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SUMMARY 
 
Structural vibrations are primarily caused by earthquakes and wind. These vibrations affect the daily life 
of many people. Vibrations induced by an earthquake need to be measured to assure building safety in 
Japan, which experiences numerous earthquakes, and those by wind to assure comfort for people in high-
rise buildings. Countermeasures against structural vibration are therefore required. 
 
A countermeasure against vibration is structural control, which can be categorized into passive and active 
controls. Although passive control is currently used widely because it does not require external energy, it 
is effective only for the particular earthquakes for which it was designed. Active control has attracted the 
attention of engineers as it is effective for various winds and earthquakes. Most active control systems are 
based on linear quadratic control by a linear system and are effective only against small earthquakes and 
daily wind. Therefore, active control systems are needed that are effective against vibrations induced by 
large earthquakes and strong winds and that include nonlinearity and uncertainty. 
  
The main objective of this study was to construct an active structural control system as a smart structure 
system. The effectiveness of a hybrid control system composed of optimal fuzzy control (OFC) and 
genetic algorithm (GA) was evaluated. In this OFC/GA hybrid control system, the OFC has three fuzzy 
rules: prediction of an earthquake, determination of the feedback gain, and determination of the suitable 
rate of feedforward and feedback gain. This hybrid control system has functions of a smart system similar 
to a human being (e.g., evolution, learning and immunization), can update the fuzzy rules, and can search 
for optimal solutions derived from GA. Experimental results validated the feasibility of OFC. Numerical 
simulations showed that OFC responds to a disturbance system (e.g., an earthquake) that has nonlinearity 
and input saturation, and that OFC is robust for various earthquakes. 
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INTRODUCTION 

 
Rapid urban redevelopment and construction of high-rise buildings are recently evident throughout Asia. 
Such buildings require countermeasures against vibrations caused by earthquakes and wind. A structural 
control system is one solution to the vibration problem. Such systems are classified as passive control, 
which requires external power, and active control, which requires only internal power. Examples of 
passive control devices include viscoelastic dampers and rubber bearings. Although passive structure 
control systems are used widely, they are effective only for particular vibrations induced by a specific type 
earthquake for which the control system was designed. Active structural control systems have attracted the 
attention of engineers because of the response of such systems to various types of vibrations.  
 
Most active control systems used as a countermeasure against vibrations of a structure use linear quadratic 
(LQ) control as its linear control. However, the response of a high-rise building induced by large 
earthquakes and winds has nonlinearity and uncertainty. Therefore, an intelligent control system is 
needed. An example of such a system is fuzzy control (Kawamura [1], Casciati [2], Ahalawat [3], Yamada 
[4], [5]) and neural network control. These systems can control disturbance systems that have nonlinearity 
and uncertainty. Intelligent control systems, however, require more intelligent functions, like a human 
being.  
 
Smart structures are structures that have functions similar to those of human beings, such as evolution, 
learning and immunization. The field of smart structures is currently an active area of research.   
 
The main objective of this study was to evaluate the advantages of an active vibration control method that 
involves a hybrid control system composed of optimal fuzzy logic (OFC) and a genetic algorithm (GA) for 
use in high-rise buildings subjected to strong earthquakes. First, this OFC/GA hybrid control system was 
shown. Then, experiment and numerical analysis were done for evaluating OFC/GA hybrid control 
system.  
 
 

MODEL 
 
Figure 1 shows the experimental structure. This structure was a 2-m-high scaled model of a 500-m-high 
high-rise building under constant gravitation, with length dimension scaled down to 1 250  and time 
dimension scaled down to 1 250 . An Active Mass Damper (AMD) for reducing the vibrations was 
located on the top story of the structure. The mass of the AMD was about 5% of the structure. The 1st and 
2nd natural frequencies were 3.1 and 13.9 Hz, respectively. The equation of motion for this structure-AMD 
system was  
 

avx BDMKQQCQM 0 +=++ 0&&
&&&       (1) 

 

where M, C and K are mass, damping, and stiffness matrices; Q&& , Q& and Q are relative acceleration, 

velocity, and displacement vectors of the structure; 0x&&  is acceleration of the earthquake; av  is the input 

voltage; and DM 0 and B are external force vectors for disturbance and control input. 
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Fig. 1 Experimental set-up and schematic of controlled system 
 
 

HYBRID CONTROL SYSTEM 
 
Figure 2 shows the OFC/GA hybrid control system. The OFC has three fuzzy rules. Fuzzy rule 1 is 
earthquake prediction, rule 2 is determination of feedback gain, and rule 3 is determination of optimal 
feedforward and feedback rate. After an earthquake movement and the associated response of a structure 
are finished, these fuzzy rules in the OFC are updated and optimized by the GA. These updating and 
optimizing operations mean adding OFC to a smart function, similar to what human beings do when they 
grow up. 
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Fig. 2 Flowchart of a hybrid control system 



Optimal fuzzy controller (OFC) 
In the OFC, parameter X is the absolute maximum earthquake acceleration and Y is the structure’s 
velocity during the control interval t∆  as shown in Fig. 3. Xi and Yi express these values for the ith X and 
Y. 
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Fig. 3 Parameters in OFC 

 
 
The control force is composed of a feedforward control, a feedback control, and phase of the control force. 
A feedforward control force 

1+if
U  is expressed by Eq. (2), feedback control force 

1+ibU  by Eq. (3), control 

force ( )U t  is derived from Eqs. (4) and (5), and the phase of control force Ssign is shown in Table 1. 
 

111 ++=
+ ieqif XmU

i
α        (2) 

( ) iiib YU
i

βα 11
1 +−=

+
       (3) 

111 ++
+=+ ii bfi UUU        (4) 

1( ) ( )sign iU t S t U += ⋅        (5) 

 
where 1+iα  is the optimal rate of feedforward and feedback input derived from the maximizing decision; 

eqm  is the 1st equivalent mass; 1+iX  is the predicted earthquake acceleration; iβ  is the feedback gain; 

and iY  is the response of the top story of the structure. 

 
 

Table 1 Phase of control force, Ssign 
Phase of top-floor displacement + + - - 
Phase of top-floor velocity + - - + 
Phase of control force Ssign(t) - 0 0 + 

 
 
Fuzzy rule 1 is composed of membership functions as shown in Fig. 4, where the horizontal axis is iX∆  

derived from Eq. (6), and the vertical axis is 2
iX∆  described by Eq. (7). Each membership function (left 

schematic in Fig. 4) is 1iX +∆  of the distribution frequency. The goal of learning by the OFC is to set up 
Eqs. (6), and (7) using earthquake data, and then to add these data to fuzzy rule 1. The prediction of an 



earthquake involves setting up Eqs. (6) and (7) interval of control time respectively, to set up 1iX +∆  from 

defuzzification, and then to obtain 1iX +  from Eq. (8). 
 

1i i iX X X −∆ = −         (6) 
2

1 22i i i iX X X X− −∆ = − +       (7) 

1 1i i iX X X+ += + ∆        (8) 
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Fig. 4 Fuzzy rule 1. Left is a detailed schematic of representative component, or membership 

function, of fuzzy rule 1 shown at right. 
 
 
Fuzzy rule 2 (Fig. 5) is used to determine the feedback gain iβ  expressed as   

 

2i B eq eqh m kβ = ⋅        (9) 

 
where keq is 1st equivalent stiffness. y1, y2 and ysign are the parameters of fuzzy rule 2. When the velocity of 
the top floor of the structure Yi is less than y1, hB is set at 0, and when it is more than y2, hB is set at 100%. 
When the velocity Yi is between y1 and y2, hB is  proportional to the membership function. ysign is 
determined shape (+, - or 0) of membership function. 
 
Fuzzy rule 3 (Fig. 6) is used to determine the rate of feedforwad and feedback control forces. u1, u2 and 
using are the parameters of fuzzy rule 3.  1iα +  is obtained by the maximizing decision derived from Eqs. 
(2), (3). 
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  Fig. 5 Fuzzy rule 2                                    Fig.6 Fuzzy rule 3 

 
 
 
 



Genetic algorithm (GA) 
Optimal parameters of fuzzy rules 2 and 3 are decided by GA whose 23-bit–long chromosome consists of 
y1, y2, ysign, u1, u2, and usign. The target of the GA is a maximum fitness function F. F shown in Eq. (10) is 
obtained by combining, Fd-max, Fd-rms, Fv-max and Fv-rms  shown in Figs.7 and 8, where D is the displacement 
of the top floor of the structure under control, Dmax is the maximum D without control, Drms is the R.M.S. 
D without control, and U is the control force. Fd-max derived from Dmax is the fitness function of max-
displacement of top-floor. Fd-rms derived from Drms is the fitness function of R.M.S-displacement of top-
floor. Fv-max is the fitness function of max-control-force. Fv-rms is the fitness function of R.M.S-control-
force. Learning by GA involves 20 initial populations chosen at random, a roulette selection and an elitist-
preserving selection used as a reproduction, and 5-point crossover and mutation are used. 
 

max maxd d rms v v rmsF F F F F− − − −= ⋅ ⋅ ⋅       (10) 
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Fig.7 Fitness functions Fd-max and Fd-rms       Fig.8 Fitness functions Fv-max and Fv-rms 
 
 

 
EXPERIMENTS FOR STRUCTURE CONTROL 

 
Experimental method 
Fuzzy rule 1 was trained by using the motions of seven earthquakes as input, and then y1=0.00, y2=0.03, 
ysign=0, u1=0, and u2=0.35. AMD had a total stroke of less than ± 0.023 m, and the peak control voltage 
was less than 20 and the input sine was 3.1 Hz.  
 
Experimental results and discussion 
Figures 9 and 10 show the time histories and Fourier amplitude spectrums, respectively, of acceleration 
and displacement of the top floor of the experimental structure with and without control. The structure 
with control showed a lower maximum and R.M.S. acceleration response by 128% and 77.8%, 
respectively, a lower maximum and R.M.S. displacement response by 96.2% and 60.2% respectively, and 
a lower maximum Fourier amplitude spectrum by 58.4%. The structure with control also showed response 
in high frequency due to the moving AMD. These results show that OFC can effectively reduce the 1st 
natural mode response. 

 
 
 
 
 
 
 
 
 
 



 

0 5 10 15 20
-3

-2

-1

0

1

2

3

Tim e(s)

A
c
c
.(m

/
s
/
s
)

0 5 10 15 20
-0.1

-0.05

0

0.05

0.1

Tim e(s)

D
is
p
.(m

)

No C ontrol

C ontrol

 
Fig.9 Time history of acceleration and displacement of top floor 
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Fig.10 Fourier amplitude spectrum of acceleration and displacement of top floor  

 
 
 

NUMERICAL SIMULATIONS 
 
Comparison between control by LQ and by OFC  
For evaluate OFC, the numerical simulation comparison between control by LQ and by OFC was done. 
The verifying model system used a 1 degree-of- freedom as a restoring force, and used a bi-linear model to 
apply a yield force that was 0.2 times the mass weight. The stiffness after yielding was 0.1 times the 
stiffness before yielding. The AMD allowed a maximum control force of ± 3N. 
 
Controller gains 
The OFC gains were y1=0.001, y2=0.015, ysign=0, u1=1.00, u2=3.00, and usign=0. The LQ control input was 
derived from Eq. (11), where FLQ is LQ control gain. For QLQ=diag(1,1) and r=10-5,  FLQ was determined 
by minimizing the criterion function expressed in Eq. (12). 
 

( )TLQu QQF &−=         (11) 



( ) ( )[ ]∫
∞

+=
0

2 dtruJ
T

LQ QQQQQ &&       (12) 

Numerical simulation results and discussion  
The resulting time histories of structure-displacement of the top story, AMD stroke, control force, and 
displacement-restoring force for the OFC-controlled structure (Fig. 11) and LQ-controlled structure (Fig. 
12) showed that OFC control is more robust than LQ control at the point of counterbility of nonlinear and 
saturation. 
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Fig.11 Time histories of structure-displacement of the top story, AMD stroke, control force, 

displacement-restoring force under OFC control and no control 
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Fig.12 Time histories of structure-displacement, AMD stroke, control force, displacement-

restoring force under LQ control and no control 
 
 
 
 
 
 
 
Smart function of hybrid control 
GA determines the optimal OFC parameters. Earthquakes (Table 2) are classified Group A used training 
fuzzy rule 2 and 3 and Group B used verifying. Fuzzy rules 2 and 3 were trained by using specific 



earthquake input (1) A1-A4, (2) A5 and A6[6], or (3) A1-A6. The model shown in Fig.1 is subjected to the 
earthquake motions in all groups A and B. 
 

Table 2 Earthquakes input into numerical simulation of smart function of hybrid control 
 Earthquake Scaled  Max. Acc. (m/s2) 
 
 

Group A 

A1: El Centro 1940 NS 
A2: Taft 1952 NS 
A3: Tohoku 1978 NS 
A4: Hachinohe 1968 NS 
A5: Shinjyuku 1998.8.29 
A6: Shinjyuku 2000.4.10 

Scaled max. vel. of 0.5 m/s 
Scaled max. vel. of 0.5 m/s 
Scaled max. vel. of 0.5 m/s 
Scaled max. vel. of 0.5 m/s 
10 fold 
10 fold 

5.11 
4.86 
3.57 
3.33 
8.92 
3.91 

 
 

Group B 

B1: El Centro 1940 EW 
B2: Taft 1952 EW 
B3: Tohoku 1978 EW 
B4: Hachinohe 1968 EW 
B5: Shinjyuku 1998.11.8 
B6: Random 

Scaled max. vel. of 0.5 m/s 
Scaled max. vel. of 0.5 m/s 
Scaled max. vel. of 0.5 m/s 
Scaled max. vel. of 0.5 m/s 
10 fold 
 

2.85 
4.97 
3.69 
2.39 
4.05 
3.58 

 
 
 

Numerical simulation results and discussion 
Table 3 shows the parameters of fuzzy rules determined from numerical simulation. In fuzzy rule 3, the 
parameters for group (3) training motions are coupling (1) and (2). Figure 13 shows that the use of 
specific earthquake motions to train the controller reduced the structure responses subjected to those 
specific motions; for example, the use of motions A1-A4 to train the controller reduced the structure 
responses to motions A1-A4 (group 1 in Table 3), and similarly for A5 and A6 (group 2), and for A1-A6 
(group 3). In addition, the use of motions A1-A6 (group 3) also reduced the structure response subjected 
to motions B1-B6, which are motions that the OFC did not learn. These results reveal the smart function 
of this hybrid control, namely, that the hybrid control system exhibits immunization corresponding to the 
same earthquake motion used in the learning process, and exhibits leaning and evolution corresponding to 
other earthquakes. 
 
 

Table 3 Parameters of fuzzy rules 2 and 3 determined by smart function 
 Fuzzy rule 2 Fuzzy rule 3 

Training 
earthquake 

y1 y2 ysign u1 u2 usign 

(1) A1-A4 0.0084 0.0102 0 11 11 0 
(2) A5 and A6 0.0080 0.0098 + 0 2 0 
(3) A1-A6 0.0010 0.0112 0 0 11 + 
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Fig.13 Ratio of control and no-control response 

 
 

 
CONCLUSION 

 
An active control method that uses optimal fuzzy logic (OFC) and a genetic algorithm (GA) as a smart 
structure was developed. Evaluation experiments validated the use of OFC. Numerical simulations 
showed that a hybrid controller has smart functions, such as immunization, learning, and evolution. 
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