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SUMMARY 
 
As regards the check of influence of P-∆ effects on the structures, the recommendations of the modern 
seismic Codes present serious problems of applicability. In the present paper, formulae are given to 
determine the critical buckling load in plane multistory reinforced concrete frames. By use of the critical 
buckling load of a frame, the importance of the influence of such effects can be directly estimated, in any 
case. For the purposes of the present work extended parametric analyses of plane multistory frames have 
been carried out in order to find their critical buckling load. Based on the estimation of the results of these 
parametric analyses, appropriate formulae are proposed which give, with a sufficient in practice accuracy, 
the critical buckling load of frames directly obtained from their elastic and geometric characteristics 
without the requirement for an additional analysis to be previously performed. 
 

INTRODUCTION 
 
The phenomenon of buckling in buildings, in spite of the research efforts already made, continues to 
attract strongly the interest of the investigators. The critical buckling load means the initiation of 
instability in the loaded structure. It was Euler who first determined the critical buckling load by closed 
mathematical formulae in case of simple beams with several support conditions at their ends. However, 
the extension of these closed equations in multistory frames is impossible, thus approximate 
computational methods are applied. Because of the difficulty of determination of the critical buckling 
load of the structures, it is usual to check the so-called “higher order effects” by use of simpler procedures 
(Neuss & Maisson [1], Penelis [2], Rutenberdg [3]). The recommendations of the modern seismic Codes 
aim to reduce the second order effects in the seismic response of multistory buildings, such as the 
influence of the P-∆ effects and the curving of their vertical structural elements. The P-∆ effects create 
additional horizontal forces at the levels of the stories, because of the 2nd order moments developed by the 
axial gravity loads on the vertical stiffness elements of the structure. Also, the curving of the vertical 
structural elements always affects unfavorably the results of the response, because the equilibrium 
equations for the P-∆ effects are written with respect to the deformed axis of the structural elements. As a 
result of the influence of the P-∆ effects, as well as of the curving of the vertical structural elements, the 
relative displacements of their ends are increased. The modern seismic Codes (FEMA 356/2000 
(sect.3.2.5.1.1), UBC-97 (sect.1910.11.4.2), Eurocode No8-2003 (4.4.2.2[2]) and Greek Seismic Code-
2003 (EAK-2003 (4.1.2.2[1]))), try to confront the influence of such effects by the use of the index θ of 
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relative displacement ability. However, this index is not suitable for the majority of the structures and 
specifically for all the frames except of the shear building frames (Anastassiadis et all [4]). 
 
In order to avoid the phenomenon of buckling of the structures, by accounting for the 2nd order effects 
too, the use of the stability index θe is proposed which is defined by the ratio P/Pcr, where P the total 
vertical load of the structure and Pcr its critical buckling load. However, for the determination of the 
stability index θe, a necessary prerequirement is to find the critical buckling load Pcr of the structure. In 
the present work, formulae are given for the determination of the critical buckling load for plane 
multistory frames and relevant results are presented after an extended parametric analysis. These frames 
are divided to three groups: (a) multistory frames with a prominent shear deformation in elevation, (b) 
multistory frames with a prominent bending deformation in elevation and (c) multistory frames with a 
mixed (bending-shear) deformation in elevation. For the two first groups suitable approximate formulae 
are given for the determination of the critical buckling load Pcr of the frames directly from their elastic 
and geometric characteristics, while for the third group the results are satisfactory but a more systematic 
investigation is needed in order to reach final conclusions. 
 

METHODOLOGY 
 
For the purposes of the present work, the computer finite element program SAP2000v8.00 was used. The 
compressive axial force reduces the stiffness of an element of a structure, because of the presence of a 
geometric nonlinearity. By the incremental increase of the total vertical load, a value of the load is 
reached for which in some diagonal term of the stiffness matrix a negative number or zero appears, 
having as consequence the interruption of the analysis because the stiffness matrix will be no more 
positive definite. This value of the load is the critical buckling load Pcr of the structure. If the zero term 
appears in a local stiffness matrix of a structural element then it is mentioned as a local buckling of 
limited extent, while if it appears in the global stiffness matrix of the structure, it is mentioned as a global 
buckling of the building. In the present work, the results always refer to the smallest of the buckling 
loads. 
 
The various parameters affecting the critical buckling load Pcr of the plane multistory frames were 
isolated and separately examined and they are the following: 
(a) the number of stories N, 
(b) the ratio ch/a where a is the section side of the column which belongs to its bending plane and hc 

is the height of the story, 

(c) the ratio ρ = 
∑

∑
⋅
⋅
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 which is used in the plane frames with a prominent shear deformation 

( lc cb b
I ,  I ,  ,  h  as defined in fig.1,2), 

(d) the static eccentricity e of the structure, that is the horizontal distance of the stiffness center of the 
structure from the resultant of the vertical loads, 

(e) the amount of the structural walls in the flexural frames and  mixed frames too. 
All the above parameters were appropriately connected to each other in the following proposed formulas 
for the calculation of the critical buckling load of the structures and each one was directly determined 
from the elastic and geometric data of the structures, without the prerequirement of another structural 
analysis. 
 

TYPES OF 2D-MULTISTORY R/C FRAMES 
 
The plane multistory frames are divided, depending on the type of deformation over their height, to 
frames with deformation of bending, shear and mixed type. Consequently, in every multistory frame 



under consideration, an estimation of the coupling between its bending and shear behavior must be done 
first. For this purpose, various parameters of different degrees of accuracy can be used, which the 
following two are mentioned: 
 
A.  The parameter of the amount of structural walls in R/C frames. This is a simple and empirical 
parameter, which represents the ratio of section area of the structural walls with respect to the area of all 
above stories (in a similar way to that prescribed by the first Greek Seismic Code of 1959). After relevant 
investigation in a sufficient number of frames it was obtained that if the total section area Aw of the 
structural walls in every story is greater than the 1/1500 of the sum ∑ i,fA of areas of all above stories, 

then in the frame the bending deformation predominates. 
 
In more detail it was obtained that: 

 • if 
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≥>  then mixed deformation with a strong coupling of bending and 
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≥>  then mixed deformation appears with predominant shear 

deformation, 
 • if 0Aw ≈  and   b cI >>I  then a clear shear deformation exists. 

 
B.  The parameter λ.H. This is considered as the most accurate parameter in order to recognize the type 
of a frame. This quantity is not empirical and results from the study of continuous systems, where H is the 

total height of the frame and λ = IE/AG s ⋅⋅ , (G⋅As is the shear stiffness of the section of the shear 

subsystem and E⋅I is the bending stiffness of the section of bending subsystem). When λ.H ≤ 1 the system 
is characterized as a mainly bending system, when λ.H ≥ 15 the system is characterized as one of shear 
type and when 1 < λ.H < 15 the multistory system is a mixed one. More specifically, when 1 < λ.H < 6, in 
the mixed system, the bending subsystem is stronger, while, for       6 < λ.H < 15 in the mixed system, the 
shear subsystem is stronger. In the present work an investigation was carried out to approximately 
correlate the quantity λ.H with the “divisor” of the sum ∑ i,fA of the areas of all above stories, so that to 

obtain the total area Aw of the sections of structural walls in every story. This correlation is shown in the 
Table 1. 
 

TABLE 1. Correlation of the quantity λ.H with the divisor, which yields the Aw 
λ.H 0 0.3 0.5 0.7 1 6 15 20 ∞ 

Divisor 150 500 800 1000 1500 8000 18000 23000 − 
 
At this point it is useful to refer in detail to the determination of the quantity λ.H. Starting from the 
formation of the continuous shear subsystem, we replace the plane multistory frame by a shear column. 
For this purpose we first separate a diaphragm (story level) with its columns up to the middle of the above 
and the below story (near the zero point of bending moments of the column, see figure 1) by considering 
at same time that the stiffness of the beams is uniformly distributed over the height ( 2/h2/h cc + ) of the 



story level under consideration. If ∑=
i

iQQ is the total shear force developed in the columns for a 

relative horizontal displacement δ of the top of the story with respect to its base, then the slope of column 
axis is γ = δ / hc. Then, we simulate the story level under consideration by a shear column element whose 
section has an equivalent shear stiffness G.As and exhibits the same, with the frame, slip angle γ = Q / 
(G.As). Consequently, the equivalent shear stiffness of shear column section is G.As= (hc

.Q)/δ. 
 
For the determination of the equivalent shear stiffness G.As first the shear forces Qi, due to of the forced 
unit displacement (δ = 1) and then the resultant ∑=

i
iQQ of the shear forces are calculated (figure 2). 

Finally, from the formula G.As= (hc
.Q)/δ the required quantity is directly determined. Alternatively to the 

above procedure, for the determination of the G.As, we can use other approximate formulas (Anastassiadis 
[5]). 

 
Figure 1. Formation of the continuous model of the shear subsystem 

 

 
Figure 2. Determination of the equivalent shear stiffness of the frame 

 
 

CRITERIA FOR THE INFLUENCE OF THE BUCKLING EFFECTS 
 
Stability index θe of a frame 
As stability index θe of a frame is defined the ratio of the total vertical service load P at the base of the 
structure with respect to the critical buckling load Pcr: 
 

  
cr

e P
P=θ  (1) 

The stability index θe of a frame is a characteristic number of the structure, is independent from the 



horizontal loading (within the validity of the linear stability) and it absolutely depends on the geometric 
and elastic characteristics of the structure as well as on the distribution of the vertical loading. 
 
In the case that the stability index θ of a frame does not exceed the value 0.10, then the check of the P-∆ 
effects can be omitted. 
 
In the case that 0.10 < θe ≤ 0.20 then the P-∆ effects can be approximately taken into account by means of 
an increase by 1 / (1 - θ) of all the 1st order response quantities. Finally, the θe must not exceed the value 
0.20 in any case. 
 
Index θ of relative displacement ability 
The contribution of 2nd order effects on the stability of the structure becomes more significant as the 
degree of plastic yield of the structure under seismic action increases. Also, this contribution becomes 
critical just before the appearance of the collapse and while the structure is already subjected to an 
extended plastic yield. For this reason, the modern seismic codes aim, even in case of linear elastic 
analysis, to restrict the 2nd order effects to very low levels so that to reduce their action to a significant 
degree, in the case that an extended plastic yield of the structure appears. Indeed, according to the section 
4.1.2.2 of the Greek Seismic Code-2003 (EAK-2003), the index θ of the relative displacement ability is 
given by the equation (2): 

  
ctot

tot

hV
N

⋅
∆⋅

=θ  (2) 

where Ntot, Vtot are respectively the total axial and shear force of the vertical structural elements of the 
story, hc is the story height and ∆ is the computational relative displacement of story plates (FEMA 
356/2000 (sect.3.2.5.1.1), UBC-97 (sect.1910.11.4.2), Eurocode No8-2003 (4.4.2.2[2])). 
 
According to EAK-2003, when in every story the index θ does not exceed the value 0.10 then the check 
of P-∆ effects can be omitted. This practically means that when θ ≤ 0.10, then the influence of P-∆ effects 
in every story induces a limited increase of the response, which is equivalent to an amount less than 10% 
of the 1st order response quantities. 
 
In the case that 0.10 < θe ≤ 0.20, it is allowed to approximately take into account the P-∆ effects by means 
of an increase by 1 / (1 - θ) of all the 1st order response quantities. It is not allowed for the θ to exceed the 
value 0.20 in any case according to the EAK-2003, whereas according to the previous edition of the 
Greek Seismic Code-1992, the corresponding limit was 0.30. However, the equation (2), which gives the 
above-mentioned index θ, is valid only for a one-story cantilever column. So, the extension of its 
application on multistory plane frames of shear type is abusive, because even from a single-story one-bay 
frame (frame with two columns), the index θ begins to exhibit divergences. Also, a significant 
disadvantage of equation (2) is the fact that before its application a static analysis is required to determine 
the Vtot and ∆. 
 
The above equation (2) is not valid to mixed systems (with a bending-shear deformation in elevation) 
because of the bending behavior of the structural walls. Also, it is not valid to space asymmetric systems, 
because, in this case, the story displacement under consideration is not uniquely defined (relative 
displacement in the gravity center of the story as proposed by the Greek Seismic Code of 1992 or the 
relative displacement in a perimeter frame of the same story as proposed by EAK-2003 or the relative 
displacement at another point). Finally, the above equation (2) is not valid in the case of use of response 
spectrum analysis, because the term Vtot has not a physical meaning and consequently it cannot be 
determined. That is, it is indirectly accepted by EAK-2003 that in the case of an irregular frame, in which 
the use of response spectrum analysis is necessary, we must, for the check of the 2nd order effects, to 



perform a static analysis so that the determination of the index θ of relative displacement ability become 
possible. 
 
Criterion of non-displacement of frames 
According to the Greek Reinforced Concrete Code of 2000, when, in the structures, the following 
relations (3) and (4) are satisfied, then the frames under consideration are assumed as “non-displaced”, 
that is, it is allowed to use the 1st order analysis by ignoring the 2nd order effects. However, it is noted that 
the isolated check, in 2nd order effects, of separated columns must be performed in any case: 
 

  ( ) n10.020.0IE/NH ctot ⋅+≤⋅⋅  for  3n ≤  (3) 

 

  ( ) 60.0IE/NH ctot ≤⋅⋅  for  4n ≥  (4) 

where n is the number of stories, H the total height of the structure, cIE ⋅  is the total bending stiffness of 

the sections of all vertical structural elements (structural walls and columns non-interrupted over the 
height of the building) and Ntot is the sum of all the vertical service loads at the base of the building. 
 
Criterion of non-displacement of frames based on the parameter λ⋅H 
Within the present work, an investigation was also performed aiming to estimate the size of the parameter 
λ⋅H which must be possessed by a multistory structure, so that it will be safely characterized as “non-
displaced”. By using as criterion that “the influence of P-∆ effects in every story must not load more than 
10% the response of 1st order analysis”, it resulted that in order, for the structure, to be “non-
displaceable”, λ⋅H ≤ 0.70 must hold. In a different case, the frame is considered as “displaceable”, 
according to Greek Reinforced Concrete Code of 2000. In last case, the 2nd order effects are significant 
and more investigation is needed to confront this problem. 
 
Taking into account the correlation of the quantity λ⋅H and the “divisor” shown in Table 1, we can 
approximately use the “divisor” to characterize or not a frame as “non-displaceable”. After a relevant 
investigation, it resulted that when the total section area of structural walls in every story is greater than 
1/1000 of the sum of areas of all the above stories, then the frame is considered as “non-displaceable”. In 
a different case the frame is considered as “displaceable”, the 2nd order effects begin to become significant 
and more investigation is needed to confront the problem. 
 

CRITICAL BUCKLING LOAD OF THE STRUCTURES 
 
Critical buckling load of isolated columns according to Euler formula 
The critical buckling load of a column according to Euler formula refers to an ideal bar, for which the 
differential equation of the displacements of its deformed configuration has been written and its solution 
resulted, for various support conditions: 

 • Cantilever beam 
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where E⋅I is the bending stiffness of the section, and H the column length. A characteristic mark of the 
above relations is that the coefficient of the total length H of the column is variable, which is the buckling 
length of the bar is variable. 
 
Critical buckling load of frames 
The plane multistory shear frame can be approximately considered as a vertical cantilever beam with a 
constant section over its height. Thus, in order to approximately determine the critical buckling lead of the 
frame, and after a substitution of the real structure by an equivalent cantilever column, we can use one of 
the above Euler formulas, by appropriately modifying the buckling length. Similar research efforts with 
different, however, methodologies have been made in the past (MacLeod & Zalka [6], Zalka & MacLeod 
[7]). So, the critical buckling load of multistory plane frames could be given from the general relation (5): 

  
( )2

2
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where v the coefficient yielding the buckling length of the ideal substitute cantilever column. 
The ideal column substituting the multistory frame of total height H, is considered as having a height H 
equal to the total height of the initial multistory frame, the same modulus elasticity (with that of the initial 
frame) and a constant section over its height with inertia moment Itot around a horizontal axis, vertical to 
the bending plane of the frame. We accept that the inertia moment Itot is equal to the sum of inertia 
moments of all columns of a story level, usually that of the base of the frame. So, we consider that all the 
parameters affecting the problem of buckling of a frame are taken into account by means of the 
coefficient v. For the determination of the coefficient v an extended parametric analysis was performed by 
separating the various parameters affecting it, as already mentioned in previous section. Also, it resulted 
that this coefficient can be obtained by the following formula: 
  ( )2o1o1o1 vvvv +⋅λ=⋅λ=  (6) 

 
By the quantity λ1 the relative stiffness of beams with respect to columns is taken into account in a story 
level of the frame. By the quantity vo1 the slenderness of columns of stories is taken into account 
depending on the ratio a / hc, where a is the section side of the column belonging to its bending level (of 
the structural element) and hc is the story height. Finally, the quantity vo2 takes into account the influence 
of number N of the stories of frame. From the evaluation of the above parametric analysis the following 
methodology resulted depending on the type of the frame and the number of its stories. 
 
Critical buckling load of frames with predominant shear deformation 

In the shear type frames, first the coefficient ρ = 
∑

∑
⋅
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 is calculated where E is the elasticity 

modulus of the structural material, ∑ ⋅ bb /IE l the sum of all ratios bb /IE l⋅  of all beams of a story 

( b bI  , l inertia moment of section and length, respectively, of a beam b, see figures 1, 2), ⋅∑ c cE I /h  

the sum of all ratios ⋅ c cE I /h  of all columns of a story ( c cI ,  h  inertia moment of section and length, 
respectively, of a column c, see figures 1, 2). 
 
In figure 3, the variation of coefficient v with the increase of number of stories and of the ratio ch/a  is 

presented. From the results of the above investigation, is shown that in shear type plane frames, the 
influence of static eccentricity e has not a particular significance, in contrast with the bending type 
frames. 



 
Figure 3. Variation of coefficient v versus the increase of number of stories and of ratio ch/a  

Case A: Number of stories N ≤ 5 
The quantity λ1 is given by the following equations of the curves of figure 3: 

 λ1 = 211.158.230.0 ρ⋅−ρ⋅+  for 40.1≤ρ  , 

 λ1 = 70.1001.0 +ρ⋅  for 40.1>ρ  . 
 
If in any case results λ1 > 2.50, then we set λ1 = 2.50. The quantity vo1 is given by the following equation 
of the curves of figure 3: 

 vo1 = 
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Values with ratios ch/a > 0.20 show frames not belonging to the group of shear systems. The quantity vo2 

is given by the following equation of the curves of figure 3: 

 vo2 = 41.1N562.0N056.0 2 +⋅−⋅  
 
Case B: Number of stories N ≥ 6 

 λ1 = 240.156.302.0 ρ⋅−ρ⋅+  for 40.1≤ρ  , 

 λ1 = 24.2001.0 +ρ⋅  for 40.1>ρ  . 
 
If in any case results λ1 > 3.50, then we set λ1 = 3.50. 
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 vo2 = ( )N503.0 −⋅  

If in any case results vo2 ≤ −0.27 then we set vo2 = −0.27. 
It is noted that in the case N ≥ 6, the coefficient vo2 results always negative. 
 
Critical buckling load of frames with predominant bending deformation 
In the figure 4 is presented the variation of coefficient v versus the increase of stories number and of the 
ratio ch/a . Here, we observe that in the bending type plane frames, the influence of static eccentricity e 

is significant for a story number up to 5. In figure 4 the influence of static eccentricity is shown (as a part 



of the total length L of the frame). 

 
Figure 4: Variation of coefficient v versus the increase of number of stories and of the ratio ch/a . 

Case A: Number of stories N ≤ 5 
The quantity vo1 is given by the following equation of the curves of figure 4: 

 vo1 = ⎟
⎠

⎞
⎜
⎝

⎛⋅+
ch

a
902.0161.1  

The quantity vo2 is given by the following equation of the curves of figure 4: 

 vo2 = 2N17.0N58.168.5 ⋅+⋅−  
 
The static eccentricity e affects the bending type frames up to five stories. The above formulae describe 
the envelope of the curves of figure 4 for the maximum eccentricity e = 0.50*L and so, the static 
eccentricity is eliminated from the formulas under consideration. 
 
Case B: Number of stories N ≥ 6 
The quantity vo1 is given by the following equation of the curves of figure 4: 

 vo1 = ⎟
⎠

⎞
⎜
⎝

⎛⋅+
ch

a
902.0161.1  

The quantity vo2 is given by the following equation of the curves of figure 4: 
 vo2 = ( )N505.0 −⋅  
 

Table 2: Values of the quantity λ1 
 10-story 5-story Single-story 
Structural walls coupled by 
a diaphragm plate 

 
0.60 

 
0.85 

 
1.00 

Structural walls coupled by 
a usual plate-beam 

 
2.50 

 
1.75 

 
1.00 

Structural walls coupled by 
means of infinite inertia moment 

 
35.00 

 
23.00 

 
1.50 

 
If in any case results vo2 ≤ −0.70 then we set vo2 = −0.70. 
It is noted that in the case N ≥ 6, the coefficient vo2 results always negative. Finally, in the bending 
frames, the Table 2 approximately gives the quantity λ1. For cases with a different number of stories, a 



linear interpolation is sufficient. 
 
 
Critical buckling load of frames with mixed deformation 
In this case, we first determine the critical buckling load of the two subsystems and then, by an 
appropriate interpolation and depending on the value of parameter λ⋅H (or even on the amount of 
structural walls), the critical buckling load is estimated. This procedure showed that, in a limited number 
of frames, which were studied, the results can be considered as satisfactory, however a more systematic 
investigation is needed. For the moment, the only reliable solution is the use of a special purpose 
computer program to determine the critical buckling load Pcr of the structure, and then the stability index 
θe is calculated from the formula (1). 
 

CONCLUSIONS 
 
In the present work, formulae were given to determine the critical buckling load of plane multistory 
frames directly from their elastic and geometric characteristics without the requirement for another 
previous analysis. The critical buckling load is calculated in any case from the equations (5) and (6), 
while as a criterion to avoid buckling effects the stability index θe of the frame is proposed (eq. 1). The 
various parameters affecting the critical buckling load were separated and examined, such as the number 
N of stories, the ratio ch/a , the ratio ρ for plane frames with predominant shear deformation, the static 

eccentricity e of the structure and the amount of structural walls in the bending type frames. Finally, the 
frames were divided to groups depending on the type of their deformation, by use of the amount of 
structural walls or the dimensionless quantity λ⋅H. 
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