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SUMMARY 
 

We present a formulation of a new method to determine phase velocities of Rayleigh waves from 
microtremor waveforms obtained with a circular array of seismometers, as well as practical 
considerations on the technical details of the method. In our method the seismograms are averaged along 
the circumference at each time step with an appropriate set of weights. The spectral ratio of two different 
kinds of such time histories, obtained by averaging with different sets of weights, depends solely on the 
product rk (k: wavenumber, r: array radius); we can derive information on k since r is known. According 
to the results of theoretical calculations based on a deductive approach and conducted for the case where 
the wavenumber is a single-valued function of frequency, an array of three sensors is expected to be 
sufficiently useful in realistic situations where microseisms arrive from many directions. The theoretical 
calculations also revealed that the analysis method is valid for wavelengths upward of 4r; that the 
presence of incoherent noise makes analysis in long wavelength ranges difficult; and that the upper limit 
of the analyzable wavelength is roughly equal to 40r and 10r for SN ratios of 100 and 10, respectively.  
 
 

INTRODUCTION 
 
Microseisms can be utilized for relatively cost-effective reconnaissance surveys of the underground 
structure; the dispersion characteristics of the surface waves, which can be obtained by analyzing 
microseismic records from an array of seismic sensors, serve as a constraint for inferring the velocity 
structure beneath the observation site. 
 
Aki [1], in his general theory of the analysis of microseisms, presented a method to determine the phase 
velocities from the vertical component of microseismic records. Aki's method requires a set of sensors 
placed along a circumference plus another at its center. The whole information on the wavefield in 
question, which in the general case is composed of multiple plane waves arriving from different directions 
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with different intensities and in different modes, is integrated into a single quantity, namely the azimuthal 
average of the correlation coefficients. This quantity, according to his theory, contains information on the 
phase velocities of the waves alone: the effects of the arrival directions and amplitudes are canceled out in 
the above process. 
 
Henstridge [2] recast Aki's method in a simpler form using a spectral representation based on the theory 
of stationary random processes. He also developed an original formulation, independent of Aki's, which is 
general enough to include Aki's method as a special case but is based on a stronger assumption that the 
phase velocity is a single-valued function of the frequency. His formulation not only helps to see Aki's 
method in a different light but is also more useful from a practical point of view; for example, only 
through Henstridge's formulation can one theoretically examine the effects the use of a finite number of 
sensors and their arrangement have on the estimates of the phase velocities. 
 
In the present study, we have developed a new method of microseismic exploration on the extension of 
Henstridge's [2] theory, lifting the assumption of single-valuedness described above and introducing a 
new technique to allow for arrays of sensors placed at uneven intervals along a circumference. Just as 
Henstridge [2] did, we deal only with the vertical component of microseisms, which is in general cases 
dominated by Rayleigh waves according to the theory of wave propagation. 
 

METHOD 
 
According to Yaglom [3], any homogeneous random field ),,( yxtz , a function of time t and position 
(x,y), has a spectral representation 
 

∫∫∫ −−−= ),,,(')exp(),,( yxyx dkdkdZyikxiktiyxtz ωω    (1) 

 
where ω  is the angular frequency, ),( yx kk  is the wavenumber, and Z' is a random spectral measure. 

This Fourier-Stieltjes integral representation states that every homogeneous random field can be 
considered as a continuous sum of independent harmonic waves. The random spectral measure Z' is an 
orthogonal process with regard to frequency and wavenumber, since z(t,x,y) is stationary in time and 
space. If there exists a frequency-wavenumber spectral density f'(ω , kx, ky), the following relation holds: 
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where an asterisk denotes the complex conjugate.  
 
It is convenient to shift to the polar form since we are dealing with a circular array: 
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As in the case of the Cartesian coordinate system, Z(ω ,k,φ ) is an orthogonal process with regard to the 

frequency ω , wavenumber k, and arrival direction φ . The following relation holds if there exists a 

frequency-wavenumber-direction (FWD) spectral density f(ω ,k,φ ): 
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The FWD spectral density represents the power of the wave component arriving from direction φ  with 
frequency ω and wavenumber k. 
 
Let us denote by ),,( θrtz  the vertical component of the seismogram to be recorded along the 

circumference of radius r and at the azimuthal location θ , composed of stationary and random plane 
waves arriving from different directions with different intensities. We postulate that waves come from 
mutually uncorrelated vibration sources that lie far enough from the seismic array, so that different 
components of the incident waves are mutually uncorrelated.  
 
We expand the random spectral measure and the FWD spectral density into Fourier series:  
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It follows from equations (4), (6) and (8) that 
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Using equation (5) and the formula 
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we can rewrite (3) as  
 

).,()}2/(exp{)(),,( ∫∫ ∑
∞

−∞=

−+−=
m

mm dkdZimtirkJrtz ωπθωθ   (11) 

 
We also expand ),,( θrtz  into a Fourier series: 
 

,),,()exp(),( θθθα
π

π

drtzimrtm ∫
−

−=    (12) 



),,()exp(
2

1
),,( rtimrtz

m
m∑

∞

−∞=

= αθ
π

θ   (13) 

 
Substituting (11) into (12), we get 
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Spectral ratio function 
By the use of equations (9) and (14), the auto-correlation function for the Fourier coefficient ),( rtmα  is 

written as  
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Wiener-Khintchine's theorem states that the power spectral density Gm(ω , r), corresponding to the m-th 
coefficient, is given by the Fourier transform of the auto-correlation function, so that 
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where we have made use of the fact that f0 is an even function of ω . Finally, the ratio of power spectral 
densities of the zeroth and first orders is given by 
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When the wavefield is composed of one or more modes of Rayleigh waves, for example, and the 
wavenumber is a function of the frequency, either single- or multi-valued, we may use a suffix q to denote 
quantities pertaining to the (q-1)-th mode and model the FWD spectral density as  
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with its Fourier coefficients  
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Substituting (19) into (17), we obtain 
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where 
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is the power partition ratio for the (q-1)-th mode. The function ),( rtmα , and accordingly the left hand 

side of equation (20), can be evaluated from records obtained in appropriate field measurements. 
 
Determining the phase velocities 
In the special case where the wavenumber is a single-valued function of the frequency, we can determine 
the phase velocity by 
 

)],,(/),([/)( 10
1 rGrGMrc ωωωω −=    (22) 

 

where )(1 ⋅−M  is the inverse of the function )(⋅M , which is defined as  
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The reader is referred to the thick and gray curves in Figure 1 for the shape of the function M(rk). 
Obviously, equation (22) makes sense only in the range where there is a one-on-one correspondence 
between the function M(x) and its argument, namely in the range rk < 2.4 or for wavelengths larger than 
2.6r.  
 
Aki [1] suggested a method to determine multiple phase velocities for a wavefield composed of multiple 
modes. If we measure the wavefield with Nr arrays of different radiuses, we obtain Nr different values of 
the spectral ratio (20). Together with the compatibility condition  
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they form a system of Nr+1 equations concerning a set of 2Nq frequency-dependent unknowns (a1,...,aNq; 
k1,...,kNq). All we have to do is to find the optimal values of the unknown parameters for each frequency 
that minimizes, in the least squares sense,  
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under the constraint of equation (24), where the number Nr of array radiuses should satisfy Nr ≥  2 Nq -1. 
Once the wavenumbers )(ωqk ),...1( qNq = are obtained, the phase velocities )(ωqc  are calculated by 

)(/)( ωωω qq kc = . 

 
 

PRACTICAL CONSIDERATIONS 
 
In the above formulation, we have postulated that seismograms are available at all points along a 
circumference of radius r. In practice, however, field measurements must be done with a finite number of 
sensors placed at discrete azimuthal positions. In this section we describe how to estimate mα  in (12) 



with a circular array of seismic sensors that are not necessarily placed at even spacings because of 
practical reasons.  
 
When, in equation (13), the terms of up to the K-th order dominate, the sensor output at location (r, nθ ) 

can be approximated by  
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Since z(t, r, nθ ) takes a real value,  
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so that (26) can be rewritten in the matrix form 
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where the subscripts r and i denote the real and imaginary parts, respectively, of the Fourier coefficients 

),( rtjα . We can estimate αr  by 
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r

. The relation 12 +≥ KN  must hold so that the 

system of equations (28) may not be underdetermined; for example, the cutoff degree K for the Fourier 
coefficients cannot be larger than 1 if we use an array of three sensors (N=3) and, on the contrary, we 
have to use at least five sensors ( 5≥N ) if we are to set 2≥K  to include the effects of the second and 
higher order terms in the Fourier expansion (13). 
 
For the simplest case of N=3 and K=1, we have, from equation (32), 
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Directional aliasing 
It is obviously not always an appropriate assumption to set K=1 and disregard all terms of higher angular 
orders, so we would like to examine what effects the use of the approximative formula (33) has on the 
estimate of the spectral ratio G0/G1. Substituting (11) into (33), we have 
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and  
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so we obtain  
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where 
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and F: denotes the Fourier transform. All terms with suffixes other than m=n=0 for the numerator and 

1±== nm  for the denominator represent biases coming from the effects of directional aliasing, or 
errors due to the presence of higher order terms that are not properly taken into account in a discrete 
numerical scheme because of the finite sampling intervals. The above equation indicates that the effects 
of directional aliasing are larger in short wavelength ranges (large rk), since those effects are represented 
by the Bessel functions of higher orders.  
 
When the wavenumber is a function of the frequency, either single- or multivalued, we have 
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where 
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The appearance of ijd  and )()( ωq
mW  in equation (39) indicates that the nature of directional aliasing 

effects depends both on the configuration of sensors and the directionality of the wavefield. 
 
Presence of incoherent noise 
In the case where stationary, non-propagating noise )(tn j  contaminates the records of the j-th sensor, 

we can examine, by replacing ),,( jrtz θ  with )(),,( tnrtz jj +θ  in equation (33), the influence the 

presence of noise has on the estimate of the Fourier coefficients α~r . If we assume that )(tn j  is 

uncorrelated with the signal ),,( jrtz θ  and that )(tni  and )(tn j  are mutually uncorrelated if ji ≠ , 

the necessary modification on the estimated spectral ratio (37) or (39) consists in adding 
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to the numerator and denominator of the right hand side, respectively, where )(ωjN  represents the 

power spectral density of the incoherent noise: 
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In the absence of noise, the denominator in equation (37) or (39) approaches 0 as 0→rk , but the above 
considerations indicate that this does not take place in the presence of noise. As a result, the spectral ratio 
does not tend to infinity in the long wavelength limit. Since the effects of directional aliasing are small in 
small rk ranges (refer to the thick and gray curves in Figure 1), the level of incoherent noise is expected to 
be the crucial factor that controls the accuracy of the estimate; its presence leads to the underestimation of 
the spectral ratio, overestimation of the parameter rk and, consequently, to the underestimation of the 
phase velocity. The presence of incoherent noise can also have certain influence on the estimate of the 
spectral ratio upward of 2≈rk , but the presence of noise is not the sole factor to influence the estimate 



in that range of rk, because the effects of directional aliasing are far more significant. 
 
Some theoretical calculations 
We shall now examine basic properties of directional aliasing by assuming that the wavenumber is a 
single-valued function of the frequency (Nq=1). The FWD spectral density can be written as (44) if waves 
arrive from a finite range of directions centered on 0φ , the power dropping linearly with azimuthal 

distance from dφ . 
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In this case the weights )()1( ωmW  defined by (40) are given by 
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Figure 1   Effects of directional aliasing; three unevenly spaced sensors. Spectral ratios, estimated 

with three-sensor arrays of different azimuthal configurations, are simultaneously plotted and 
compared with the true values (thick and gray curve). Waves are assumed to arrive from a 

direction 0φ  of 30 deg with a spreading half-width dφ  of 60 deg. (a) all curves; (b) curves for the 

cases of γ  <0.05 alone; (c), (d) same as in (b) except that incoherent noise was incorporated in the 
data. Note that the abscissa is scaled differently than in (a) and (b). 

 
Figure 1(a) simultaneously plots the spectral ratios estimated with equation (39) for three-sensor arrays of 
different azimuthal configurations: we chose all possible combinations of three sensor positions out of all 
18 points placed at an even interval of 20 deg along a circumference. Equation (45) was used for the 

shape of mW ; the central direction 0φ  of wave incidence was set at 30 deg; the spreading half-width 

dφ  was 60 deg. Figure 1(a) shows that biases coming from directional aliasing, including the effects of 

the assumption K=1 that has been necessitated by the use of just three sensors, are very serious in short 
wavelength ranges (large rk). 
 
We define a parameter γ , an index of unevenness in inter-sensor spacings along the circumference, as a 
normalized variance of the azimuthal intervals between two adjacent sensors: 
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where iθ∆  denotes the azimuthal aperture, measured in degrees, of the i-th inter-sensor spacing: 1θ∆  

+ 2θ∆  + 3θ∆  = 360. The value of γ  falls between 0 and 1 depending on the degree of unevenness in 

inter-sensor spacings; among all cases drawn in Figure 1(a), the maximum value of γ  was 0.35. 
 
Figure 1(b) has picked up, out of all curves drawn in Figure 1(a), only those corresponding to values of 
γ  smaller than 0.05, or to cases where the three sensors were placed with minimal unevenness along the 
circumference. The good agreement between the estimated and true spectral ratio curves indicates that the 
degree of unevenness in inter-sensor spacings can be the principal factor that limits the efficacy of our 
method in short wavelength ranges. 
 
The effects of Wm

(1) of higher orders decrease with the increasing spreading half-width dφ , and so do the 

effects directional aliasing. In realistic situations where microseisms arrive from a variety of directions 
(large dφ ), we can therefore presume that an array of three sensors is sufficiently practicable for our 

method of microseismic exploration, as long as those sensors are not placed too unevenly along the 
circumference. 
 
Figures 1(c) and (d) show the equivalent of Figure 1(b) in the presence of noise, for 
frequency-independent signal-to-noise ratios (S/N) of 100 and 10. The spectral ratio saturates for small rk, 
or in the long wavelength ranges upward of roughly 40r and 10r for these cases. The deviation of the 
estimated spectral ratio from the theoretical curve also becomes conspicuous roughly from a wavelength 
of 4r (rk =1.5) downward, irrespective of the value of S/N. 
 

CONCLUSIONS 
 
We have developed a new method to determine phase velocities from the observation of the vertical 
component of microseisms with a circular array of sensors. According to the results of theoretical 
calculations conducted for the case where the wavenumber is a single-valued function of frequency, our 
method is expected to have the following properties: (1) An array of just three sensors is sufficiently 
practicable in realistic situations; (2) Uneven array configurations are possible, but, as a general 
argument, it is preferable to place the sensors as evenly as possible along the circumference in order to 
minimize the effects of directional aliasing; (3) The longest wavelength that is analyzable with our 
method primarily depends on the signal-to-noise ratio (S/N); (4) The performance in short wavelength 
ranges is controlled principally by the effects of directional aliasing, and therefore depends on the 
configuration of the seismic array, although, on the other hand, the requirement that there must be a 
one-on-one correspondence between our spectral ratio function and its argument sets another limit of 
analyzability in short wavelength ranges.  
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