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SUMMARY 
 
An analysis program for the base isolated liquid storage tank was developed considering non-linear fluid-
structure interaction in this study. The behavior of a fluid region is simulated by the boundary element 
method and the analysis scheme of the free surface motion in time domain is developed by using the 
nonlinear free surface boundary condition(NFBC). In order to construct the governing equation of the 
whole system, finite elements for a structure and boundary elements for a fluid region are coupled using 
the equilibrium and compatibility conditions and NFBC. The isolator is simulated by equation proposed in 
3D Basis Me. 
 
Some numerical examples are presented to demonstrate the validity and the applicability of the developed 
procedure. The forced vibration analysis demonstrates that the developed method can represent the large 
sloshing motion of free surface well. Then, the dynamic analysis of liquid storage tank is performed to 
study the effect of the NFBC and the results are compared. Finally, the applicability of the developed 
method is verified through the seismic analysis of a real size liquid storage tank for the artificial 
earthquake. 
 

INTRODUCTION 
 
The dynamic response of liquid storage tanks under seismic ground motion is different from that of 
common structures such as buildings or bridges. It is well known that the difference of the response is 
caused by the effect of the fluid-structure interaction. Thus, to predict the behavior of the container, the 
distribution of hydrodynamic pressure and the fluid sloshing motion should be evaluated reasonably. 
Especially, in case of wave propagation of long period earthquake or introduction of the base isolation 
system for reducing the damage due to a seismic motion, the sloshing height can be amplified 
thoughtfully. Excessive sloshing height may cause the unexpected pressure on the connection of roof-wall 
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and spillage of contained liquid. When the large sloshing motion occurs, it is needed to consider the 
nonlinear free surface boundary condition (NFBC). 
 
In this study, a numerical algorithm, which can analyze the fluid-structure interaction problem considering 
the NFBC, is developed and the corresponding dynamic responses of base isolated liquid storage tanks are 
investigated. The behavior of a fluid region is simulated by boundary elements and a structure region is 
modeled by finite elements in three dimensional coordinate. The isolator system is modeled by equation 
proposed in 3D Basis Me. Then, the NFBC is imposed on the free surface of a fluid region and the 
interaction effect is simulated directly by transferring the normal acceleration of structure to the fluid 
domain and the hydrodynamic pressure to the structure domain at the fluid-structure interface. Through 
these procedures, the response of the base-isolated liquid storage tank considering non-linear behavior of 
free surface is analyzed combining the three parts by FE-BE coupling.  
 

FORMULATION FOR FLUID AND STRUCTURE REGIONS 
 
Modeling of a fluid region  
In this study, for the simplicity, the contained liquid is assumed to be inviscid and incompressible, 
resulting in an irrotational flow field. In view of these assumptions, the governing equation of the liquid 
motion is represented as follows 
 

( ) 0,2 =∇ txφ            (1) 
 
where φ  is the velocity potential and ),,( zyx=x  is the position vector. Eq. (1) is the Laplace equation 
and the boundary integral equation derived from Lagrange-Green Identity can be written as 
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where Γ  is the boundary of a fluid region, n  is normal vector, ξ  is the source point, x  is the receive 

point and ( )t,,* xξφ  is the fundamental solution of Laplace equation or Green function.  
 
To integrate the obtained boundary integral equation numerically, the boundary surface is discretized into 
a series of elements and nodes. Then, using the boundary element technique, Eq. (2) can be expressed in 
matrix form as 
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where H  and G are boundary element coefficient matrices for the potential vector φ  and the flux vector 
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When a liquid storage tank is subjected to a dynamic load, the boundary conditions on the free surface are 
obtained by formulating the dynamic and kinematic boundary conditions. The dynamic boundary 
condition is that the pressure on the free surface must be equal to the atmospheric pressure and the 
kinematic boundary condition is that liquid particles which are on the free surface remain on it during 



subsequent motion. The dynamic boundary condition assuming the atmospheric pressure to be zero is 
expressed as 
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where ),,( tyxη  is the sloshing height, g  is the gravitational acceleration. The kinematic boundary 
condition is expressed as follows. 
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At the interface between liquid and the tank wall, the normal component of the liquid velocity is equal to 
the velocity of tank wall.  Then the boundary condition is expressed as  
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where )(tvn  is the velocity normal to the surface of the tank wall. The hydrodynamic pressure acting on 
the wall (Eq. (8)) can be derived from Eq. (7). 
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Where ρ  is the liquid density. 
 
Modeling of a structure region 
The structure domain is modeled using 9-noded degenerated shell elements with five degrees of freedom 
per node. The discretized form of the governing equation of motion subjected to seismic ground excitation 
for the liquid-structure system is written as  
 

)(tsss RuKuCuM =++ &&&          (9) 
 

where sM , sC  and sK  are the mass matrices, the Rayleigh damping matrices and the stiffness matrices 
of the structure, respectively. Also, u&& , u& , and u  are the nodal accelerations, velocities, and 
displacements of the structure, respectively. Superscript s  denotes the matrix for a structure region. )(tR  
is the force vector for seismic ground excitation and for the fluid-structure interaction system, written as  
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where gu&&  is the ground acceleration vector in time domain and r  is transformation vector that couples 

each degree of freedom to the ground motion. )(tf  represents the nodal forces exerted on the container 
wall due to pressure arising from the oscillation of the liquid. 



Modeling of the base isolation system 
The base isolation system, presented by Tsopelas, P.C., et. al. [5], is applied in this study. The forces along 
the orthogonal directions mobilized during motion of elastomeric bearings are described by  
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where α  is the post-yielding to pre-yielding stiffness ratio, yF  is the yield force and Y  is the yield 
displacement, as illustrated in Fig. 1. xZ  and yZ  are dimensionless variables governed by the following 

system of differential equations proposed by Park, et al. [6]. 
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Where A , λ  and β  are dimensionless qualities that control the shape of the hysteretic loop. The values 

of 1=A , 9.0=λ  and 1.0=β  are used in this paper. xZ  and yZ  are acquired by adopting the following 

fourth-order Runge-Kutta method which is widely used in nonlinear dynamic analysis programs and 
rapidly converge to the correct solution when the nonlinearities of system are mild. 
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Fig. 1 Force-displacement diagram for isolation system 

 



DYNAMIC ANALYSIS OF FLUID-STRUCTURE-BASE ISOLATION INTERACTION 
 
Solution procedure of non-linear sloshing motion 
To predict the non-linear behavior of free surface numerically, the Lagrangian particle approach is used. 
The Lagrangian particle approach introduces the procedure that the free surface is composed of a group of 
fluid particles which move in a Lagrangian manner at every time step.  
 

In this procedure, potential 1+kφ at the k+1-th time step can be determined from the fluid particle potential 
kφ and kDtD )/( φ by using the boundary conditions, Eq. (5), Eq. (6) and the Lagrangian form of Eq. (4) at 

the k-th time step. Although there exist various kinds of scheme, the following Euler scheme known as the 
simplest time integration method is adopted. 
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Where t∆ denotes the short time interval. Under this potential 1+kφ , Eq. (3) can be solved and the flux 

values ( ) 1/ +∂∂ knφ can be obtained on a free surface. By using these potential gradients, fluid particle 
velocity is calculated and then the new value of the fluid particle position at the k+1-th time step is 
determined. From above procedures, the initial values for a fluid region at the start of the next time step 
can be obtained. Also, a new boundary element mesh is generated corresponding to the updated geometry. 
 
Coupling of whole governing equations 
To solve the discretized governing equation of a fluid region in time domain, Eq. (3) is differentiated 
about time and divided into a free surface region and a fluid-structure interface region. Then, substituting 
Eqs. (4)-(8) into the partitioned Eq. (3) leads to the following, 
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where, η , η&&  are the sloshing displacement and sloshing acceleration vectors, u&& , P  are the accerataion 
vector and hydrodynamic pressure vector at the interface between fluid and the structure, and n  is the 
outer normal vector. pA and ηA  are non-linear terms of fluid-structure interface and free suface, 

respectively and expressed as φφ∇∇5.0 . Subscript η  and p  denote the nodes for the free surface of 
liquid and the nodes on the fluid-structure interface, respectively.  
 
Hydrodynamic pressure, shown in Eq. (16) and sloshing motion, shown in Eq. (17) can be expressed as 
functions of pu&& , η , η&& , pA and ηA  by converting Eq. (15). 
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Superscript l  denotes the matrix for the liquid region. To convert hydrodynamic pressure [ pP ] into the 

equivalent nodal force of the finite element [ f ], the shape function matrix used in finite element 
formulation, [ N ] is introduced. Then, the hydrodynamic pressure, Eq. (16) can be expressed as follows: 
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In order to combine BEM for a liquid region and FEM for a structure region, the nodal displacement 
vector (u ) in Eq. (9) is divided into the displacement vector of fluid-structure interface nodes ( pu ) and 

the structural nodes only ( ou ). The governing equation of the liquid-structure interaction system is 
obtained by using the compatibility and equilibrium conditions at the interface. This superstructure system 
is superimposed on a base isolation system modeled by the hysteretic element presented in above section. 
The equations of motion for the superstructure and base can be formulated by introducing the relative 
displacement vector with respect to the base. Combining these equations results in the following; 
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and bm is the mass matrix of the base, bc  and bk  are the resultant damping and stiffness matrix of the 
base isolation system, respectively, and c  is a vector containing the forces mobilized in the nonlinear 
elements of the isolation system. v&& , v& , and v  represent the acceleraton, velocity, and displacements 
vectors of the fluid-structure interaction system relative to the base, and bv&& is the vector of base 
acceleration relative to the ground 
 
Solution procedure of fully coupled system 
In this paper, the solution of governing equations of motion for the whole system is obtained by the direct 
integration method in time domain. Using the solution procedure of non-linear sloshing motion, the initial 
value of a fluid region at each time step is achived. Then, the whole system eqaution, Eq. (19) which is 
containing the non-linear term of the base isolation system is solved using the pseudo-force method and 
the responses of the structure and fluid regions are obtained. Those solution procedure involves follwing 
two stages: (1) Solution of the equation of motion using an unconditionally stable Newmark’s average 
acceleration method; and (2) Solution of the differential equation governing the nonlinear behavior of the 
isolation elements using an unconditionally stable semi-implicit Runge-Kutta method suitable for stiff 
differential equations. Using those results as input data, the solution procedure of non-linear sloshing 
motion is repeated. Then, the initial and corrected values of free surface are compared. If a desired level of 
convergence is achived for the sloshing motion of the fluid region, next time step begins. However, if a 
desired level of convergence is not achived, the above procedure is repeated in a iterative manner. 
 



NUMERICAL ANALYSIS AND RESULTS 
 
Slosh response - forced lateral oscillation 
To validate the developed numerical analysis algorithm, the non-linear behavior of the free surface in a 
rigid container is considered. The similar problem is solved by Kasuga et al. [7] and is available in the 
literature. The container is having a radius 0.5m and is filled with water up to a depth of 0.5m. It is 
subjected to a sinusoidal horizontal acceleration of the type given as 
 

tDta xx ⋅= ωω sin)( 2           (20) 
 
where xD  and ω  are the amplitude and the frequency of the forced horizontal displacement, respectively. 

In this analysis, the parameters of xD  and ω  are 0.01m and 5.85rps, respectively. 
 
The analysis results for both linear and non-linear free surface boundary conditions are shown in Fig. 2 
which shows the time history of the free surface displacement at Rx = , 0=y  of the container. To verify 
the developed analysis program and study the effect of the non-linear free surface boundary condition, the 
present numerical results are compared with the solution of Kasuga et al. As shown in Fig. 2, the trend of 
the present results for non-linear boundary condition agrees well with those of Kasuga et al. in respect of 
the amplitude and periodicity of the response. It may be observed that there is an upward shifting of the 
amplitude due to the effect of non-linear boundary condition. 
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Fig. 2 Free surface displacements due to horizontal forced vibration 

 
Fluid-structure interaction considering the non-linear free surface boundary condition 
A seismic analysis is performed to investigate the effect of the non-linear free surface boundary condition 
on the behavior of a liquid storage tank. The dimensions of the liquid storage tank is R (radius)=7.32m, 
H (height)=21.96m, and t  (wall thickness)=0.0254m. The liquid container is filled with water up to a 
depth of 21.96m. The material properties for the tank are Young’s modulus E =206.70GPa; Poisson’s 
ratio ν =0.3; and density sρ =7,840kg/m3. The north-south component of the 1940 El Centro earthquake 
records, with a peak acceleration of 0.348g, is used as the input ground acceleration into the horizontal 
direction. Damping ratios for the structure-impulsive interaction part and the sloshing interaction part are 
assumed to be 2% and 0.5%, respectively. 
 
 



Fig. 3 represents time histories of the sloshing displacement and base overturning moment for linear and 
non-linear boundary conditions, respectively. Table 1 summarized the maximum responses to the 
earthquake. From the analysis results, the maximum radial displacement and resultant forces are not 
seriously affected by the free surface boundary condition. Fig. 3(a) shows that the sloshing displacement 
of a free surface increases thoughtfully when the non-linear boundary condition is applied.  
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(a) sloshing displacement                                     (b) base overturning moment 

Fig. 3 Time history of seismic response of a liquid storage tank 
 
Table 1 Response of a liquid storage tank for linear and non-linear boundary conditions 

Linear case Non-linear case 
SI Unit 

Value Time(sec) Value Time(sec) 

)(max cmvs  1.080 2.68 1.081 2.68 

)(max NmM  2.495×108 4.87 2.493×108 4.87 

)(max NQ  2.111×107 4.87 2.109×107 4.87 

)/(max mmNN  1.482×106 4.87 1.481×106 4.87 

)(max cmη  36.80 2.49 50.63 2.49 

 
Seismic response of a base isolated LNG tank for various liquid depths 
A seismic fluid-structure-base isolation interaction analysis for the real size LNG tank is performed to 
evaluate the applicability of the developed method. The dimensions of the LNG tank is R =43.0m, 
H (including the wall and roof)=44.0m, and t =0.75m. The liquid container is filled with LNG up to 
various depths; full, 3 quaters, half and 1 quarter. The material properties for the tank are E =26.0GPa, 

ν =0.2 and sρ =2,500kg/m3 and the properties of the isolator are 15.0=α , KNF y 6900=  and 
cmY 65.0= . The artificial earthquake with a peak acceleration of 0.2g is used as the input ground motion 

into the horizontal direction. Damping ratios for the structure-impulsive interaction part and the sloshing 
interaction part are assumed to be 2% and 0.5%, respectively. 
 
Fig. 4 represents the sloshing displacements of linear and non-linear boundary conditions for various 
liquid depths. Table 2 summarized the maximum responses to the earthquake. From the results, the base 
isolation increases the liquid sloshing displacement considerably. However, the structural responses such 
as a radial displacement, base shear, overturning moment are reduced effectively. Those trends become 
more severe with increasing liquid depth.  
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(a) Full                                                               (b) 3 quarters 
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(c) Half                                                              (d) 1 quarter 

Fig. 4 sloshing height of free surface for various liquid depths 
 
Table 2 Response of a base isolated LNG tank for various liquid depths 

 )(max cmvs  )(max NmM  )(max NQ  )(max cmη  

Value 0.836 5.91×109 4.33×108 35.1 Fixed 
Time(sec) 12.17 12.17 12.17 11.69 

Value 0.161 1.35×109 8.35×107 44.9 
Full 

Isolated 
Time(sec) 11.6 5.69 5.69 11.63 

Value 0.280 2.71×109 2.54×108 33.5 
Fixed 

Time(sec) 11.98 6.15 6.15 11.96 
Value 0.087 6.37×108 5.31×107 40.3 

3 Quarters 
Isolated 

Time(sec) 11.52 11.47 11.47 11.59 
Value 0.190 5.89×108 8.08×107 27.2 

Fixed 
Time(sec) 11.01 5.69 5.69 11.66 

Value 0.081 2.65×108 3.38×107 32.1 
Half 

Isolated 
Time(sec) 11.45 11.47 11.47 11.54 

Value 0.188 5.24×107 1.25×107 17.9 
Fixed 

Time(sec) 7.73 11.31 11.31 13.97 
Value 0.073 4.21×107 1.01×107 18.4 

1 quater 
Isolated 

Time(sec) 11.45 11.45 11.45 13.99 
 



 
CONCLUSIONS 

 
The numerical analysis of base isolated liquid storage tanks subjected to a dynamic loading is examined 
using the coupling method, which combined the finite elements for a structure region and a base isolation 
system and the boundary elements for a fluid region. To evaluate the effect of a fluid-structure interaction 
accurately, the non-linear boundary condition of a free surface is considered. The procedure developed in 
this study is concentrated on a cylindrical storage tank; however, it is applicable to other tank 
configurations because no geometric assumption or simplification is included in it. Through this study, 
following results are obtained. 
 
(1) To validate the developed numerical algorithm, Results of present study for forced horizontal vibration 
is compared with those of linear analysis and Kasuga et al. The forced vibration analysis demonstrates that 
the developed method can represent the large sloshing motion of free surface. Also, as the effect of non-
linearity becomes large, the shape of free surface motion is changed to a non-symmetric configuration and 
the upward displacement is considerably enlarged.  
 
(2) Fluid-structure interaction analysis is performed for a seismically excited liquid storage tank 
considering both the linear and non-linear free surface boundary conditions. Then, the fact that the 
maximum sloshing height is less estimated by the analysis using the linear free surface boundary 
condition is found out. Also, it can be found that the maximum radial displacement and stress resultants of 
the structure and hydrodynamic pressure acting on the wall are not seriously affected by the free surface 
boundary condition. 
 
(3) To evaluate the applicability of the developed method, a numerical analysis of a base isolated LNG 
tank is performed for the different liquid levels. From the results, the base isolation increases the liquid 
sloshing displacement considerably. However, the structural responses such as a radial displacement, base 
shear, overturning moment are reduced effectively. Those trends become more severe with increasing 
liquid depth. 
 

REFERENCES 
 
1. Stoker J.J. “Water Waves.” Interscience Publishers, New York, 1954. 
2. Longuet-Higgins M.S., Cokelet E.D. "The deformation of steep surface waves on water(1)." A 

Numerical Method of Computation, 1976; A350: 1-26. 
3. Nakayama T. "Boundary element analysis of nonlinear water wave problems." International Journal 

of Numerical Methods in Engineering, 1983; 19: 953-970. 
4. Lay K.S. "Seismic coupled modeling of axisymmetric tanks containing liquid." Journal of 

Engineering Mechanics, 1993; 119: 1747-1761. 
5. Tsopelas P.C., Constantinou M.C., Reinhorn A.M.. “3D-BASIS-ME: Computer program for 

nonlinear dynamic analysis of seismically isolated single and mutiple structures and liquid storage 
tanks.” In: Technical Report NCEER-94-0010, National Center for Earthquake Engineering 
Research, 1994. 

6. Park Y.J., Wen Y.K., Ang A.H.S. “Random vibration of hysteretic systems under bidectional ground 
motions.” Earthquake Engineering and Structural Dynamics, 1986; 14(4): 543-557. 

7. Kasuga L., Sugino, R., Tosaka, N. "Sloshing motion in a cylindrical container by boundary element 
method," Boundary Element Methods, Eds. M. Tanata, Q. Du and T. Honma, Elsevier, 1993: 315-
324. 


	Return to Main Menu
	=================
	Return to Browse
	================
	Next Page
	Previous Page
	=================
	Full Text Search
	Search Results
	Print
	=================
	Help
	Exit DVD



