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SUMMARY 
 
We calculate, with a boundary integral equation method, the field of stress and displacement velocity 
created by a self-similarly evolving two-dimensional crack in anti-plane shear, and compare the results 
with known analytic solutions to evaluate the magnitude of numerical errors caused by the discretization. 
The stress waves, generated by the discontinuous advances of the model crack tips, were found out to 
have considerably large effects on the numerical solutions, which turned out to be especially serious for 
the orientation of maximum shear stress. The effects of numerical errors were relatively mild for the 
amount of slip on the crack. 
 

INTRODUCTION 
 
Numerical simulation studies on the dynamic behavior of earthquake faults in nature tend to entail 
technical difficulties, as they have to account for the effects of medium inhomogeneities and of the 
presence of free surfaces. In basic theoretical studies aimed at elucidating the most characteristic 
properties of fault dynamics, it is therefore a common practice to numerically simulate the dynamic 
behavior of faults embedded in an elastic medium under more idealized conditions. In doing so, it is 
unavoidable to discretize the model space with regard to both time and space, so that one should always 
be aware of the presence of numerical errors coming from the discretization. 
 
In the present study we deal with the problem of a self-similarly evolving anti-plane shear (mode III) crack 
embedded in an infinite two-dimensional (2-D) medium; we numerically calculate, with a boundary 
integral equation method (BIEM), the field of stress and displacement velocity created by the crack, and 
compare the results with known analytic solutions with a view to quantitatively evaluating the magnitude 
of numerical errors caused by the discretization. 
 

PROBLEM SETTING 
 
Suppose that slip, or displacement discontinuity across a crack, occurs in the y-direction in an infinite, 
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homogeneous and isotropic medium, in response to an anti-plane shear (mode III) stress σyz = σ0 (= 1.0) 
operating at infinity, in a 2-D problem setting that does not depend on the y-coordinate. Let a crack 
emerge at the origin of coordinates at time t = 0 and propagate bilaterally along the x-axis at a fixed speed 
vr in both +x- and -x-directions (Figure 1). For simplicity, we ignore the effects of friction and assume no 
stress on the crack surface. 

 

  
 

Figure 1. A self-similar two-dimensional anti-plane crack. 
 
The crack problem defined above falls in the category of a self-similar problem, in the sense that it has an 
invariant form even if you enlarge or reduce both the temporal and spatial scales of the problem by an 
identical magnification factor. We solve, both analytically and numerically, for the field of stress and 
displacement velocity created by such a crack and compare both results. 
 

METHOD 
 
The analytical solutions for the stress and displacement velocity field created by a self-similar crack 
defined above were given by Kostrov [1] and Kikuchi [2]; we numerically evaluated, with Gaussian 
quadrature, the rigorous expression for the yz-component of stress that is given in the form of an integral 
on the complex plane. 
 
The numerical solutions for the stress and displacement velocity were calculated with a BIEM scheme, 
developed by Cochard and Madariaga [3] and expanded by Tada and Madariaga [4], that solves the 
elastodynamic problem of a planar anti-plane shear crack embedded in a infinite and homogeneous 2-D 
medium. This method discretizes the crack surface in such a way that the slip rate takes a constant value 
everywhere within a given spatio-temporal discrete element. As is explained in Tada and Madariaga [4], 
this numerical technique has two variable parameters associated with the specific method of 
discretization, namely the Courant-Friedrichs-Lewy (CFL) parameter hT = β∆t/∆x that gives the ratio of 
the discrete grid intervals in time and space (β: S-wave speed, ∆t: temporal grid interval, ∆x: spatial grid 
interval) and the parameter et that defines which position you locate a time collocation point at in a given 
time grid (the collocation point is located at the end of the corresponding time grid when et = 1.0 and at 
the midpoint when et = 0.5). We used hT  = 0.5 and et = 1.0, the same parameters as used by Cochard and 
Madariaga [3]. In the following we show all spatial lengths in non-dimensional units as normalized by the 
crack half-length L, all stress values as normalized by the external stress σ0, and all displacement 
velocities as normalized by βσ0/µ (where µ is the medium rigidity). The crack tips, which should be 
advancing continuously at the fixed speed vr, were modeled as advancing discontinuously by steps of ∆x 
at appropriate time intervals because of the requirement of spatio-temporal discretization. 
 
In the vicinity of the crack, the occurrence of slip on the crack releases shear stress in the direction parallel 
to it. Cracks generally tend to propagate in the direction that maximizes the shear stress; in fact, for 
example, the orientation of maximum shear played a major role in Kame and Yamashita's [5] numerical 



results that suggested that a crack tends to bend spontaneously when its propagation speed has increased 
to a certain level. To know the distribution profile of the orientation of maximum shear in the 
neighborhood of a crack therefore gives a crucial key to the understanding of the dynamic behavior of 
cracks and of the stress field in their vicinity. 
 
In figures that follow we show distribution profiles for the yx- and yz-components of stress, the (y-
component of) displacement velocity, the orientation of maximum shear on the xz-plane and for the 
amount of slip on the crack surface. The outputs were sampled at grid points spaced at equal intervals of 
0.5∆x in both x- and z-directions so that none falls precisely on the crack surface. Considering spatial 
symmetry of the problem, we show only the domain corresponding to x<0. 
 

RESULTS 
 
Basic results 
Figure 2 shows the analytical solution for the yx- and yz-components of stress, the corresponding 
numerical solution obtained with the BIEM, as well as the numerical errors defined here as the balance 
between the two solutions, for the case L = 24∆x (entire crack length divided into 48 elements) and vr = 
0.8β. Propagation of the crack is driven by the yz-component of stress. In both components, the stress is 
concentrated in the vicinity of the crack tip (x/L = -1). As one can see in Figures 2(e) and (f), both stress 
components are subject to considerably large numerical errors in certain parts of the model plane, the 
general level of the absolute errors tending to be somewhat higher for the yz- than for the yx-component. 
One can see arc-shaped zones of large numerical errors that lie at periodic intervals in space. As Ando and 
Yamashita [6] pointed out, they are thought to be consequences of stress waves that are generated by the 
discontinuous advances of the tips of the discrete crack model; we will come back to this question in a 
later section. 

 

 
 

Figure 2. Analytical solutions, numerical solutions and numerical errors for the yx- and yz-
components of stress (L = 24∆x, vr = 0.8β). 

 



Figure 3 shows the analytical solution, numerical solution and numerical errors in the same case for the y-
component of displacement velocity; one can recognize zones of large numerical errors just as in the case 
of the stress components. Incidentally speaking, the relative numerical errors, which we define as the 
absolute numerical errors (Figure 3(c)) divided by the analytic solution, had approximately the same levels 
of magnitude for the displacement velocity and for the yz-component of stress. 

 

 
 

Figure 3. Analytical solution, numerical solution and numerical errors for the displacement velocity 
(L = 24∆x, vr = 0.8β). 

 
Figure 4 shows, with line segments, the orientation of maximum shear calculated for each grid point using 
the magnitudes of the yx- and yz-components of stress in both the analytic and numerical solutions:  
 

θ   = arctan (-σyx/σyz),          (1) 
 
where θ  is the angle measured counterclockwise from the x-axis. Waves generated by slip on the crack 
disturbs the initial, homogeneous field of stress and, on and in the vicinity of the crack, releases shear 
stress in the direction parallel to it; this explains why the orientation of maximum shear is nearly 
perpendicular to the crack in its vicinity. Reflecting the numerical errors in the individual stress 
components, the calculated orientation of maximum shear has discrepant distribution patterns for the 
analytical and numerical solutions. The discrepancies are particularly serious within arc-shaped zones that 
lie at periodic intervals in space; as we have said above, these are thought to be related to stress waves 
generated at the tips of the discrete crack model. The blank parts in the top left and bottom left corners of 
the panels represent zones of undisturbed initial stress where the waves have not arrived yet. 

 



 
 

Figure 4. Analytical and numerical solutions for the orientation of maximum shear stress  
 (L = 24∆x, vr = 0.8β). 

 
Figure 5 shows the analytical solution, numerical solution and numerical errors in the same case for the 
amount of slip on the crack surface; slip is larger in the numerical solution than in the analytical, since the 
numerical scheme tends to evaluate, in the vicinity of the crack tips (|x/L| = 1), the slip rate to be larger 
than what it is in the analytical solution. Figure 5(b) shows that large absolute values of numerical errors 
appear only near the tips of the crack (0.8 < |x/L| = 1). As for the relative numerical errors, they tended to 
be smaller for the amount of slip than for the stress components. 

 

 
 

Figure 5. Analytical solutions, numerical solutions and numerical errors for the amount of slip on 
the crack surface (L = 24∆x, vr = 0.8β). 

 
Dependency on the propagation speed 
Figure 6 shows how the numerical precision changes for the stress components when we fix the number of 
crack divisions at 48 (L = 24∆x) and alter the speed vr of crack propagation; the results for vr = 0.5β and vr 
= 0.8β are given as the most representative cases. Plotted are the analytical solution, numerical solution, 
and numerical errors defined as their balance, for the individual stress components on the rows of grid 
points along the lines |z/L| = 1/96 that are parallel to the x-axis and lie the closest to the crack plane. As 
one can see in Figures 6(e) and (f), the numerical errors for the yx-component of stress were generally 
larger near the central part of the crack (|x/L| = 0.8) when vr = 0.5β than when vr = 0.8β, but no similar 
characteristic differences were recognized for the yz-component of stress. 

 



 
  

Figure 6. Analytical solutions, numerical solutions and numerical errors for the yx- and yz-
components of stress on the rows of grid points parallel to the x-axis and lying close to the crack 

plane, for two different values of the crack propagation speed (L = 24∆x, |z/L| = 1/96). 
 

Figure 7 shows changes in numerical errors for the displacement velocity in the close vicinity of the crack 
plane in the same situation. The numerical errors tended to be slightly larger for the case of vr = 0.5β than 
for vr = 0.8β, but no characteristic differences were found in the pattern of their appearance. 

 



 
 

Figure 7. Analytical solution, numerical solution and numerical errors for the displacement velocity 
on the rows of grid points parallel to the x-axis and lying close to the crack plane, for two different 

values of the crack propagation speed (L = 24∆x, |z/L| = 1/96). 
 
Figure 8 shows the numerical solution for the orientation of maximum shear stress for the case of vr = 0.5β 
with the number of crack divisions fixed at 48. One can see that the stress waves thought to have 
emanated from the crack tips (zones of conspicuously large discrepancies between the analytically and 
numerically obtained orientations of maximum shear) are spaced at larger intervals than in the case of vr = 
0.8β; this reflects the fact that the crack tips advance discontinuously at larger time intervals. 

 

 
 

Figure 8. Analytical and numerical solutions for the orientation of maximum shear stress 
(L = 24∆x, vr = 0.5β). 

 
Figure 9 shows how the numerical precision changes for the amount of slip on the crack surface in the 
same situation. The numerical errors are generally larger for the case of vr = 0.5β than for vr = 0.8β. In 
both cases, the largest numerical errors are concentrated near the tip of the crack. 

 



 
 

Figure 9. Numerical errors for the amount of slip on the crack surface, for two different values of 
the crack propagation speed (L = 24∆x). 

 
Dependency on the number of crack divisions 
Figure 10 shows how the numerical precision changes for the stress components when we fix the crack 
propagation speed at 0.8 times the S wave speed (vr = 0.8β) and alter the number of discrete elements 
constituting the crack; the results for 24, 120 and 240 divisions are shown as the most representative 
cases. As in the foregoing section, we have plotted the analytical solution, numerical solution, and 
numerical errors defined as their balance, for the individual stress components on the rows of grid points 
along the lines |z/L| = 1/96 that are parallel to the x-axis and lie the closest to the crack plane. As one can 
see in Figures 10(e) and (f), numerical precision remarkably improved for both stress components when 
we increased the number of crack divisions, despite the increasing number of stress waves expected to 
emanate from the crack tips. When the crack was divided into 120 or 240 elements, in particular, large 
numerical errors appeared only near the tips of the crack (0.8 < |x/L| = 1). Numerical errors stayed within a 
range of ±0.15σ0 for the yx-component of stress and within ±0.03σ0 for the yz-component near the central 
part of the crack (|x/L| = 0.8) when the number of divisions was 240. 

 

 
 

Figure 10. Analytical solutions, numerical solutions and numerical errors for the yx- and yz-
components of stress on the rows of grid points parallel to the x-axis and lying close to the crack 

plane, for three different numbers of crack divisions (|z/L| = 1/96, vr = 0.8β). 



 
Figure 11 shows changes in numerical errors for the displacement velocity in the close vicinity of the 
crack plane in the same situation. Just as it did so for the stress components, numerical precision improved 
when we increased the number of discrete crack elements. The profile of stress concentration near the 
crack tips (|x/L| = 1) sharpened with the increasing number of crack divisions. When the crack was divided 
into 120 or 240 elements, large numerical errors appeared only near the tips of the crack (0.8 < |x/L| = 1). 
Numerical errors stayed within a range of ±0.15βσ0/µ near the central part of the crack (|x/L| = 0.8) when 
the number of divisions was 240. 

 

 
 

Figure 11. Numerical errors for the displacement velocity on the rows of grid points parallel to the 
x-axis and lying close to the crack plane, for three different numbers of crack divisions  

(|z/L| = 1/96, vr = 0.8β). 
 
Figure 12 shows the numerical solution for the orientation of maximum shear for the case of 240 crack 
divisions (L = 120∆x) with the crack propagation speed fixed at vr = 0.8β. Despite the improved numerical 
precision for the individual stress components, the disarranged distribution profile of the orientation of 
maximum shear shows no recognizable improvement, because of the local effects of the stress waves 
emanating from the crack tips. This can be understood by recalling the fact that the orientation of 
maximum shear is determined by the ratio of the individual stress components (Equation (1)). 

 

 
 

Figure 12. Analytical and numerical solutions for the orientation of maximum shear stress 
 (L = 120∆x, vr = 0.8β). 

 
Figure 13 shows how the numerical precision changes for the amount of slip on the crack surface in the 
same situation. The numerical errors tended to increase near the crack tips (0.8 < |x/L| = 1) but reduced 
slightly in the central part of the crack (|x/L| = 0.6) with the increasing number of crack divisions. 

 



 
 

Figure 13. Numerical errors for the amount of slip on the crack surface, for three different 
numbers of crack divisions (vr = 0.8β). 

 
Some discussions on the effects of stress waves 
As we have said in a foregoing section, it is thought to be due to the effects of stress waves, emanating 
from the tips of the discrete model crack that advance discontinuously, that zones of large numerical errors 
emerge at periodic intervals in space in 2-D distribution profile maps for the stress and displacement 
velocity outside the crack. With a view to bearing out this hypothetical interpretation, we have conducted 
a simple numerical test to compare two different types of model cracks, one with a tip that advances 
smoothly and the other with a tip that advances discontinuously.  
 
Consider a 2-D anti-plane crack that emerges at the origin of the xz-coordinate system at time t=0 and 
propagates unilaterally along the +x-axis at a fixed speed of vr, with the amount of slip fixed at unity 
everywhere within the crack (Figure 14(a)). The mechanical conditions imposed on the interior of the 
crack are thus completely different than in the numerical tests heretofore described). The field of stress 
and displacement velocity created by such a crack, which is known as a Haskell model, can be obtained 
analytically with the Cagniard-de Hoop method. We also numerically analyze this Haskell model crack 
with Tada and Madariaga's [4] method through spatio-temporal discretization, assuming the crack tip to 
advance discontinuously; we place, at the crack front, a discrete element within which the slip velocity 
takes a finite and constant value, and set the slip velocity at zero everywhere except within that crack front 
element (Figure 14(b)).  
 
Figures 14(c)-(f) show the analytical and numerical solutions for the yx- and yz-components of stress for 
the case where the crack propagation velocity vr = (2/3)β, the grid parameter hT = 1/3, the time collocation 
parameter et = 1.0 and the crack is divided into 24 elements (L = 24∆x). In either stress component, only in 
the model with the discontinuously advancing crack tip did zones of large numerical errors appear at 
periodic intervals in space, and they had arc-like shapes centered near the tip of the crack. This 
observation gives another proof that the similar zones of large numerical errors, which emerged at periodic 
intervals in space in the numerical solutions for self-similar crack problems, were related to stress waves 
that emanated from the crack tips modeled as advancing discontinuously because of the requirement of 
discretization. 
 



 
 

Figure 14. Analytical and numerical solutions for the stress field created by a Haskell fault model (L 
= 24∆x, vr = (2/3)β). 

 
CONCLUSION 

 
In the present study we have calculated, with a BIEM, the field of stress and displacement velocity created 
by a self-similar 2-D anti-plane crack as well as the amount of slip on its surface and, by comparing the 
results with known analytical solutions, evaluated the magnitude of numerical errors due to the 
discretization as well as the profile of their distribution in space. It was revealed that the numerical 
solutions for the field of stress and displacement velocity outside the crack were, depending on the 
location on the model space, subject to considerably large effects of the stress waves that emanate from 
the crack tips which are modeled as advancing discontinuously because of the requirement of the 
discretization. The effects of numerical errors were particularly serious on the orientation of maximum 
shear that is calculated at each sample point from the magnitudes of individual stress components, a 
reminder that we should not be too careful of the effects of numerical errors in conducting numerical 
calculations where the orientation of maximum shear comes into play, such as in the simulation of 
spontanous crack growth. On the other hand, the effects of numerical errors were relatively mind for the 
amount of slip on the crack surface except in the vicinity of its tips.  
 
Within the scope of the present study, the numerical errors did not show characteristic changes in 
magnitude and spatial distribution profile when we varied the crack propagation speed, but numerical 
precision was remarkably improved when we refined the grid size and increased the number of crack 
divisions. In the latter case, however, the seriously disarranged distribution profile of the orientation of 
maximum shear hardly showed any recognizable improvement, in spite of the improved numerical 
precision for the individual stress components, because of the strong local effects of the stress waves. 
 
Insights obtained from the present study are expected to provide implications to a number of related 
research subjects, since numerical methods of the same category are widely in use to deal with the cases of 
2-D in-plane, 3-D and non-planar crack problems. 
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