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SUMMARY 
 
To examine dynamic behaviors of structures due to ground motions considering phase differences, the 
elastic response analyses were conducted, in which rigidity of foundation slabs, shear wave velocity 
(rigidity of the ground), structural overall length were assumed to be parameters. SH waves inputted 
obliquely from perpendicular downward were considered as input ground motions. 
 
As a result of the analyses, the dynamic responses of the structures due to ground motions considering 
phase differences were considered in terms of the relationship between rigidity of each spring of the 
structures, that of the ground, the incident angle, etc., and these relationships were examined 
quantitatively. 
 

INTRODUCTION 
 
In the structural design practice, input ground motions are usually treated as a body wave inputted 
vertically from perpendicular downward.  But it is thought that actual ground motions are not always 
inputted vertically and sometimes inputted obliquely.  When a ground motion is inputted obliquely,  each 
part of a foundation of a structure is exerted by different forces. 
 
In recent years, many structures with a large floor area are constructed. And it is thought that such 
structures are affected by oblique input ground motions.  So the elastic response analyses are conducted in 
order to examine dynamic behaviors of structures due to ground motions considering phase differences. 
 

ANALYTICAL MODEL 
 
The unit model is the single-degree-of-freedom system which is supported by the foundation slab with the 
horizontal soil spring Hk . And the analytical model is the multi-degree-of-freedom system which consist 

                                                 
1 Research Associate, Tokyo Metropolitan University, Tokyo, Japan. Email: kyamamur@arch.metro-
u.ac.jp 
2 Professor, Tokyo Metropolitan University, Tokyo, Japan. Email: tanishi@arch.metro-u.ac.jp 
3 Japan Nuclear Cycle Development Institute, Ibaraki, Japan. Email: nakanishi.ryuuji@jnc.go.jp 



of the unit models serially connected by the floor slab spring sk and the foundation slab spring fk . Fig.1 

shows the analytical model.  In order to define parameters of the model, the followings are assumed.  
 
1. The size of the unit structure is 12m for span direction and 8m for longitudinal direction. 
2. A natural period of the unit structure is about 0.3 seconds. 

3. Mass of the unit structure is 1ton/m 2  and mass of the foundation is 3 times as heavy as the unit 
structure. 

4. The floor slab is a RC slab with 12cm thick and the stiffness of the slab spring is estimated based on 
in-plane deformation. 

5. The horizontal soil spring is estimated by the Parmelee’s equation. (where poisson ratio=0.3, 

density=1.5t/m 3 ) 
6. Damping of the system is local viscous damping. The damping factor of the upper structure and the 

foundation is 0.02 and 0.1 respectively. 
 
The other parameters have several values as shown in Tab.1. 
 
SH waves inputted obliquely from perpendicular downward were considered as input ground motions. 
Because of the oblique angle of incidence, the input ground motions to each supporting point have phase 
differences (time differences). Fig.2 shows the direction of input ground motions and an angle of 
incidence θ . 
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             Fig.1 Analytical model                                    Fig.2 Input ground motion 

 
Tab.1 Parameters 

l : overall length of structure 24m(3spans), 48m(6spans), 96m(12spans), 192m(24spans) 

sf kk / : ratio of stiffness of slabs 0, 1, 2, 4, 8, 16, 32 

SV : velocity of shear wave 100m/s, 400m/s 

θ : angle of incidence 0 o , 6 o , 12 o ,18 o ,24 o ,30 o  
 
 
 

EQUATION OF VIBRATION 
 
Because of the effect of the floor and foundation slab springs, vibration of the model is express by the next 
equation. 
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where [ ]M  is mass matrix, [ ]C  is damping matrix, [ ]K  is stiffness matrix, { }y  is vector of displacement 

of the structure, { }0y  is vector of displacement of the ground and [ ]GK  is matrix related to forces caused 

by the ground displacement. 
 
When the model consists of  three unit structures,  [ ]K  and [ ]GK  are expressed as follows. 
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Vector of displacement of ground motions with phase difference θ  can be express by the next equation. 
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Then acceleration is, 
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If the right side of eq(1) is expressed as { }f , 
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Substituting eq(4) and (5) into (6), 
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When { }y  can be expressed by the sum of product of s-th mode vector { }us  and coefficient qs  as 

follows, 
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And variable Gs  is defined by the next equation, 
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{ }y  is, 
 

{ } { } ipt

s

s

sss

n

s
s eap

M

G

pihp
uy 0

2
22

1 2

1

ωω +−
= ∑

=
                                       (10) 

where ωs  is s-th natural circular frequency, hs  is s-th mode damping factor and Ms  is s-th generalized 

mass. 
 
Considering the real part of eq(10), displacement is expressed the next equation. 
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EIGENVALUE ANALYSIS 
 
Based on eq(1), (2) and (3), eigenvalue analyses are conducted. In order to estimate effects of soil-
structure interaction, eigenvalues of another model without soil spring are also calculated. Tab.2 shows 
the results. Regardless of the overall length of structure l , natural periods of 1st mode is almost same for 
every unit model. But natural periods of 2nd and 3rd mode become longer as the length is larger. The 
natural periods of SDOF mode are same as those of sV  =400m/s model and shorter than those of 

sV =100m/s model. 

 
Characteristics of modal damping factor h are different for every model. Some of participation factors β  
are 0 which means that no vibration occur in such mode by uniform input motions. 
 
A mode shape of 1st mode is a translational motion of upper structures, that of 2nd mode is its motion with 
one node and that of 3rd mode is with two nodes.  In few of the case mode shapes is different as mentioned 
before. 
 
 



Tab.2 Natural period, damping factor and participation factor 

l  mode    SDOF     SV = 400m/s     SV = 100m/s 

               T[s]   h        β      T[s]   h        β      T[s]   h        β  

 24m  1st 0.315 0.020 2.0 0.316 0.021 2.1 0.334 0.031 2.5 

      2nd 0.068 0.093 0.0 0.068 0.093 0.0 0.142 0.209 1.8 

      3rd 0.038 0.166 0.0 0.038 0.806 1.9 0.068 0.098 0.0 

 48m  1st 0.315 0.020 2.6 0.316 0.021 2.7 0.335 0.032 3.3 

     2nd 0.112 0.056 0.0 0.112 0.056 0.0 0.151 0.195 2.4 

      3rd 0.061 0.103 0.0 0.061 0.104 0.0  0.113 0.060 0.0 

 96m  1st 0.315 0.020 3.6 0.316 0.021 3.7 0.336 0.032 4.6 

      2nd 0.182 0.035 0.0 0.182 0.035 0.0 0.183 0.038 0.0 

      3rd 0.105 0.060 0.0 0.105 0.060 0.0  0.157 0.187 3.2 

192m  1st 0.315 0.020 5.0 0.316 0.021 5.1 0.336 0.032 6.5 

      2nd 0.253 0.025 0.0 0.254 0.025 0.0 0.261 0.031 0.0 

      3rd 0.177 0.036 0.0 0.177 0.036 0.0  0.178 0.039 0.2 

 
 

STATIONARY RESPONSE TO HARMONIC INPUTS 
 
Based on eq(11), stationary responses to harmonic inputs are calculated. To compare with the following 
results, amplification factor of SDOF and sway system are shown in Fig.3. Characteristics of SDOF model 
and sV =400m/s model is almost same and the maximum value of amplification factor is about 25. 

sV =100m/s model has longer peak period and the maximum value is smaller than others. 
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Fig.3 Amplification factor of SDOF and sway system 

 
Fig.4 shows the effects of ground displacement. sV =100m/s, θ =12degree, sf kk / =8 and l =96m are 

assumed. Model A0 means the connected SDOF model not considering ground displacement (in eq(1) 
{ }0y  is assumed { }0 ), A1 means the connected SDOF model considering ground displacement, B0 



means the connected sway model not considering ground displacement and B1 means the connected sway 
model considering ground displacement. When ground displacement is not considered, amplification 
factor of 2nd mode tends to be estimated too large. So it is important to consider ground displacement in 
the phase difference analyses. But the central lumped mass seems not to be affected by phase difference. 
 
Fig.5 and 6 show the effects of phase difference. l =192m and sf kk / =8 are assumed. When the angle of 

incidence is large, amplification factor of 1st mode is small and that of 2nd mode is large. And this 
tendency is obvious at the left side lumped mass and on the assumption of sV =400m/s. Same as Fig.4, the 

central lumped mass is not affected by phase difference. 
 

Fig.7 and 8 show the effects of overall length of a structure. sf kk / =8 and θ =24 o  are assumed. Only in 

the 192m model, the effects of 2nd and above mode are obvious and the amplification factor of 1st mode is 
very small. 
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Fig.4 Effects of ground displacement 
 

0

5

10

15

20

25

0.1 0.2 0.3 0.4 0.5

A
m

pl
ifi

ca
tio

n 
F

ac
to

r

Period [s]

0 deg
6 deg

12 deg
24 deg

0

5

10

15

20

25

0.1 0.2 0.3 0.4 0.5

A
m

pl
ifi

ca
tio

n 
F

ac
to

r

Period [s]

0 deg
6 deg

12 deg
24 deg

 
left side lumped mass                                                      central lumped mass 

Fig.5 Effects of phase difference ( sV =100m/s) 
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Fig.6 Effects of phase difference ( sV =400m/s) 
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Fig.7 Effects of overall length of a structure ( sV =100m/s) 
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Fig.8 Effects of overall length of a structure ( sV =400m/s) 

 
 
 
 
 



Fig.9 and 10 show the effects of stiffness of foundation slabs. l =192m and θ =24 o  are assumed. In the 
case of sV =400m/s, values of sf kk /  do not affect the amplification factor. But in the case of 

sV =100m/s, the amplification factor show the complex tendency in the range of shorter periods. When the 

shear wave velocity is slow, phase difference of harmonic waves with shorter period becomes very huge.  
It is the reason of such complex tendency.  It is thought that this tendency affects the earthquake response 
of structures very much. 
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Fig.9 Effects of stiffness of foundation slabs ( sV =100m/s) 
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Fig.10 Effects of stiffness of foundation slabs ( sV =400m/s) 

 
 

EATHQUAKE RESPONSE ANALYSIS 
 
The elastic response analyses are conducted using the Wilson’s θ  method.  As the input ground motions 
El Centro (Imperial valley earthquake, 1940), Hachinohe (Tokachioki earthquake, 1968), JMA Kobe 
(Hyogoken nanbu earthquake, 1995) and Taft (California earthquake, 1952) are used. Tab.3 shows the 
legends used in Fig.11-18. 
 
In Fig.11-18 earthquake responses are estimated by “Response Displacement Ratio” which is the ratio of 

response displacement by phase difference inputs to one by uniform inputs (that isθ =0 o ). 
 



Fig.11 and 12 show the effects of phase difference. l =192m and sf kk / =8 are assumed. According 

to Fig.5 when the phase difference exists, amplification factor of 1st mode is relatively small and 
2nd or above mode vibration affects to responses. So scatter of response displacement ratio 
becomes large at the left side lumped mass in the case of sV =100m/s. According to Fig.6 as 

amplification factor of 1st mode is relatively large, scatter of response displacement ratio in 
Fig.12 is smaller. In the case of the central lumped mass, scatter is small and the reduction 
effects  by phase difference are recognized. 
  

Tab.3 Legends of Fig.11-18 

El Centro NS
El Centro EW

Hachinohe NS
Hachinohe EW
JMA Kobe NS
JMA Kobe EW

Taft NS
Taft EW
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Fig.11 Effects of phase difference ( sV =100m/s) 
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Fig.12 Effects of phase difference ( sV =400m/s) 



Fig.13 and 14 show the effects of overall length of a structure. sf kk / =8 and θ =24 o  are 

assumed. General tendency is same as the effects of phase difference. When length of a structure 
is longer, value and scatter of response displacement ratio becomes smaller. In particular, 
according to Fig.7, amplification factor of 2nd and above mode is much smaller at the left side 
lumped mass, so the scatter of response displacement ratio becomes much smaller(left of 
Fig.13). 
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Fig.13 Effects of overall length of a structure ( sV =100m/s) 
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Fig.14 Effects of overall length of a structure ( sV =400m/s) 

 

Fig.15to 18 show the effects of stiffness of foundation slabs. l =192m and θ =24 o  are assumed.  
 
In the case of sV =100m/s, generally the values of response displacement ratio are tend to be 

small, and the scatters are large at the left side lumped mass. When θ =24 o , the effects of stiffness 
of foundation slabs are large. The scatter is large but reduction tendency is also large. This is because of 
the complex tendency shown in Fig.9. 
 
In the case of  sV =400m/s, the effects of stiffness of foundation slabs is very small. The scatter and the 

effect  of θ  are also small. In Fig.18 at the central lumped mass almost all the values are 0.5. This is 
because that in Fig.11 amplification factors are generally small in the all range. 
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Fig.15 Effects of stiffness of foundation slabs ( sV =100m/s, θ =6 o ) 
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Fig.16 Effects of stiffness of foundation slabs ( sV =100m/s, θ =24 o ) 
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Fig.17 Effects of stiffness of foundation slabs ( sV =400m/s, θ =6 o ) 
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Fig.18 Effects of stiffness of foundation slabs ( sV =400m/s, θ =24 o ) 

 
CONCLUSIONS 

 
In order to examine dynamic behaviors of structures due to ground motions considering phase differences, 
the elastic response analyses were conducted using the multi-degree-of-freedom system model which 
consist of the unit models serially connected by the floor slab spring and the foundation slab spring. SH 
waves inputted obliquely from perpendicular downward were considered as input ground motions. 
 
The results are summarized like the following. The response of the structure due to the input ground 
motion considering phase differences becomes smaller than that due to the uniformly incident input 
ground motion, since the translation component decreases. However, there is a case in which the response 
increases on the outermost part of the structure by the effect of higher mode of the structure system, and 
its tendencies are remarkable for the case in which the structural overall length is long, for the case in 
which the rigidity of the foundation slab is not high, and for the case in which the ground is softer. 
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