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SUMMARY 
 
Seismic response is nonstationary random process in nature. Mean square value of the response 
is one of the most important statistical values. Integral of mean square value of the response 
during seismic excitation is defined as seismic response strength. As seismic excitations, 
nonstationary artificial time histories are used. An approximate method for obtaining seismic 
response strength is proposed. Seismic response strength is obtained for various values of the 
damping ratio and natural period and some types of envelope functions. It is found that seismic 
response strength obtained form approximate method is equal to that obtained from exact 
method. 
 

INTRODUCTION 
 
Seismic response is nonstationary random process in nature. Mean square value is one of the most 
important statistical values of the response of the structure [1]. Mean square value is used to evaluate 
absorbed energy and cumulative damage of the structure [2]. Theoretical methods for obtaining mean 
square value of the response of the structure subjected to nonstationary seismic excitation are complicated 
and time consuming. Thus, approximate methods are proposed [3], [4]. 
 
In this paper, integral of mean square response during seismic excitation is defined as seismic response 
strength. As seismic excitations, nonstationary artificial time histories are used. Nonstationary artificial 
time histories are generated by multiplying stationary random processes by envelope functions. As an 
analytical model, a single-degree-of-freedom model is used.  
 
An approximate method for obtaining seismic response strengths of displacement, velocity and 
acceleration response is proposed. In this method seismic response strength is obtained by multiplying 
mean square value of stationary response by square of envelope function. Mean square value of stationary 
response can be easily obtained. As exact method, seismic response strength is obtained from moment 
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equations considering nonstationary seismic excitations. Seismic response strength is obtained for various 
values of the damping ratio and natural period and some types of envelope functions. It is found that 
seismic response strength obtained form approximate method is equal to that obtained from exact method. 
 
Next, approximate method is applied to seismic response strength of secondary-primary system. When the 
secondary system is subjected to seismic excitation, the response of the secondary system depends on the 
dynamic characteristics of the primary system [5]. The response of the secondary system is greatly 
amplified when the natural period of the secondary system is nearly equal to that of the primary system 
[6]. For such a case, two-degree-of-freedom system in which the secondary system and the primary system 
are simulated by single-degree-of-freedom system respectively is used as an analytical model. Seismic 
response strength is obtained for various values of the damping ratio and the natural period of both 
systems, mass ratio of the secondary system to the primary system and some types of envelope functions. 
In this case, seismic response strength obtained form approximate method is also equal to that obtained 
from exact method. 
 
It is concluded that the proposed approximate method gives exact value of seismic response strength and 
is simplified and practical method. 
 

ANALYTICAL METHOD FOR SINGLE-DEGREE-OF-FREEDOM SYSTEM 
 
Analytical model and input excitation 
As an analytical model, a single-degree-of-freedom system as shown in Fig. 1 is used. The equation of 
motion with respect to relative displacement of mass to the ground z(x-y) is given as: 

yzz2z 2
nn &&&&& =ω+ζω+                                                                                                                        (1) 

where ( )mk2/cζ  is the damping ratio and ( )m/knω  is the natural circular frequency. As input 
excitation )t(y&& , nonstationary white noise given by the following equation is used. 

)t(s)t(I)t(y y=&&                                                                                                                                  (2) 

where I(t) is envelope function representing amplitude nonstationary characteristics and )t(s y  is 

stationary white noise. In this study, envelope functions as shown in Fig. 2(a) (type A) and (b) (type B) are 
used. For Fig.2(a), I(t) is expressed as: 
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where a=0.125 and b=0.25. For Fig.2(b), I(t) is expressed as: 
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Nonstationary response analysis 
The mean square response of z is given by the autocorrelation function as follows. 
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where ( )t,G ω  corresponds to the response for nonstationary harmonic excitation and ( )t,G* ω  is complex 

conjugate function of ( )t,G ω . ( )t,G ω  is give as; 
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0S  is power spectral density of stationary white noise, sy(t) in Eq.(2). 1i −= . The autocorrelation 
function of relative velocity and the cross correlation function of z and z&  are given as: 
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The mean square response of relative displacement  2
zσ , that of relative velocity 2

z&σ  and the covariance 

of displacement and velocity zz&κ  are given as: 
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Integral of Eq.(5) is complicated. 2
zs

σ , 2
z&σ and zz&κ  can also be obtained by moment equations as: 
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Stationary approximation 
For simplicity, when I(t) is assumed to be independent of ω, Eq.(5) is expressed as: 
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Equations (14) and (15) are given as: 

{ }
3

n
0

22
z

2
S)t(I)t(

s ζω
π=σ                                                                                                                (16) 

{ }
n

0
22

z 2
S)t(I)t(

s ζω
π=σ

&

                                                                                                                (17) 

Equations (16) and (17) are simpler than Eq.(5) or Eq.(13). If approximation of Eqs.(14) and (15) are 
appropriate, nonstationary random vibration analysis becomes simple. In this paper, when mean square 
response is obtained by Eqs.(16) and (17), it is referred to as approximate value. When mean square 
response is obtained by Eq.(13), it is referred to as exact value. 
 
Integral of mean square response with respect to time from 0 to infinity is expressed as: 
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In this paper, zI  is referred to as seismic response strength of relative displacement. Multiplying Iz by k/2 

gives total potential energy. For stationary approximation using envelope function type A, zI  is given as: 
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Seismic response strength of relative velocity is given as: 
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Multiplying zI
&
 by c gives total dissipated energy by the damper. Mean square response of absolute 

acceleration of the system is given as: 
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Then, seismic response strength of absolute acceleration is obtained as: 
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xI
&&
 is related to total kinetic energy. For stationary approximation using envelope function type A, seismic 

response strength of absolute acceleration is written as: 
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For stationary approximation using envelope function type B, seismic response strength of relative 
displacement is given as: 
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Seismic response strength of relative velocity is given as: 
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Seismic response strength of absolute acceleration is written as: 
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ANALYTICAL METHOD FOR SECONDARY-PRIMARY SYSTEM 

 
Analytical model 
In order to examine the response of the secondary system such as pipings, tanks and other mechanical 
equipment is installed on the primary system such as building, two-degree-of- freedom system as shown in 
Fig. 3 is used. In this model, the secondary system and the primary system are simulated by single-degree-
of-freedom system respectively. The upper system is the secondary system and the lower system is the 
primary system. The equations of motion with respect to relative displacement of the secondary system to 
the primary system ( )pss xxz − and relative displacement of the primary system to the ground ( )yxz pp −  

are given as: 
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where ( )ssss km2/cζ  and ( )pppp km2/cζ  are the damping ratio of the secondary system and that of 

the primary system, respectively. ( )sss m/kω  and ( )ppp m/kω  are the natural circular frequency of the 

secondary system and that of the primary system, respectively. ( )ps m/mγ  is mass ratio of the secondary  

system to the primary system. For two-degree-of-freedom system, response energy of the secondary system 
is focused on. 
 
Nonstationary response analysis 
The mean square response of sz  is given by the autocorrelation function as follows. 
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where ( )t,G ω  is power spectral density function for nonstationary random process and ( )t,G* ω  is 
complex conjugate function of ( )t,G ω . The mean square response of relative displacement of the 

secondary system 2
zs

σ is given as: 

)t,t(R)t(
ss z

2
z =σ                                                                                                                            (29) 

 

Integral of Eq.(28) is complicated. 2
zs

σ  can also be obtained by moment equations. Eq.(27) is written as: 
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The second moments of the response are expressed as [7]: 
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κ is covariance. 
 
The second moments of the response are obtained from moment equations as follows. 
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Stationary approximation 
For simplicity, when I(t) is assumed to be independent of ω, Eq.(28) is expressed as: 
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where )(Hs ω  is the frequency response function of the secondary system to input excitation. In this case, 

)(Hs ω  is expressed as: 
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The integral of Eq.(38) is that for stationary random process. This integral is obtained as: 
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The results using Eq.(42) are obtained when left-hand side of Eq.(37) is equal to 0. Thus, Eq.(38) is 
simpler than Eq.(28) or Eq.(37). If approximation of Eq.(38) is appropriate, nonstationary random 
vibration analysis becomes simple. In this paper, when mean square response is obtained by Eq.(38), it is 
referred to as approximate value. When mean square response is obtained by Eq.(37), it is referred to as 
exact value. 
 
In this case, seismic response strength of zz  is expressed as: 
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For stationary approximation using envelope function type A, 
szI  is given as: 
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Seismic response strength of relative velocity of the secondary system is given as: 
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Thus, seismic response strength of absolute acceleration is obtained as: 
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For stationary approximation using envelope function Type A, seismic response strength of absolute 
acceleration is written as: 
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For stationary approximation using envelope function type B, seismic response strength of relative 
displacement of the secondary system is given as: 
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Seismic response strength of relative velocity of the secondary system is given as: 
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Seismic response strength of absolute acceleration of the secondary system is written as: 
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NUMERICAL EXAMPLES 

 
Single-degree-of-freedom system 
From Table 1 to Table 4, results of integral of mean square response (seismic response strength) of the 
system are shown. Values of parameters are selected referring to actual systems. 0S =1.0m2/s4/rad/s is 
assumed. Table 1 and Table 2 show seismic response strength for some values of the damping ratio using 
envelope function type A and type B, respectively. Stationary approximation gives exact values of seismic 
response strength. Table 3 and Table 4 show seismic response strength for some values of the natural 
period. In this case, stationary approximation also gives exact values of response energy. 
 
It is concluded that stationary approximation gives exact value of seismic response strength for some 
values of the damping ratio and the natural period and some types of envelope functions. Seismic response 
strength of nonstationary response can be obtained easily by stationary approximation. 
 
Secondary-primary system 
From Table 5 to Table 12, results of seismic response strength of the secondary system are shown. Table 5 
and Table 6 show seismic response strength for some values of the damping ratio of the secondary system 
using envelope function type A and type B, respectively. Table 7 and Table 8 show seismic response 
strength for some values of the ratio of mass of the secondary system to the primary system. Table 9 and 
Table 10 show seismic response strength for some values of the natural period. In these tables, stationary 
approximation gives exact values of seismic response strength of the secondary system for displacement 
and acceleration response. For velocity response, stationary application gives smaller value than exact 
value. Difference is considered to be phase lag angle of velocity response. However, difference between 
stationary approximation and exact value is small (less than 2%) from practical point of view. From Table 
5 to Table 10, results of seismic response strength for the case where the natural period of the secondary 
system coincides with that of the primary system are obtained. In Table 11 and Table 12, results of seismic 
response strength for general case where the natural period of the secondary system does not coincide with 
that of the primary system are shown. In this case, stationary approximation also gives exact values of 
seismic response strength except for velocity response. However, for velocity response, difference 
between stationary approximation and exact value is also small. 
 
It is concluded that stationary approximation gives exact value of seismic response strength for some 
values of the damping ratio, the natural period and mass ratio and some types of envelope functions. 
Response energy of nonstationary response can be obtained easily by stationary approximation. 
 

CONCLUSIONS 
 
An approximate estimation method for seismic response strength of the system, which is integral of mean 
square response, is proposed. In this method, statistical properties of stationary response are used. Some 
numerical results are shown. It is found that the approximate method gives exact values of seismic 



response strength independent of parameters such as the damping ratio, the natural period and mass ratio 
and some types of envelope functions. 
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Fig.1 Single-degree-of-freedom system 
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Fig.2 Envelope function 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
(b) Type B 

Fig.2 Envelope function 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.3 Secondary-primary system 
 
 

Table 1 Seismic response strength of single-degree-of-freedom system (Tn=1.0s, type A) 
ζs Displacement(m2

 s) Velocity(m2/s2
 s) Acceleration(m2/s4

 s) 
 Exact Approximate Exact Approximate Exact Approximate 

0.01 6.76 6.76 2.67x102 2.67x102 1.05x104 1.05x104 
0.02 3.38 3.38 1.33x102 1.33x102 5.27x103 5.27x103 
0.05 1.35 1.35 5.33x10 5.33x10 2.13x103 2.13x103 
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Table 2 Seismic response strength of single-degree-of-freedom system (Tn=1.0s, type B) 
ζs Displacement(m2

 s) Velocity(m2/s2
 s) Acceleration(m2/s4

 s) 
 Exact Approximate Exact Approximate Exact Approximate 

0.01 1.09x10 1.09x10 4.30x102 4.30x102 1.70x104 1.70x104 
0.02 5.45 5.45 2.15x102 2.15x102 8.51x103 8.51x103 
0.05 2.18 2.18 8.61x10 8.61x10 3.43x103 3.43x103 

 
Table 3 Seismic response energy of single-degree-of-freedom system (ζ=0.01, type A) 

Τs=Tp(s) Displacement(m2
 s) Velocity(m2/s2

 s) Acceleration(m2/s4
 s) 

 Exact Approximate Exact Approximate Exact Approximate 
0.2 5.40x10-2 5.40x10-2 5.33x10 5.33x10 5.27x104 5.27x104 
0.5 8.44x10-1 8.44x10-1 1.33x102 1.33x102 2.11x104 2.11x104 
0.8 3.46 3.46 2.13x102 2.13x102 1.32x104 1.32x104 
1.0 6.76 6.76 2.67x102 2.67x102 1.05x104 1.05x104 

 
Table 4 Seismic response energy of single-degree-of-freedom system (ζ=0.01, type B) 

Τs=Tp(s) Displacement(m2
 s) Velocity(m2/s2

 s) Acceleration(m2/s4
 s) 

 Exact Approximate Exact Approximate Exact Approximate 
0.2 8.71x10-2 8.71x10-2 8.61x10 8.61x10 8.50x104 8.50x104 
0.5 1.36 1.36 2.15x102 2.15x102 3.40x104 3.40x104 
0.8 5.58 5.58 3.44x102 3.44x102 2.12x104 2.12x104 
1.0 1.09x10 1.09x10 4.30x102 4.30x102 1.70x104 1.70x104 

 
Table 5 Seismic response strength of secondary system (γ=0, ζp=0.05, Ts=Tp=1.0s, type A) 

ζs Displacement(m2
 s) Velocity(m2/s2

 s) Acceleration(m2/s4
 s) 

 Exact Approximate Exact Approximate Exact Approximate 
0.01 5.70x102 5.70x102 2.24x104 2.20x104 8.88x105 8.88x105 
0.02 2.45x102 2.45x102 9.62x103 9.43x103 3.82x105 3.82x105 
0.05 6.89x10 6.89x10 2.69x103 2.64x103 1.08x105 1.08x105 

 
Table 6 Seismic response strength of secondary system (γ=0, ζp=0.05, Ts=Tp=1.0s, type B) 

ζs Displacement(m2
 s) Velocity(m2/s2

 s) Acceleration(m2/s4
 s) 

 Exact Approximate Exact Approximate Exact Approximate 
0.01 9.19x102 9.19x102 3.62x104 3.55x104 1.43x106 1.43x106 
0.02 3.95x102 3.95x102 1.55x104 1.52x104 6.16x105 3.82x105 
0.05 1.11x102 1.11x102 4.35x103 4.26x103 1.75x105 1.75x105 

 
Table 7 Seismic response strength of secondary system (ζs=0.01, ζp=0.05, Ts=Tp=1.0s, type A) 
γ Displacement(m2

 s) Velocity(m2/s2
 s) Acceleration(m2/s4

 s) 
 Exact Approximate Exact Approximate Exact Approximate 

0 5.70x102 5.70x102 2.24x104 2.20x104 8.88x105 8.88x105 
0.01 9.61x10 9.61x10 3.74x103 3.67x103 1.50x105 1.50x105 
0.02 5.30x10 5.30x10 2.04x103 2.00x103 8.26x104 8.26x104 
0.05 2.32x10 2.32x10 8.64x102 8.47x102 3.62x104 3.62x104 

 
 
 



Table 8 Seismic response strength of secondary system (ζs=0.01, ζp=0.05, Ts=Tp=1.0s, type B) 
γ Displacement(m2

 s) Velocity(m2/s2
 s) Acceleration(m2/s4

 s) 
 Exact Approximate Exact Approximate Exact Approximate 

0 9.19x102 9.19x102 3.62x104 3.55x104 1.43x106 1.43x106 
0.01 1.55x102 1.55x102 6.04x103 5.92x103 2.42x105 2.42x105 
0.02 8.55x10 8.55x10 3.30x103 3.23x103 1.33x105 1.33x105 
0.05 3.74x10 3.74x10 1.39x103 1.37x103 5.84x104 5.84x104 

 
Table 9 Seismic response strength of secondary system (γ=0, ζs=0.01, ζp=0.05, type A) 

Τs=Tp(s) Displacement(m2
 s) Velocity(m2/s2

 s) Acceleration(m2/s4
 s) 

 Exact Approximate Exact Approximate Exact Approximate 
0.2 4.56 4.56 4.49x103 4.40x103 4.44x106 4.44x106 
0.5 7.12x10 7.12x10 1.12x104 1.10x104 1.78x106 1.78x106 
0.8 2.92x102 2.92x102 1.80x104 1.76x104 1.11x106 1.11x106 
1.0 5.70x102 5.70x102 2.24x104 2.20x104 8.88x105 8.88x105 

 
Table 10 Seismic response strength of secondary system (γ=0, ζs=0.01, ζp=0.05, type B) 

Τs=Tp(s) Displacement(m2
 s) Velocity(m2/s2

 s) Acceleration(m2/s4
 s) 

 Exact Approximate Exact Approximate Exact Approximate 
0.2 7.35 7.35 7.24x103 7.10x103 7.17x106 7.17x106 
0.5 1.14x102 1.14x102 1.81x104 1.77x104 2.87x106 2.87x106 
0.8 4.71x102 4.71x102 2.90x104 2.84x104 1.79x106 1.79x106 
1.0 9.19x102 9.19x102 3.62x104 3.55x104 1.43x106 1.43x106 

 
Table 11 Seismic response strength of secondary system (γ=0, ζs=0.01, ζp=0.05, Tp=1.0s, type A) 
Τs(s) Displacement(m2

 s) Velocity(m2/s2
 s) Acceleration(m2/s4

 s) 
 Exact Approximate Exact Approximate Exact Approximate 

0.5 2.48x10-1 2.48x10-1 2.13x10 2.00x10 6.19x103 6.19x103 
0.8 1.44x10 1.44x10 7.98x102 7.75x102 5.49x104 5.49x104 
1.0 5.70x102 5.70x102 2.24x104 2.20x104 8.88x105 8.88x105 
1.5 7.71x10 7.71x10 1.45x103 1.43x103 2.37x104 2.37x104 

 
Table 12 Seismic response strength of secondary system (γ=0, ζs=0.01, ζp=0.05, Tp=1.0s, type B) 
Τs(s) Displacement(m2

 s) Velocity(m2/s2
 s) Acceleration(m2/s4

 s) 
 Exact Approximate Exact Approximate Exact Approximate 

0.5 4.00x10-1 4.00x10-1 3.43x10 3.22x10 9.98x103 9.98x103 
0.8 2.33x10 2.33x10 1.29x103 1.25x103 8.85x104 8.85x104 
1.0 9.19x102 9.19x102 3.62x104 3.55x104 1.43x106 1.43x106 
1.5 1.24x102 1.24x102 2.33x103 2.31x103 3.83x104 3.83x104 
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