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SUMMARY 
 
The study presents a new design approach to optimally locate dampers in framed structures. The optimal 
location and placing of damping devices is investigated by assessing the power balance of structures 
subjected to seismic actions described by a response spectrum. More specifically, through describing the 
amount of power dissipated by means of a performance index, the problem of optimization is solved by its 
maximization through a modal analysis in the state space. The proposed design methodology has been 
tested by analyzing the seismic response of two structural steel-framed typologies subjected to several 
recorded seismic excitations. The results demonstrate the effectiveness of the design procedure. 
 

INTRODUCTION 
 
In recent years new performance criteria have been developed to define more detailed and explicit seismic 
limit states both for structural and non-structural elements. The concept of "performance objectives" arises 
from the need to characterize, both in the design of new structures and in the retrofit of existing ones, the 
overall behavior performance for specific levels of seismic excitation (ATC 40  – 1996).   
Among the performance levels defined by ATC 40, the "Operational" one requires the complete 
functionality of the building. Such a strict performance level, required for strategic structures (e.g. 
hospitals, barracks, etc.) at the occurrence of seismic events characterized by a high return period (e.g. 
higher than 475 years), could be straightforwardly achieved by using passive control strategies. Amongst 
other issues, technical improvements and structural behavior in the light of recent seismic events have 
resulted in a remarkable development of extra-structural dissipation strategy effectiveness. Therefore,  this 
seismic protection strategy may be considered together with the need to control structural damage both in 
new and existing buildings. The damping devices typically work by means of mechanisms based on the 
transformation of the seismic input energy in heat (fig. 1) (Ribakov Y. and Reinhorn M., 2003, Sigaher 
A.N., Constantinou M.C., 2003), e.g. the inelastic response of metallic elements (hysteretic dissipators) 
(Whittaker et al., 1989, Aiken et al., 1990), friction between surfaces (friction dissipators) (Pall A.S. and 
Marsh C. 1982), viscoelastic dissipation, typical of copolymer materials (viscoelastic dissipators) 
(Constantinou and Symans 1993, Soong and Constantinou 1994). 
This study proposes a new design methodology to optimally locate energy dissipation devices in framed 
structures by taking into account the spectral seismic response demand and modal structural behavior. The 
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optimal damping allocation problem has been significantly investigated in relevant scientific literature 
(Dolce M. 1994, Vulcano 1993, Ciampi et al. 1992, Paolacci et al. 1998, Zhang and Soong 1992, 
Takewaki 1997, Lopez Garcia 2001, Singh and Moreschi 2001, Wei Liu 2002).  
 

 
Figure 1: Convenient placement of dissipation devices in framed structures 

 
Optimal damping device allocation is herein investigated by assessing the power balance of structures 
subjected to seismic actions described by a response spectrum. In particular, the dissipated power, through 
a modal analysis in the state space, is evaluated by varying the configuration of the damping devices. The 
greater the dissipated power the better the location of the devices.  
Such a methodology has been tested by comparatively evaluating the seismic responses of two framed 
steel structures, with different configurations of damping devices and subjected to a set of recorded 
seismic excitations. 
 
 

DISSIPATION DEVICES OPTIMAL DISTRIBUTION FORMULATION PROBLEM 
 
Let us consider an equivalent linear multi-degree of freedom system (MDOF) described by: 
 

gu&&&&& MIKxxCxM −=++  (1) 

 
where M , C and K  respectively represent the mass, overall damping and stiffness matrices; x  the base 
relative displacement vector; I  the unitary vector and, finally, gu&&  the seismic input acceleration. Note that 

C and K  are, in this case, diagonal matrices.  

By considering the space state vector [ ]TxxX &= , equation 1 can be rewritten as: 
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where NxNO  and NxNI , respectively represent the NN ×  zero and identity matrices and 1NxO  the zero 
vector of length N.  
System dynamic behavior can be assessed through knowledge of eigenvalues iλ  and eigenvectors iΦ  of 
matrix A  (Perko L., 1993, Chopra A.K., 1995) which lead to: 
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where )(tpi  represents the i-th modal coordinate,  )(tpi  its complex conjugate.   

By considering that the last N components of the space state vector [ ]TxxX &=  represent relative 

velocity and defining the matrix *C :  
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the dissipated power by the overall system is given by: 
 

XCX *)( TtP =  (4) 

 
being C  a diagonal matrix, equation 4 can be rewritten as:  
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where *

,llc  represent the l-th components of the matrix *C  and l
iX  the l-th components of the i-th modal 

form.    
In the case of seismic demand described by a response spectrum, the maximum dissipated power can be 
estimated by means of CQC (Complete Quadratic Combination - Wilson, Der Kiureghian and Bayo, 1981) 
composition rule: 
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where Pi,max and Pj,max are respectively the maximum value of the dissipated power considering the 
contribution of the i-th and j-th modal form. The modal forms correlation coefficient ijρ  can be expressed 

as: 
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iξ , jξ , jiij ωωβ = being respectively the damping ratio coefficients and the natural frequency ratio of the 

modal forms i and j.   
Therefore, a measure of the maximum dissipated power, for a fixed disposition of the additional 
dissipation devices, is given by: 
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Considering that the response of the system (2), using (3), can be rewritten as: 
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being diidii SgimpimSgrepre ⋅=⋅= )()(  ,)()( maxmax  and gi the participation factor of the i-th modal form, 
we obtain:  
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By combining (10) and (8), a measure of the maximum power is provided in consideration of additional 
damping, mode correlation factors, values of the spectra and participation coefficients of the single modal 
forms. 
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The objective of passive control methodology is to maximize the maximum dissipated power through an 
optimal allocation of a fixed amount of additional damping to the system in accord to the following 
constraints: 
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Equations 12 represent the economic (ctot = maximum value of the available dissipation resource) and 
technological constraints ( llc ,  = maximum value of the dissipation resource for the l-th level) in an 

implicit form. The solution to the problem can be found by a non-linear programming evolutive algorithm 
(Palazzo, Petti, De Iuliis, 2001). 
 
 

NUMERICAL EXPERIMENTATION 
 
Proposed design methodology has been tested on two different framed steel structures: the first one 
“structure A” designed according to Eurocode 8 (ENV 1998-1-1) (fig. 2, tab. 1); the second “structure B” 
having as its reference model the one described in "Next generation Benchmark Control Problem for 
Seismically Excited Buildings" (Spencer B.F. - Christenson R.E. - Dyke S.J. 1998), (fig. 3, tab. 2) with 
modified seismic masses. Such a modification has been provided to investigate seismic response in the 
case of recorded seismic excitations characterized by high energetic content on periods T=2-3 sec. 
 



 
 

 
Figure 2: Model of structure A 

 

 

 
 

Table 1: Frequencies and modal forms for the un-damped structure A 
mode 1 

T1=0.455 sec 
2 

T2=0.187 sec 
3 

T3=0.109 sec 
4 

T4=0.076 sec 
5 

T5=0.063 sec 
component      

Level 1 0.0282 0.0658 -0.120 0.139 0.198 
Level 2 0.0787 0.1772 -0.298 0.302 0.384 
Level 3 0.1312 0.2762 -0.395 0.296 0.270 
Level 4 0.1873 0.3520 -0.362 0.085 -0.112 
Level 5 0.2400 0.3810 -0.194 -0.186 -0.389 
Level 6 0.2928 0.3549 0.072 -0.334 -0.274 
Level 7 0.3525 0.2563 0.376 -0.206 0.213 
Level 8 0.4013 0.1066 0.490 0.132 0.431 
Level 9 0.4840 -0.3016 0.123 0.634 -0.479 

Level 10 0.5271 -0.5701 -0.411 -0.431 0.203 
 
Both the structures are considered to have 5% viscous damping on the first modal form. For such 
structures the optimal placement of viscous extra-structural dissipation devices has been designed to 
respectively achieve a 10% and 20% damping ratio by considering only the first modal form (n=1 in tabs. 
3-4) and the first three ones (n=3 in tabs. 3-4). Extra-structural damping design has been carried out by 
taking into account the response spectra A and C, defined by EuroCode 8 (ENV 1998), and that of Mexico 
City (1985). 
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Figure 3: Model of structure B 

 
 
 
 
 

 

 
Table 2: Frequencies and modal forms for the un-damped structure B 

mode 1 
T1=2.493 sec 

2 
T2=0.898 sec 

3 
T3=0.554 sec 

4 
T4=0.407 sec 

5 
T5=0.323 sec 

component      
Level 1 -0.032 0.0845 0.1313 0.1721 -0.2047 
Level 2 -0.054 0.1381 0.2058 0.2535 -0.2764 
Level 3 -0.075 0.1854 0.2573 0.2829 -0.2573 
Level 4 -0.096 0.2255 0.2819 0.2563 -0.1554 
Level 5 -0.116 0.2572 0.2772 0.1785 -0.0009 
Level 6 -0.136 0.2781 0.2403 0.0598 0.1584 
Level 7 -0.156 0.2873 0.1761 -0.072 0.2652 
Level 8 -0.174 0.2844 0.0922 -0.190 0.2818 
Level 9 -0.192 0.2695 -0.002 -0.267 0.2025 
Level 10 -0.208 0.2432 -0.097 -0.288 0.0524 
Level 11 -0.225 0.2048 -0.186 -0.249 -0.1252 
Level 12 -0.241 0.1544 -0.256 -0.146 -0.2639 
Level 13 -0.256 0.0956 -0.295 -0.005 -0.3024 
Level 14 -0.270 0.0283 -0.298 0.1461 -0.2210 
Level 15 -0.283 -0.045 -0.256 0.2671 -0.0287 
Level 16 -0.294 -0.118 -0.174 0.3149 0.1804 
Level 17 -0.304 -0.192 -0.054 0.2697 0.3196 
Level 18 -0.313 -0.262 0.0912 0.1208 0.2872 
Level 19 -0.321 -0.328 0.2545 -0.119 0.0439 
Level 20 -0.327 -0.381 0.4041 -0.391 -0.3566 



Table 3: Optimal placement for extra-structural dissipation devices (Structure A) 
 Ctot = 11 KNsec/m Ctot = 36.3 KNsec/m 

modal forms n=1 n=3 n=1 n=3 

spectrum A C A C A C A C 
Level 1 0 0 0 0 0 0 0 0 
Level 2 0 0 0 0 0 0 0 0 
Level 3 0 0 0 0 0 0 0 0 
Level 4 4.7 5.0 5.2 5.5 15.4 15.4 15.3 15.3 
Level 5 0 0 0 0 0 0 0 0 
Level 6 0 0 0 0 8.3 9.5 8.5 9.4 
Level 7 4.6 4.4 4.3 4.1 9.4 8.4 9.2 8.4 
Level 8 0 0 0 0 0 0 0 0 
Level 9 1.7 1.6 1.5 1.4 3.2 3.0 3.2 3.1 

Level 10 0 0 0 0 0 0 0.1 0.1 
Damping %101 =ξ  %201 =ξ  

 
Results show how dissipation device placement is clearly related to the dynamic characteristics of the 
structure and response spectrum shape. For structure B, in the case of spectrum class A, by taking into 
account the first 3 modal forms, optimal placement leads to high damping amounts in higher storeys due 
to the significant contribution of the higher modes to the dynamic response.  
The structure’s dynamic behavior to recorded seismic events (tab. 5), with and without optimal extra-
structural devices, has been numerically evaluated. 

 
Table 4: Optimal placement for extra-structural dissipation devices (Structure B) 

 Ctot = 610 KNsec/m Ctot = 2205 KNsec/m 

modal 
forms 

n=1 n=3 n=1 n=3 

spectrum A MC A MC A MC A MC 
Level 1 180 170 150 170 275 270 200 270 
Level 2 170 165 160 170 380 340 205 345 
Level 3 145 140 165 150 380 340 200 340 
Level 4 115 115 45 120 380 335 220 335 
Level 5 0 20 0 0 365 325 175 325 
Level 6 0 0 0 0 325 320 5 320 
Level 7 0 0 0 0 100 275 0 270 
Level 8 0 0 0 0 0 0 0 0 
Level 9 0 0 0 0 0 0 0 0 
Level 10 0 0 0 0 0 0 60 0 
Level 11 0 0 80 0 0 0 350 0 
Level 12 0 0 0 0 0 0 0 0 
Level 13 0 0 0 0 0 0 0 0 
Level 14 0 0 0 0 0 0 290 0 
Level 15 0 0 0 0 0 0 270 0 
Level 16 0 0 10 0 0 0 230 0 
Level 17 0 0 0 0 0 0 0 0 
Level 18 0 0 0 0 0 0 0 0 
Level 19 0 0 150 170 275 270 200 270 
Level 20 0 0 160 170 380 340 205 345 

Damping %101 =ξ  %201 =ξ  

                                                       MC = Mexico City seismic excitation spectru 



Table 5: Dynamic characteristics of the seismic events under consideration 
Seismic event T[sec] PGA[cm/s2] 

Imperial Valley  (1940) 53.8 341.82 

Kern County (1952) 54.42 175.90 
Loma Prieta (1989) 40.00 270.36 
Mexico City (1995) 180.1 167.91 

Petrovac (1979) 19.62 437.60 
Pacoima (1971) 41.90 1148.10 
Parkfield (1966) 26.18 269.60 
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Figure 4: Seismic events under consideration: response spectra 

 
Seismic response comparisons between uniform and optimal placement of extra-structural damping, in the 
case of structure B subjected to the Mexico City seismic events, are plotted in figs 5-8. 

 

 
Figure 5: Elastic energy: comparison between uniform and optimal distribution of extra-structural 
dissipation (Structure B) 



 
Figure 6: Kinetic energy: comparison between uniform and optimal distribution of extra-structural 
dissipation (Structure B) 
 

 
Figure 7: Roof displacement: comparison between uniform and optimal distribution of extra-structural 
dissipation (Structure B) 

 
In particular, figures respectively show the comparison among the elastic energy, the kinetic energy, the 
roof displacement and the overall input and dissipated energy. 
For the Mexico City event, optimal damping device placement leads to a 33% reduction in elastic energy, 
24% in kinetic energy and 10% in roof displacement with respect to the uniform distribution. As regards 
dissipated energy behavior, optimal design increases the overall input of energy and decreases the 
structure’s dissipated energy as well as the damage.   
For all the seismic events under consideration, tables 6-9 show the maximum response ratios in the case of 
optimal design and uniform device placement for elastic energy and kinetic energy. 
 

 



 
Fig. 8: Overall dissipated energy: comparison between uniform and optimal distribution of extra-structural 
dissipation (Structure B) 
 

Table 6: Elastic energy ratio between optimal and uniform distribution  – Structure A 
 Ctot = 11 KNsec/m Ctot = 36.3 KNsec/m 

modal forms n=1 n=1 

spectrum A C A C 
Imperial Valley 

 (1940) 
0,9102 0,9127 0,8284 0,8303 

Kern County  
(1952) 

0,8938 0,8936 0,8631 0,8629 

Loma Prieta  
(1989) 

0,9526 0,9526 0,9194 0,9239 

Mexico City 
(1995) 

0,9300 0,9318 0,9823 0,9813 

Petrovac 
(1979) 

0,8543 0,8568 0,8110 0,8142 

Pacoima 
(1971) 

0,8877 0,8866 0,9462 0,9390 

Parkfield 
(1966) 

0,9048 0,9046 0,8511 0,8473 

 
Results show a general improvement in seismic response for the optimally designed structures. In the case 
of structures characterized by a main vibration period in the high energy range of the seismic demand 
spectrum, maximum gains are achieved. Generally, the higher modal forms contribution in the proposed 
design methodology lead to better seismic performance against the aleatory character of the input 
excitements.   
 
 
 



Table 7: Elastic energy ratio between optimal and uniform distribution  – Structure B 
 Ctot = 610 KNsec/m Ctot = 2205 KNsec/m 

modal forms 
n=1 n=1 

spectrum Class A MC Class A MC 

Imperial Valley (1940) 0,8768 0,8805 0,7745 0,7787 

Kern County  (1952) 0,8587 0,8599 0,8665 0,8604 

Loma Prieta  (1989) 0,9107 0,9108 0,9107 0,9216 

Mexico City (1995) 0,7533 0,7502 0,6813 0,6673 

Petrovac (1979) 0,9121 0,9125 0,8456 0,8522 

Pacoima (1971) 0,9374 0,9368 0,9101 0,9148 

Parkfield (1966) 0,8422 0,8424 0,9081 0,9101 

      MC = Mexico City seismic excitation spectrum 
 

Table 8: Kinetic energy ratio between optimal and uniform distribution  – Structure A 
 Ctot = 11 KNsec/m Ctot = 36.3 KNsec/m 

modal forms n=1 n=1 

spectrum Class A C Class A C 

Imperial Valley (1940) 0,9603 0,9612 0,9432 0,9440 

Kern County (1952) 0,9328 0,9315 0,9533 0,9514 

Loma Prieta (1989) 0,9684 0,9695 0,9355 0,9379 

Mexico City (1995) 0,9973 0,9976 0,9967 0,9970 

Petrovac (1979) 0,9463 0,9425 0,9453 0,9441 

Pacoima (1971) 0,9779 0,9772 0,9810 0,9821 

Parkfield (1966) 0,9277 0,9189 0,9602 0,9608 

 
Table 9: Kinetic energy ratio between optimal and uniform distribution  – Structure B 

 Ctot = 610 KNsec/m Ctot = 2205 KNsec/m 

modal forms n=1 n=1 

spectrum Class A MC Class A MC 

Imperial Valley  (1940) 0,9445 0,9448 0,9238 0,9234 

Kern County  (1952) 0,9543 0,9550 0,9721 0,9819 

Loma Prieta  (1989) 0,9573 0,9554 0,9885 0,9912 

Mexico City (1995) 0,7550 0,7545 0,7753 0,7590 

Petrovac (1979) 0,9731 0,9758 0,9441 0,9465 

Pacoima (1971) 0,9464 0,9495 0,9878 0,9793 

Parkfield (1966) 0,8736 0,8755 0,9174 0,9271 

   MC = Mexico City seismic excitation spectrum 
 
 

CONCLUSION 
 

A passive control strategy for framed structures, based on the optimal placement of extra-structural 
dissipation devices, is proposed. The design methodology is based on maximization of the instant 



maximum power dissipated by the overall system in consideration of an assigned response spectrum. In 
particular, this maximization is pursued through modal analysis in the state space.  
The proposed design methodology has been tested by analyzing the seismic response of two structural 
steel-framed typologies which were subjected to different recorded seismic excitations. The results 
showed the effectiveness of the proposed optimization method. Particularly, reductions greater than 30% 
are achieved in seismic response in the case of optimal distribution for extra-structural dissipation in 
comparison with uniform distribution.    
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