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SUMMARY 
 
The accurate behaviour assessment of complete structural systems is essential in developing Performance 
Based Engineering methodologies.  In this aspect, structural models based on beam-column elements are 
still a competitive option compared to solid-FEM models; mainly because of the practical data generation, 
results interpretation and the direct use of internal forces in design.  Nevertheless, BC-elements are 
developed under plane sections hypothesis and under null or simple imposed shear deformation along 
cross sections allowing for reasonable non-linear evaluation of normal internal forces (axial force and 
biaxial bending moment) but not for tangential internal forces (biaxial shear and torsion) whose influence 
on the behaviour of structural systems with irregular distribution of stiffnesses, masses or resistances has 
proved to be determinant. 
 
A NL-fibrewise sectional model for concrete structures capable of simulating the total interaction between 
all six beam internal forces and deformations with arbitrary shaped cross section and longitudinal 
reinforcement and stirrups arrangement has been developed.  Crack concrete is simulated as a 3D 
orthotropic material which in combination with steel reinforcements yields, in general, a full constitutive 
matrix coupling all stress and strain components.  The model enables an explicit expression of the 
sectional stiffness matrix considering the interaction of the complete set of internal sectional forces on a 
cracked section. 
 
A reinforced concrete cross section is analysed for increasing levels of combined bending and shear loads.  
Noticeable dependencies on the concomitant load are shown on the overall performance of both moment-
curvature and shearing force-deformation diagrams. 
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INTRODUCTION 
 
Accurate understanding of non-linear behaviour of complete structural systems under a broad range of 
loading, including ultimate loads and different levels of service loads, is an essential issue in the 
development of Performance Based Engineering (PBE) methodologies.  This holds not only for the case of 
Performance Based Earthquake Engineering, but also for every design philosophy where the designer 
should assure a certain structural behaviour and damage states for several limit states. 
 
In spite of the great advance that structural analysis using solid and 2D finite elements has experienced, 
structural models based on frame elements are, still today, the type of numerical model more employed in 
engineering practice, for both linear and non-linear analysis of complete structural systems, see Marí [1] 
and Marí [2].  Now a day, this is mainly because of the more practical and direct generation of data and 
interpretation of the analysis results rather than to computational limitations.  Although this last aspect 
continues being important.  
 
Nevertheless, traditional frame elements are only capable to represent appropriately, at non-linear level, 
the structural behaviour under axial stresses.  This is due to the absence of a theory that allows 
incorporating the influence of shear stresses in this type of elements with similar success as the Navier-
Bernoulli plane section hypothesis does for axial forces and bending moments.  Shear forces and torsion 
moments effects are then considered, in general, in a very simplified and decoupled fashion. 
 
The behaviour of many structures can be considered dominated by axial stresses; being, in such cases a 
traditional frame model acceptable.  But very often, frame structures are submitted to a combination of 
forces in which both axial and shear stresses are of similar importance, thus the performance – in terms of 
stiffness, yield load and ultimate load - evaluated from a decoupled frame model shall differ from the real 
behaviour.  Structures presenting this behaviour are not so infrequent.  Usually they are characterized by 
an irregular stiffness configuration, Calvi and Pinto [3]; this is the case of most viaducts.  Also, curve and 
skew bridges may exhibit this strong interaction since torsion and flexure effects are cinematically 
coupled. 
 
In this paper, the non-linear coupled behaviour of reinforced concrete (RC) sections is studied by means 
of a previously developed numerical model, Bairan [4] which takes into consideration the 3D state of 
stresses on each concrete fibre, internal equilibrium and compatibility in the cross section’s domain and 
material anisotropy induced by generated cracks in concrete.  In the development of the sectional model, 
sufficient generality has been considered in order to allow any arbitrary shape of the cross section as well 
as different materials and reinforcement arrangements. 
 
Two main peculiarities exhibit this model compared to others coupled models, for instance Petrangeli et al 
[5].  First, it allows the full three dimensional interaction of axial force, skew shear forces, skew bending 
and torsion moments regardless of the shape of the cross section.  Second, an explicit sectional stiffness 
matrix can be written showing the terms that actually couples all internal forces on the section.  In the case 
of a cracked section, this matrix has shown to be full. 
 
A beam specimen tested under shear forces by Kani [6] has been analysed modelling only one cross 
section in order to show the validity of the model.  Further, moment-curvature and shear-deformation 
curves of the same cross section are obtained under increasing simultaneous shear forces and bending 
moments respectively.  Results show that when the simultaneous actions are strong enough, influence is 
exhibited on these characteristic curves, not only in terms of ultimate and yield loads, but also in terms of 
their overall shape and pre-yield stiffness. 
 



DESCRIPTION OF THE SECTIONAL MODEL 
 
A numerical sectional model, developed by Bairan [4], for the analysis of cracked concrete cross sections 
under general 3D coupled axial and shear forces will be briefly described here.  The cross section is 
considered as a 2D domain submitted to the traditional sectional deformations, i.e. axial elongation, skew 
shear deformation, skew bending curvatures and a twisting curvature.  From this domain and imposed 
deformation, a 3D stress and strains field is to be obtained. 
 
In order to be able to reproduce a three-dimensional strain field, the sectional displacements are expressed 
as a combination of the traditional Navier-Bernoulli plane section hypothesis (ups), allowing a kinematical 
relation between the axial strain parallel to the directrix of the bar, and a warp (uw) considered a three 
dimensional vector field with three components, so changes in the section’s shape are considered allowing 
elongation on the transversal reinforcements, and lateral deformation on concrete.  Warp vector field is 
discretized on nodal values (dF) along the cross section and then interpolated by means of an interpolation 
matrix (NF), see equation (2). 
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In addition, the warp field is considered a function of the axial elongation of the bar’s axis, twist 
curvature, the two bending curvatures and their corresponding derivatives respect to direction of the bar’s 
axis; each of those quantities define the components of vector ξ*.  Further, the nodal values of the warp 
displacement are written as a multiplication of matrix A, as shown in the next equation, times vector ξ*. 
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Matrix A in equation (3) has dimensions of [n X 8 ], and relates each component of the cross section warp 
to the four quantities described above and their derivatives.  The expression for the complete three 
dimensional strain field can be written as shows equation (4).  Vector εs contains the components of 
deformation of the beam. NPS is the typical operator containing Navier-Bernoulli relationships for a plane 
section hypothesis.  Matrix BF contains derivatives of NF and is used as an interpolation matrix for strain 
components due to warp. 
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Provided a suitable three dimensional non-linear constitutive equation, expressed in a general fashion as 
in equation (5), matrix A is then evaluated as described in Bairan [4].  The procedure followed takes into 
account the three dimensional internal equilibrium equations at each material point and compatibility 
conditions in order to obtain a warp field that produces shear and in plane axial stresses that are 



compatible with the applied normal axial stresses and the shape of the cross section.  The resulting matrix 
A result dependent on the shape of the cross section and on the actual non-linear state on each material 
point. 
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In order to be consistent in energy and compatibility terms, shear deformations of the beam’s axis shall be 
obtained from the shear strain field over the cross section, which in turn has been computed from the warp 
field.  The shear deformation of the beam element evaluated this way assures a correct computation of the 
energy absorbed by shear and torsion effects a more accurate estimation of the frame’s deformation. 
 
Nevertheless, in general when a skew shear is applied to an arbitrary shaped cross section built from 
different materials, the resulting shear deformation does not have the same skew angle as the applied 
shear force at each increment of forces.  This represents a problem in a non-linear three dimensional 
analysis because two shear components are to be obtained from only one equation, i.e. the balance of 
energy equation.  In reference [4] this is discussed and a way to handle this situation is deduced. 
 
Finally, by equating the work performed by the stress field and the internal forces on the cross section, the 
following explicit expression for a total interaction stiffness matrix is obtained. 
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Where B* is an operator matrix for evaluating the full three dimensional strain vector from the sectional 
deformation vector.  B* depends on both matrixes NPS and A.  Matrix Ω stands for the consistent 
evaluation of beams shear deformation as commented above, and matrix Ξ condensates the derivatives of 
axial elongation and torsion curvature (ε’0 and φ’x) taking into account the actual distributed axial load 
and torsion moment. 
 
It can be seen that sectional stiffness matrix presented above is symmetric.  More over, it satisfies internal 
equilibrium and compatibility conditions over the cross section.  This matrix may be used on any shaped 
cross section, composed of different materials with different constitutive equations, even considering 
constitutive anisotropy 
 

CONSTITUTIVE EQUATIONS USED IN THIS STUDY 
 
For this study, a rotational smeared crack approach has been considered for plain concrete in order to take 
into account crack-induced anisotropy and its influence on shear resistance mechanism of reinforced 
concrete sections.  An orthotropic equivalent uniaxial model has been used for represent plain concrete.  
Stress and strain principal directions are considered coincident and a uniaxial stress-strain equation is 
stated for each thee directions.  In compression, each stress-strain curve maintains the same shape, 
however they are a function of maximum lateral strain according to the next equation from Vecchio and 
Collins [7].  Where εi is a principal compression strain, εmax is the maximum lateral strain and fc is the 
strength of the concrete.  Equation (7) was originally formulated for analysis in plane-stress state; however 



it has been applied for three dimensional analyses and has shown reasonable results, Vecchio and Selby 
[8]. 
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For concrete in tension, a linear elastic behaviour is considered previous cracking.  After tensile strength is 
reached, a non-linear softening curve is considered (Cervenka [9]) in order to take into account tension-
stiffening effects.  In this equation, k2 is a parameter specifying the shape of the softening branch, c is a 
strain parameter specifying the strain for null tensile stress on concrete.  For the present study, values 
k2=0.5 and c=0.004 has been considered. 
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Shear stiffness on the principal direction of concrete is specified in order to maintain the coincidence of 
the stress and strain principal directions for each load increment.  The following expression for the shear 
stiffness assures coaxiality of the numerical solution, Jirásek and Bazant [10], Bazant [11], Zhu et al [12]. 
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Constitutive matrix D is assembled on a coordinate system coincident with the principal directions.  After 
rotating this matrix to the original coordinate system is a full matrix results. 
 
In reinforcing steel, the usual elastoplastic uniaxial stress-strain relationship, with yield stress fy, is 
considered. 
 

NUMERICAL IMPLEMENTATION 
 
The numerical model has been implemented considering with the possibilities of some numerical facilities 
such as load and displacement control and line search, Crisfield [13].  Non-linear solution is reached by 
means of a Newton-Raphson algorithm that allows using a tangential or a secant stiffness matrix. 
 

NUMERICAL STUDY 
 
The critical cross section of a beam specimen tested under shear loads by Kani [6] was studied using the 
previously developed non-linear sectional model.  The dimensions of the cross section studied is shown 
on figure 1 and the experimental set-up is described in figure 2.  The concrete strength was 28.2 MPa, 
strain at peak compression stress was 0.0022 and the tensile strength was 1.75 MPa.  Longitudinal 
reinforcement was eight bars of 25 mm diameter and yield stress of 442 MPa.  Stirrups were of 10 mm 
diameter spaced at 100 mm and 400 MPa yield stress. 



 
 

Figure 1.  Cross section studied 
 
 
 

Figure 2.  Test set-up used by Kani [6]  
 
A comparison of the numerical solution of shear force versus sectional shear stress and the experimental 
results is presented in figure 3.  Good agreement between both curves is observed. 
 
 
 

 
Figure 3.  Sectional model compared to an experimental beam specimen under shear. 

 

 



 
The influence of the shear-bending interaction on the performance of force–deformation diagrams of the 
cross section is studied by calculating shear–deformation diagrams under different levels of constant 
bending moments, figure 4.  Under low level bending moment, shear force-displacement curves present 
little variation both on ultimate resistance and overall stiffness during the entire loading process.  Only a 
reduction on the shear force producing initial crack is appreciable.  When the concomitant moment 
increases, a significant reduce on both ultimate shear force and stiffness during the non-linear loading is 
observed. 
 

 

Figure 4.  Influence of concomitant moment on shearing force-deformation curves. 
 
The influence of concomitant shear forces on moment-curvature diagrams is also studied on the next 
figure.  It is seen that for increasing shearing forces, not only the ultimate bending moment is reduced but 
also overall shape of the curve changes resulting on lower flexure stiffness for the cross section. 
 

 

Figure 5.  Influence of concomitant shearing force on moment-curvature curves. 
 

CONCLUSIONS 
 
A non-linear model for the analysis of reinforced concrete cross sections under combined three 
dimensional loading has been developed.  The sectional model is general enough to allow a correct 
simulation of any shaped cross section built of different materials.  Particularly, non-linear behaviour, and 
crack induced anisotropy has been taken into consideration. 
 

 

 



An equivalent uniaxial model with rotating smeared cracks has been used as a constitutive model for 
concrete in this study.  The influence of shear-flexure combination on the performance of a particular 
cross section has been investigated. 
 
A shear test on a beam element having the same cross section has been simulated and good agreement 
with the experimental results have been found by analysing a single cross section under pure shear.  
Performance of both moment-curvature and shearing force-deformation on the cross section has shown to 
be very dependent on the concomitant action when these present for moderate to high value.  Interaction 
effects were neglectable for low concomitant actions. 
 
Influences of the axial-tangential forces interaction were present on both the ultimate and stiffness of the 
pre-yield branch predicted by the sectional model.  It is to be expected that effects of normal and 
tangential interaction influence the overall performance of structural elements under general loading and 
complete constructions, determining the ultimate load and non-linear redistribution capacity when strong 
combinations take place. 
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