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SUMMARY 
 
Time-domain identification system of dynamic soil-structure interaction effects was developed.  Kalman 
filter with weighted local iterations is applied to a soil-structure interaction system that was modeled by a 
single-degree-of-freedom system supported by a sway-rocking foundation model.  By using this system, 
both stiffness and damping parameters are well identified. 
 

INTRODUCTION 
 
Soil-structure interaction during earthquakes has been a challenging research topic for the last fifty years.  
Many researchers have devoted themselves to this problem resulting in tremendous advances in the field.  
However, these advances are still not sufficiently reflected in earthquake resistant design codes.  One of 
the reasons is that soil-structure interaction is mathematically complicated; the analysis has to take into 
account ground conditions as well as geometries of the foundations.  The analysis becomes even more 
complicated if the stiffness of the soil deteriorates due to strong ground shaking.  This compels 
researchers to idealize the model of soil-structure interaction so that they can handle the problems. 
 
Application of system identification may be effective in these kinds of complications.  It enables us to 
identify the soil stiffness from the observation records of soil-structure interaction systems.  In this study, 
therefore, a time-domain identification system of soil-structure interaction effects is developed.  The soil-
structure interaction system is modeled by a single degree of freedom system supported by a sway-
rocking foundation model, then, the governing equation is expressed by a state equation. In order to 
stably identify the soil stiffness in the time-domain, an extended Kalman filter with a weighted local 
iteration algorithm is applied to the interaction system.  Observation records are artificially created in this 
study by computing the responses of the soil-structure interaction system, since the objective of this 
research is only to confirm the applicability of the identification scheme to the soil-structure interaction 
systems. 
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MODELING OF SOIL-STRUCTURE 
INTERACTION SYSTEMS AND THEIR 

STATE SPACE EXPRESSIONS 
 
Modeling of soil-structure interaction 
Soil-structure interaction (SSI) analyses can be 
categorized as direct and substructure approaches.  
In a direct approach, the soil and structure are 
included within the same model and analyzed in a 
single step.  Because assumptions of superposition 
are not necessary, it is possible for nonlinear 
analyses to be performed.  However, the analyses 
remain quite expensive from a computational 
standpoint. 
 
In a substructure approach, the SSI problem is 
broken into several parts, i.e. evaluation of 
foundation input motion, determination of 
impedance function and dynamic analysis of the 

structure based on these two procedures.  Because each step is independent of the others, one can engage 
in a specific problem.  In addition, results from each step are physically interpreted independently since 
the SSI analyses procedure in the substructure approach are physically separated.  Thus, the results from 
the substructure method are more likely reflected in seismic design codes.  This study aims to develop an 
identification system to determine the impedance functions of SSI. 

 

 
 

Fig.1   Sway-Rocking Model 

 
The governing equation of superstructure-foundation-soil system is expressed as follows if the 
superstructure is modeled as a single-degree-of-freedom system. 
 

K

Sf

S

S

K

S

fS

S

f

f

rrrh

hrhh

S

f

f

rrrh

hrhh

S

f

f

SfSS

SfSS

SSS

HmJ
Hm
Hm

u
Hm
mm

m
u
u

KK
KK

k
u
u

CC
CC

c
u
u

HmJHmHm
Hmmmm
Hmmm

θ
θθθ

&&&&

&

&

&

&&

&&

&&

















+
−
















+−=
































+
































+

































+
+

22 0
0

00

0
0

00

(1) 
 
where =horizontal displacement of the structure relative to the foundation, u =displacement of the 

foundation relative to free-field, 

u f

fθ =rocking angle of the foundation, m =mass of the structure, S

H =height of the structure, m =mass of the foundation, u =translation of massless foundation due to 

kinematic interaction, 
f K

Kθ =base rocking of massless foundation slab due to kinematic interaction, 
=damping coefficients for foundation, =stiffnesses for foundation rrrh CCC ,, hr ,hhC rrrhhr KKKK ,,hh ,

 
For the modeling of SSI employed in this study, the effect of kinematic interaction is ignored, and the off-
diagonal components of the stiffness and damping matrices are ignored considering the foundation 
geometry such that its depth is small enough compared with its width.  Then, the equation (1) becomes as 
equation (2) which is shown schematically in Figure 1. 
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Although the rigorous solutions of stiffnesses for circular foundations are frequency dependent functions 
(Veletsos and Wei [1]), stiffnesses at the dominant frequency of the SSI system are prescribed for the 
model.  Based on equation (2), dynamic SSI analysis is performed. 
 
State space expressions of the SSI model 
To obtain a state-space expression, the equation (2) is expressed in a simple form. 
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Solving equation (3) by the linear acceleration method, the following equations are obtained. 
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where =time step, ∆ =time increment, then time is expressed as tk t tkk ∆= .  {  
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These equations express forwarding process from time step k  to 1+k  except the input term ( )1+kF .  
The input term includes noise because the term is substituted by observed records.  Here, the input noise 
is extracted by using Sawada’s method [2] which incorporates the acceleration difference 
 

)()1()( kxkxkw gg &&&& −+=                                                        (11) 
 
This function w  becomes acceleration difference when the input acceleration does not 
include any noise.  However, the input usually accompanies noise, thus the function consists of 
the acceleration difference and the noise.  Using this function, the transition of the input 
acceleration, velocity and displacement are expressed as follows: 
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Statistical characteristics concerning the system noise are assumed as follows. 
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Here, V t  is a variance and it is approximately computed as follows. ( )
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where T =averaging time a

 
By expressing equations (12)-(14) in a matrix form, 
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This equation is simply expressed as below. 
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From equation (10) and (12)-(14), the term )1( +kF  included in equation (4) is expressed as follows. 
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This equation is also simply expressed as below. 
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Substituting equation (19) into equation (21), the following equation is finally obtained. 
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With this manipulation, equations (4)-(6) become a purely forwarding process from time step  to k 1+k .  
 
Including stiffnesses k  into state vector rrhhS KK ,, { }4Z  and damping coefficients  into state 
vector { , transitions of these vectors are expressed as follows. 
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Concerning mass parameters of the system, the mass of the structure and the mass and moment of inertia 
of the foundation are assumed to be known. 
 
Taking into account accelerations, velocities and displacements at each degree of freedom and at the base, 
in addition to these spring constants and damping coefficients as state variables, the following state space 
expression is obtained. 
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where {  and  are composed of several vectors as follows: }Z { )(tZG }
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Time-domain identification system is established by using the state space expression of the governing 
equation.  To apply Kalman filter for the system identification, the nonlinear equation (25) is to be 
linearized first, then an observation equation is prepared.  With these and an iterated extended Kalman 
filter, time-domain identification system is finally developed. 
 
Linearization of state equation 
Kalman filter is originally developed for the identification of linear systems.  Thus, an extended Kalman 
filter is applied for the nonlinear system identification assuming that nonlinear behavior of the system can 
be approximated as linear for a small perturbation. 
 
Now, assuming G  as a smooth function, Tayler expansion of { )(kZ } { })(kZG  is found about the optimal 
estimation at the time step k .  Ignoring the terms of Tayler expansion higher than second order, we 
obtain the truncated form of G .  Then, { )(kZ }

)
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where  is a transition matrix which is expressed as below. ( kk |1+Φ
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where the components are computed as follows. 
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SYSTEM FOR IDENTIFICATION IN THE TIME-DOMAIN 



Observation equation 
Taking velocities and displacements at each degree of freedom in addition to accelerations, velocities and 
displacements at the base, the observation equation is prepared. 
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{ )(kv  is observation noise vector which is assumed to have the following characteristics. 
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where  is covariance matrix of observation noise. ( )[ tR ]
 
Kalman filter with weighted iterations 
The extended Kalman filter can be applied for the non-linear system identification if the non-
linear behavior of the system can be approximated as linear for a small perturbation.  However, 
the algorithm becomes unable to track the phenomenon by the linear approximation of the 
transfer matrix if the system shows strong non-linear behavior.  In addition, if the observation 
information includes a strong non-stationary phenomenon, the ordinary Kalman filter is not 
applicable.  One approach to compensate these deficiencies is to incorporate the forgetting factor 
for the obtuseness of the system noise.  Another contractive method is the Kalman filtering with 
weighted local iteration (Sawada [3]), which is to be used in this study. 
 
The algorithm of the Kalman filter with weighted local iteration is shown in Fig.2. This method 
first carries out an ordinary extended Kalman filtering algorithm using the known estimate 

 and its error covariance matrix P , then X  and )|(ˆ kkX )|( kk )1|1(ˆ ++ kk )1|1(1 ++ kkP

|1(1

 are 
obtained (Step1).  Then a weighted local iterative extended Kalman filtering algorithm is 
conducted near the current time step.  In this process, the error covariance matrix )1++ kkP  
is modified by multiplying the weighting factor r , that is )1+|1(1 +⋅ kkPr  (Step2).  Starting 
from the time step k , an extended Kalman filtering is conducted m  times in a forward 

 ) and  times in a backward direction k
1+

mik ++1 ,...,3,2,1(i = m2 im −++1  , )2,...,3,2,1(i = m



and again m  times in the forward imk +−+1  
, in turn (Step3) as shown in Fig.2.  With this algorithm, non-stationary 

parameters are identified more easily and stably. 
)3,2,1(i = ,...,m

Table 1   Specification of the SSI model 
Parameters Prescribed value 

Sm  5100.5 ×  (kg) 

fm  510927.3 ×  (kg) 

fJ  610978.2 ×  (kg m2) 
H  7.0 (m) 

Sk  81016.3 ×  (N/m) 

hhK  910035.1 ×  (N/m) 

rrK  10102524.2 ×  (Nm) 
Sc  610257.1 × (kg/sec) 

hhC  7109733.1 ×  (kg/sec) 

rrC  7100653.5 ×  (kg m2/sec) 
 

k k+1 k+m+1k-m+1 

 Step1 

Step2 

Step3 

Step3 

Step3 

 
Fig.2   Weighted local iteration 

 
 

RESULTS OF IDENTIFICATION 
 
Parameters of the SSI model 
Parameters which specify the SSI model used in this study are shown in Table 1.  Among these 
parameters, spring constants and damping coefficients are to be identified. 
 
Fig.3 shows a horizontal acceleration record observed at Chiba experimental station, Institute of Industrial 
Science, University of Tokyo.  This record in which maximum acceleration is about 60 gal is used as 
input to the SSI system and the computed responses are used as mock observation records. 
 
Parameters for identification 
For the identification of the SSI model, both the ordinary extended Kalman filter (EK) and the extended 
Kalman filter with iteration (EKI) approach are applied.  Parameters that control the identification 
algorithm are shown in Table 2. 
 
Results of identification 
Figures 4 and 5 show displacement responses of SSI model identified by EK and EKI, respectively, in 
conjunction with the mock observation records.  Wide discrepancy can be seen between the results 
identified by EK and the observed records, whereas the results identified by EKI completely coincide 
with observed ones.  These results indicate that the EKI scheme is capable of identifying the observed 
records. 
 



Table 2   Parameters for identification
Parameters considered value

Number of data for 
an iteration   m 

30 

Number of local 
iteration   n 

0 (EK) 
1 (EKI) 

Weighting factor   r 1.1 
 

 
Figures 6 and 7 show identification results of 
stiffness and damping parameters, respectively.  
Both stiffness and damping parameters can be well 
identified by using EKI scheme with principal part 

of the observed wave.  However, without any local iteration, prescribed stiffness and damping parameters 
could not be identified. 
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CONCLUSIONS 
 
This study established a time-domain identification system of soil-structure interaction effects.  A soil-
structure interaction system was modeled by a single degree of freedom system supported by a sway-
rocking foundation model; then the governing equation was expressed by a state equation. In order to 
stably identify the soil stiffness in the time-domain, an extended Kalman filter with a weighted local 
iteration algorithm was applied to the soil-structure interaction system.  Observation records were 
artificially created by preliminarily computing the soil-structure interaction responses.  The identified 
responses are identical with the artificially created observed records.  Identified stiffness and damping 
parameters coincide with their prescribed values.  With these results, applicability of the time-domain 
identification system of the soil-structure interaction was confirmed. 
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Fig.5  Identified results by EKI 
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Fig.4   Identified results by EK 
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Fig.7   Identification of damping 
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Fig.6   Identification of stiffness 
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