforcement. 
 
Sectional force  
The axial force, N , and bending moment, M , at the section level of a RC beam, taking the bond slip of 
reinforcement into account are given by,  
 

 
 

 
 
The shear force Q  is then given by differentiating the bending moment M  with respect to x   
 

 
 
where 0A is the sectional area of RC beam, SiA  is the sectional area of the i th-layer of reinforcement, and 

SiA * is the converted sectional area taking into account the difference in the Young’s modulus of concrete 

and reinforcement, and 0I  is the geometric moment of inertia for plain concrete. 

 
Principal of virtual work 
The principal of virtual work can be written   
 

                                                                                          
 
where δ U  is the variation in strain energy, δ T  is the variation in kinetic energy, δ D  is the variation 
in damping energy and δ W  is the virtual work of the external force. 
 
Kinetic energy 
The kinetic energy of the model beam (with span L ) is  
 

                                                                                            
 
where cxT and stxT  are kinetic energies in the axis direction of the RC beam and czT  and stzT  are kinetic 

energies in the vertical direction. 
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The variationals of each kinetic energy cxTδ , stxTδ , czTδ , stzTδ are given by 

 

 
 

 
 

 
 

 
 
Substituting (1) and (4) into (10),  (11),  (12),  (13) and in turn into (9) gives 
 

 
 
Strain energy 
The strain energy of the beam model (with span L ) is  
 

 
 
where cU and stU  are the strain energies in the concrete and reinforcement, respectively, and bsU  is the 

energy of the bond-slip in the concrete and reinforcement. 
The variationals of each kinetic energy cU , stU  and bsU are given by 

 

 
 

 
 

 
 
where biK is the bond modulus of i th-layer of reinforcement, bsiA is the bond surface area per unit length 

of the i th-layer of  reinforcement and biτ  is the bond stress of the i th-layer of reinforcement given by 

ibibi SK=τ . 

Substituting (1), (2), (3)and (4) into (16), (17), (18) and in turn into (15) gives 
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Damping  
In the response analysis presented here, we consider both modal damping, δ modD , and damping 

produced by the bond-slip of the reinforcement, δ modD . The modal damping matrix can be obtained 

from the eigenvalues, eigenvectors and damping ratios for each of the modes considered. The damping 
energy of bond-slip δ bD  is given by 

 

 
 
where bsiC  is the coefficient of viscous damping associated with the bond-slip of the i th-layer of 

reinforcement. 
Therefore, δ D  in the Eq. (8) is given by 
 

 
 
Virtural work of external load 
The virtual work of external loading δ W  is different for each load condition. For the case where the 
external loads consist of axial load, uP , vertical uniformly distributed load, zq , and tension load in the 

i th-layer of reinforcement, SiP , the virtual work of the external loads is given by 

 

 
 

EQUATIONS FOR FINITE ELEMENT METHOD 
 
Displacement functions and their derivatives 
The reinforced concrete beam elements proposed in this paper are shown in Fig. 2. 
The displacement functions associated with each generalized displacement are 
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where { uα }, { wα } and { Siα } are the generalized displacements of u∆ , w∆  and iS∆  ( i =1, … , m .), 

respectively.  
Thus, the derivative functions of these displacements needed in the subsequent formulation are 
 

 
 
where { u∆ }, { w∆ } and { iS∆ } are the nodal displacement vectors for u∆ , w∆  and iS∆ , respectively; 

[
1−

uC ], [
1−

wC ] and [
1−

SiC ] are the inverse matrices of the modal damping matrix [ C ] for u∆ , w∆  and 

iS∆  ( i =1, … , m .), respectively. 

The nodal acceleration vectors { }u&&∆ , { }w&&∆  and { }iS&&∆ , and the nodal velocity vectors { }u&∆ , { }w&∆  and 

{ }iS&∆  are obtained in the same manner. 

 
Finite element equation for vibration analysis 
Substituting Eqs. (24)-(30) into Eq. (8), we get the following the dynamic equilibrium equation 
formulated in terms of the generalized finite element coordinate system for vibration analysis of reinforced 
concrete beams: 
 

 
 
where { S∆ } is the slip displacement vector of the nodes with respect to all m  reinforcement layers; and 
{ uP ( t )}, { wP ( t )} and { SP ( t )} are the load vectors corresponding to the displacement vectors { u∆ }, 

{ w∆ } and { S∆ }, respectively. 
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Fig. 2 Concrete Beam Element 
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 EXAMPLE OF NUMERICAL CALCULATION 
 
Analytical model 
The example presented in this section considers the elastic free vibration and sinusoidal dynamic analysis 
of the model shown in Fig. 3.  For sinusoidal dynamic analysis, nodes are established in the cross-section 
as shown in Fig.4 in order to reduce computational effort, For free vibration analysis, however, the 
concrete element is divided into halves. This model is a pre-cast RC beam connected by tendons to 
column stubs through joints made of epoxy resin adhesives. In the analyses, we assume tendons are fixed 
at the ends of the model (Nodes 1 and 11) and that the concrete in the column stubs is rigid. Table 1 
shows the material properties assumed for the concrete, tendon and adhesive. 
 

 
 
 
 
 
 
 
 
 
Free vibration analysis 
The eigenvalue analysis of the model is performed using Jacobi’s method. As is standard practice, 
damping is neglected in the eigenvalue analyses. The parameter of interest in the analysis is the bond 
modulus Kb of the tendons. We analyze the case of unbonded tendons and the case corresponded to 
grouted tendons, for which the bond moduli are assumed to be 1.0*106 N/m3 and 1.0*1011 N/m3, 
respectively. Figs. 5 and 6 show the axial deformation mode, the vertical deformation mode and the bond-
slip modes for the first six natural modes of vibration. In these figures, the mode shapes have been 
normalized to a maximum value of 1.0.  
Fig. 5 shows the results of eigenvalue analysis for the model with unbonded tendons. In the 1st, 2nd and 
4th modes, vertical deformation predominates and it is seen that bond-slips occur in all cases. In the 3rd 
mode, axial deformation predominates and bond-slips occur almost equally in directions opposite to that 
of the axial deformation. In the 5th mode, bond-slip at the top and bottom occurs in the opposite direction, 
whereas, in the 6th mode, bond-slip at the top and bottom occur in the same direction. The natural 
frequencies of 5th mode and 6th mode are nearly identical. 
Fig. 6 shows the results of eigenvalue analysis of the model with grouted tendons. In this case, vertical 
deformation predominates in the 1st, 2nd, 4th and 5th modes, and axial deformation predominates in the 
3rd and 6th modes. Although bond-slip occurs at the edges of beam, it is very small in all of the modes 
considered.  

 

Fig. 4 Section of Analytical Model 
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 Concrete Tendon Adhesive 
Density (kg/m3) 2.3*103 7.85*103 1.25*103 
Young’s Modulus (N/m2) 2.1*1010 2.1*1011 1.0*109 

     

Table 1 Material Properties of Analytical Model 



If the natural frequencies of the two cases are compared for the first four modes (modes with similar 
shapes), the natural frequencies of the model with grouted tendons are about 4%-6% higher than those of 
the model with unbonded tendons, depending on the different values of bond modulus. 
 

 
 
Sinusoidal dynamic response analysis 
In the sinusoidal dynamic response analysis, a concentrated sinusoidal load is applied at the center of the 
model. The amplitude of the load is 10KN with input periods of 0.025s, 0.05s, 0.1s and 0.2s. For the 
analysis presented here, only the first 10 cycles of loading are considered. Fig.7 shows the input load in 
for the case where the input period is 0.025s. 
The parameters of interest in the analysis are the bond moduli and whether or not viscous damping 
corresponding to bond slip of tendons is included. The bond moduli are assumed to be the same as those 
in the free vibration analysis (1.0*106 N/m3 and 1.0*1011 N/m3). For all models the modal damping is 
assumed to be 3%. For the unbonded model case we also include the added viscous damping 
corresponding to bond slip of tendons. Table 2 shows the model for sinusoidal dynamic response analysis. 
For Model UD, the coefficient of viscous damping corresponding to bond slip for unit area of bond 
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Fig. 5 Natural vibration mode  (Kb=1.0*106N/m3) 
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Fig. 6 Natural vibration mode  (Kb=1.0*1011N/m3) 
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surface of tendon is assumed to be 1.5*107N*s/m/m2. This value is reported by Suzuki et al. [10] who 
conducted experiments on unbonded tendons which used an asphalt polymer as the tendon covering 
material.  
In the sinusoidal dynamic response analysis, we adopt the Runge - Kutta method to solve the system of 
coupled differential equations given by Eq. (31). 

 
 
Fig.8 shows the vertical displacement at Node 6 (center of model) for the input periods: (i) 0.025s, (ii) 
0.05s, (iii) 0.1s and (iv) 0.2s. In case (i), the sinusoidal dynamic responses are different depending on the 
model. The response of Model GM tends to be larger than that of Models UN and UD, with the maximum 
absolute values for the three models, UN, UD and GM, being 0.144mm, 0.142mm and 0.150mm, 
respectively. This seems to depend on the natural frequency of the 1st mode, which for Model GM, is 
closer to the input period than for the other two models. In case (ii), the response of Model GM is smaller 
than that of the other models, with the maximum absolute values for the three models, UN, UD and GM, 
being 0.525mm, 0.455mm and 0.365mm, respectively. In case (iii), the absolute maximum values for the 
three models, UN, UD and GM are 0.174mm, 0.167mm and 0.150mm, respectively, and in case (iv), 
0.120mm, 0.115mm and 0.103mm, respectively. Comparing Model UN and Model UD, the maximum 
response decreases 1.4%, 13%, 4.0% and 4.2% when viscous damping of bond-slip is included,  for cases 
(i), (ii), (iii) and (iv) respectively. From this it is clear that the damping effect of bond-slip decreases the 
near the response is to resonance, but in the cases when the input period is shorter or longer than the 
natural period, the damping effect of bond-slip is small. 
 
 

 

 Tendon Bond 

Condition 

Damping 

Model UN Unbonded Modal damping 

Model UD Unbonded Modal damping + Bond-slip damping 

Model GM Grouted Modal damping 

Table 2 Analytical Models for Sinusoidal Dynamic Response Analysis 

 

 

Fig.7 Period of Input Load is 0.025s 
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Fig. 9 shows the sinusoidal dynamic responses of the bond-slip of the bottom tendon at Nodes 2,3,4 and 5. 
Plots (i), (ii), (iii) and (iv) correspond to input periods 0.025s, 0.05s, 0.1s and 0.2s, respectively. It can be 
seen that the bond-slip response of Model UN is the largest at Node 5 (the center of the shear span of the 
beam), and that it is larger than those of the other models for each period of input. The bond-slip 
responses of Model UN at Nodes 2 and 3 (the nodes in stub) are very small except for case (i). The bond-
slip of Model UD for each period of input is almost the same at Nodes 2, 3, 4 and 5, but with phase 
differences. The bond-slip responses of Model GM are smaller than for the other models, and Node 3 (the 
edge of beam) has the largest amount of slip among all of the nodes. From Fig.9, it is clear that the 
quantities of bond-slip, the distribution of bond-slip along the axis of the beam, and the phase difference, 
are different if models have different bond moduli and bond-slip damping. 
 

CONCLUSIONS 
 
This study proposes a model for vibration analysis, based on the finite element method, for concrete beam 
members including the bond-slip of reinforcement. In this paper, virtual work is used to derive equations 
based on the finite element method and numerical examples are provided. From the examples presented, it 
is clear that for free vibration analysis the effect of bond-slip on the characteristics of vibration depends on 
the different bond moduli assumed, whereas, for sinusoidal dynamic analysis, the effect of bond-slip on 
the response depends on the different bond moduli assumed, as well as, the bond-slip damping and period 
of the input. 
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Fig. 8 Vertical displacement at the center of analytical model 
 



 

(i) Period of input load is 0.025(s) 
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Fig. 9 Bond-slip of bottom reinforcement at Nodes 2,3,4 and 5 

(iv) Period of input load is 0.2(s) 
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