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SUMMARY 
 

In this paper, for non-classically damped linear multiple degrees of freedom system with 
complex modes, the CCQC method for calculation of maximum seismic responses of 
structures based on response spectra is deduced following similar procedures as the well-
known CQC method, in which new modal displacement-velocity and velocity correlation 
coefficients are involved besides the modal displacement correlation coefficient in normal 
CQC formula. The new real value form formula of CCQC method not only is as concise as 
that of normal CQC method but also has explicit physical meaning. The results obtained from 
CCQC approach are discussed and verified in example through step by step integration 
computation under a prescribed earthquake motion input. From examplary analyses, it may 
be pointed that the CCQC algorithm normally gives conservative outcome and that the forced 
mode uncoupling approach has good approximation even the discussed examplary structures 
are strongly non-proportional. 

 
INTRODUCTION 

 
The response-spectrum mode superposition method is usually used to calculate dynamic responses of 
structures subjected to earthquake ground motion in seismic design code of many earthquake prone 
countries. For the classically damped linear system in which all the modes are real, the square root of the 
sum of squares (SRSS) method and complete quadratic combination (CQC) method of combining 
maximum modal responses (Kiureghian[1]) are widely used to determine the maximum seismic responses 
for structures. Generally speaking, SRSS method has good accuracy when the modal frequencies are well 
separated. However when the frequencies of major contributing modes are very close together as that 
normally emerged in three dimensional systems, this method will give poor results and a more accurate 
CQC method is proposed. For non-classically damped general linear system, motion equation under 
earthquake excitation can be solved by using decoupled method suggested by Foss [2], which was cited 
and improved by numerous writers (Harris[3], Igusa[4], Hurty[5]...). It is noted that in the case of non-
classically damped linear system, which has complex eigenvalues and eigenvectors, the seismic responses 
depend on not only modal displacement response but also modal velocity response. Following similar 
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procedures as deduction of CQC algorithm for classically damped linear system, a closed-up formula of 
response-spectrum complex mode superposition for calculation of maximum seismic effects at any 
position of a linear elastic structure with complex modal characteristics is deduced, in which a new modal 
velocity correlation coefficient, together with a new modal displacement-velocity correlation coefficient 
are involved besides the well-known modal displacement correlation coefficient in normal CQC 
algorithm. We call the new algorithm for calculation of maximum seismic effects of structures with non-
classical damping complex complete quadratic combination (CCQC) method. If the correlations among 
modal responses are ignored, the CCQC method is reduced to corresponding complex square root of the 
sum of squares (CSRSS) method for non-classically damped linear system. This new CCQC algorithm is 
as concise as real CQC and is very adequate to code application. The CCQC and CSRSS methods are 
examined and compared in some numerical examples including time history analysis. In examplary 
analyses, the forced uncoupling approach, which approximately handles non-classically damped system 
through neglecting all the off-diagonal elements in transformed damping matrix and is popularly adopted 
in seismic design codes in many countries, is also used to analyze and is modified by introducing exact 
modal periods and damping ratios. Limited examplary analysis results show that this approximate 
approach has good accuracy.  
 
COMPLEX MODE SUPERPOSITION METHOD OF STRUCTURAL SEISMIC RESPONSEES 

 
For a discrete system, having N degrees of freedom, the equations of motion under the earthquake motion 
input are expressed as: 

{ } ( )tyg&&&&& IMKyyCyM −=++                                                           (1) 

where M , C and K are the NN × mass, damping and stiffness matrices, ( )ty is 1×N nodal displacement 
vector which describes the dynamic response of the structure, N is an arbitrarily large integer, { }I  is unit 

vector, and ( )ty g&&  is arbitrary time history of ground acceleration.  

 
Eq. (1) can be rewritten into a group of linear differential equations of one order as follows: 
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Substituting Eq. (3) into Eq. (2), it is easy to find that Eq. (2) is coincided with Eq. (1).  
Suppose:  
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in which, [ ]Tnn
n

n φφµ ,=Φ is the generic eigenvector, nφ  and nµ are the complex mode and complex 
eigenvalue respectively. ( )tqn  is the generalized coordinate. Because matrix M , C and K are symmetric in 
general and so the eigenvalues and the eigenvectors obtained from the free vibration equation described 
by Eq. (2) normally occur in complex conjugate pairs, but for highly damped systems, an even number of 
them can be real (Inmam[6]). 
 

Substituting Eq. (4) into Eq. (2), and pre-multiplying by ( )TnΦ , following equation is obtained: 
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where nTn
nR ΦΦ= R)( ，

nTn
nS ΦΦ= S)(  

Suppose the n -th mode participation coefficient is: 
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then Eq. (5) can be rewritten as:  
( ) ( ) ( )tytqtq gnnnn &&& ηµ −=+                                                          (7) 

Suppose: 
nnn iψϕφ += , nnn iβαµ +−=                                                             (8) 

where 21, nnDnnnnn ζωωβωζα −===  are damping coefficient and damped frequency of the n -th mode 

respectively, the free vibration frequency nω and the corresponding critical damping ratio nζ can be 
deduced from the following formulas: 
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where nφ and nφ are a pair of conjugate complex modes. 

 
Substituting Eq. (8) into Eq. (6) and separating the the right part of Eq. (6) into real and imaginary parts, 
the following formula is available after some simplification 
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Substituting proceeding nη given by Eq. (10) into Eq. (7) and combining the terms consisted of a pair of 
conjugated complex modes, the displacement response superposition formulas in time domain induced 
by time history of ground acceleration, ( )ty g&& ,  is deduced as follows(Zhou[7]):  
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where, )(ty  is nodal displacement vector of the MDOF linear vibration system with non-classical 

damping, and { } { }IMIM Tn
n

Tn
nnnnnnnnnnn dcdacbwdbcap )(,)(,, ψϕ ==−=+= , in which na and nb are 

determined by Eqs. (11) and (12) respectively,  and )(tqn is the solution of following equation. 
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By using impulse response function, Eq. (15) also can be written as:  
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What can be seen from above deduction is that even for earthquake response of general damped system 
with non-classical damping matrix, it can be completely decoupled and regarded as sum of earthquake 
responses of the N independent single degree of freedom oscillators subjected to the same ground motion 
according to the complex mode superposition analysis method. But in this case each seismic response is 
composed of two parts of displacement and velocity response for each SDOF oscillator, which is the 
different place that distinguishes the non-classically damped systems with complex modes from 
proportionally damped system. The closed-form Eq. (13) provides practical method for accurately 
calculating time history responses of non-classically damped system based on complex mode 
superposition principle. 
 

CCQC METHOD FOR SEISMIC RESPONSES BASED ON RESPONSE SPECTRA 
 
In order to employ the general time history superposition formula for the non-classically damped system 
with complex modes to determine the maximum response of structure, we have to deal with the random 
combination problem just like the classical mode superposition method for classically damped system. 
For the non-classically damped system with complex modes, the seismic modal response not only 
depends upon the displacement response of the separated oscillator but also relates to the corresponding 
velocity response that makes the mode superposition method more difficult than that of classical one. 
However the superposition method of earthquake response for non-classically damped system with 
complex modes is able to be deduced according to following steps.  
 
The deviation or mean square response of ( )ty descried by Eq. (13) becomes： 
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Now let us calculate covariance ( ) ( ) >< tqtq mn of the two separated modal response )(tqn and )(tqm . 
Considering the expression given by Eq. (16) and noticing that the impulse response function is 
deterministic, hence we have:  
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where the symbol < > represents operation of calculation of average. In consideration of these relations 
and excitation )(tyg

&& commencing at t=0, the low limit of the above integral can be extended to native 
infinity, i.e. we have 
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Assuming ground motion excitation, )(tyg
&& , involved in Eq. (14) is stationary white noise with zero mean 

value, hence we have )(2)()( 0 sSsyy gmgn −>=< τδπτ &&&& , where 0S  is severity of the ground motion )(tyg
&& , 

)( s−τδ is Dirac delta function which gives 0 when s≠τ and ( ) 1=−∫
∞

∞−
ττδ ds . 

 
Using Fourier inverse transform formula of the Dirac delta function )(τδ and completing integration 
to s and τ and only retaining steady state terms when s and τ infinitively increase, the correlation 
coefficient of modes m and n becomes 
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Let s=τ in Eq. (20), we get the stationary state covariance of modes m and n : 
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And the covariance of displacement response produced by modes m and n can be obtained by using 
contour integration method or following the deduction procedures proposed by Elishakaff [8] based on 
partial fraction expression: 

DD
nm

mnmnmn

mn
DD
nm

S
diHiHSI ρ

ζζωωωω
πωωω 1

2
)()( 0

0 =−= ∫
∞

∞−
                                        (23) 

where                   
222222

2/3

)(4)1(4)1(

)(8

rrrr

rr

mnmn

mnmnDD
nm ζζζζ

ζζζζ
ρ

++++−
+

=     ( mnr ωω /= )                                    (24) 

 
Meanwhile the covariance of velocity response, VV

nmI , and the covariance of velocity-displacement 

response, VD
nmI , produced by modes m and n can be deduced respectively by the same method as that of 

displacement response: 
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It can be seen from Eqs. (24), (26) and (28) that three modal correlation coefficients, DD

nmρ , VV
nmρ and VD

nmρ , 
are fractional formals with common denominator. If the ratio 0.1=r in Eqs. (24), (26) and (28), that 

means, mn ωω = , the self-correlation function of velocity and displacement response, VD
nnI , is equal to 0, 

meanwhile the self-correlation functions of displacement response, DD
nnI , and velocity response, VV

nnI , can 
be deduced as follows:  
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From Eqs. (29) and (30), the following relation is obtained: 
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It should be noted that the displacement correlation coefficient for different two modes m and n ,
DD
nmρ , is 



 

 

reported in references and even is used in seismic design code and regulation, but for that 
of VV

nmρ and VD
nmρ , they are newly deduced in this study.  

 
Substituting Eqs. (23), (25) and (27) into Eq. (17) and taking into account relations shown by Eq. (31)，
we further get: 
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If we assume as usual that the maximum response max
)(ty is proportional to the root of the mean square 

response, the following closed-form formula of complex mode response spectrum superposition for 
calculation of maximum response of the non-classically damped system, i.e. the complex complete 
quadratic combination (CCQC) formula is deduced:  
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where nmλ  and nmγ  are ratios of DD
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Fig. 1 describes the relations of nmλ  and mn ωω /  when damping ratio mn ζζ /  is equal to 0.2, 0.25, 0.75, 
1.0, 4/3, 2.0 and 5.0, meanwhile the changes of nmγ when 05.0=mζ are shown in Fig. 2. 
 

       

Fig. 1. The relations of nmλ  and mn ωω /        Fig. 2. The relations of nmγ and mn ωω /  

If assuming 0== VV
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DD
nm ρρ  when mn ≠ , complex squared root of the sum of squares (CSRSS) formula 

will be reduced  
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FORCED UNCOUPLING APPROACH OF NON-CLASSILLY DAMPED SYSTEM 

 
Now using Y , the mode shape matrix of corresponding non-damping or proportional damping system 
described by Eq. (1) to transform it to normal coordinates by pre-and post-multiplying by Y leads to 
following modal coordinate equations of motion: 
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where *M and *K are the diagonal modal coordinate mass and stiffness matrices and ( )tP is the standard 
modal coordinate load vector. However, the modal coordinate damping matrix 
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is not diagonal but includes non-zero modal coupling coefficients *
ijc  )( ji ≠  because the damping 

matrix C is non-proportional, that is  
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The so called forced uncoupling approach may be attained by ignoring all the off-diagonal coupling 
coefficients of the modal damping matrix *C , let *

dC replace *C , i.e. 
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nnnnn MK=ω is the n -th frequency, and then to solve the 

resulting uncoupled equation as a normal mode superposition analysis (Clough[9]). Now back 
transforming *

dC to original displacement coordinates, a new equivalent matrix C′ which usually is a full 
matrix is formed. The forced uncoupling method actually is using C′ to replace C . This approach, being 
as an empirical characteristic, has been widely used in seismic design codes for its simplicity. Thus it is 
utilized to calculate the approximate seismic responses of non-classically damped linear system in 
following example.  

 
THE COMPATIBILITY OF MODE SUPERPOSITION METHOD OF SEISMIC RESPONSE FOR 
NON-CLASSICALLY AND CLASSICALLY DAMPED SYSTEMS 

 
The mode superposition method of seismic response described in preceding paragraph not only adapts to 
calculate seismic response for classically damped system but also is compatible to classically damped 
system. In fact the classically damped system can be regarded as a particular case where the real part of the 
eigenvector equals to zero, that means 0=ϕ in Eq. (8). In this case all the forms corresponding to real parts 

in Eq. (9) are vanished, and then we have  
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These formulas are known expressions of vibration characteristics for classically damped system，and 
nψ  is nothing but mode shape of the corresponding un-damped system.  

 
It can be seen that in this particular case 
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In consideration of the relations shown by Eqs. (38) and (39), and 0=ϕ  in this case, Eq. (13) is 
simplified as: 
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This right is the well-known mode superposition formula of calculating seismic response for classically 
damped system and it has been widely used in seismic design codes.   
 

 



 

 

COMPARISON AND ANALYSIS OF EXAMPLE 
 
Numerical example has been conducted in order to examine the results getting from the proposed 
complex mode superposition analysis for non-classically damped systems and compare with that from 
step by step integration technology. All the computations in the listed example are carried out in platform 
of MATLAB. 
 
The example is taken from appendix A of reference(Hanson[10]) ,which is a planar five-storey shear-type 
structure with constant mass and stiffness coefficients for each storey: 4.386/900=m (kips-sec. squared 
per in), 1000=k (kip per in). Suppose the mass and stiffness matrices are denoted 
by M and K respectively and the damping matrix C complies following Rayleigh rule, i.e. KMC βα += , 
where 1757.0=α (1/sec.), 00173.0=β (sec), then the first two damping ratio will be 02.0 and 02.0 . 

 
Now transform it to a non-proportionally damped system by equipping a supplemental damper on the first 
inter-storey, which results in abrupt changes both in the stiffness and damping. The corresponding 
changes to K and C matrices are such that: 

( ) ( ) ( ) ( )1,10.311,1,1,105.11,1 CCKK =′=′ . 
It is worth pointing out that serial number of masses in this example is from bottom to top of the example 
building, differs from the original example in reference. In this paper, the EW component of the El-
Centro earthquake acceleration recorded on May 18, 1940 earthquake in California, which contains 
energy over a broad range of frequencies, is used as a ground motion input. The acceleration and 
displacement response spectrum for different damping ratios which are calculated by Eq. (9) are 
illustrated in Fig. 3 and Fig. 4 respectively, in which corresponding natural periods are labeled by symbol 

‘*’ at response spectral curves. It should be noted that the spectral acceleration shown in Fig. 3 is pseudo-

acceleration, which can not be replaced by absolute acceleration in case of large damping ratio, i.e. 
calculated by equation SDSA ×= 2ω , SD represents spectral displacement. 
 

                  

 Fig. 3. Acceleration response spectra                Fig. 4. Displacement response spectra 
of complex mode responses                               of complex mode response 

                                 
Via complex mode analysis procedure, the modal properties of the damper-added structure are obtained, 
as given in columns 2 and 4 in Table 1. It can be seen that there is a particularly high damping ratio for 
the third mode. Columns 3 and 5 of Table 1 show modal properties of the damper-added structure if 
forced uncoupling approach is used. These results illustrate that the errors of damping ratio coming from 
the simplifying calculation of non-proportional damping are significant in this case, particularly in the 
second mode and the third mode, in which the damping ratios are either greatly overestimated or 
underestimated respectively although their natural periods are approximate. Because forced uncoupling 
approach is used popularly in seismic design codes or regulations in many countries, we will give the 
corresponding results calculated from this simplified method in the example and modify it. Furthermore, 



 

 

Fig. 5 shows the former four mode shapes including their real and imaginary parts for this example, in 
which the corresponding non-damping or proportionally damped modes are indicated by dotted lines 
which seem to be comparable to imaginary parts of modes of the non-proportionally damped system. 
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Fig. 5. The former four mode shapes. (the left is imaginary part of modes including 
proportionally damped modes indicated by dotted lines, the right is real part of modes) 

Table 1. Modal properties of the non-proportional damping structure 

 

 
 
 

 

 

 
To compare and analyze methods introduced in this paper, the following cases are considered. 
Case A: Using complex mode superposition method to analyze seismic response of non-proportionally 
damping structure.  
Case B: Using forced uncoupling method to analyze seismic response of non-proportionally damping 
structure. 
Case C: Using modified forced uncoupling method to analyze seismic response of non-proportionally 
damping structure, that is, modal periods and damping ratios are determined by complex mode theory, 
whereas the mode shapes are determined from the un-damped structure as in Case B. 
 
Table 2 presents the results obtained from Case A. The columns 2 and 3 of Table 2 are the results by 
using the complex mode superposition formulas Eq. (13) in time domain, and the direct numerical 
integration has been employed to characterize the dynamic behavior of the non-proportionally damped 
structural system accurately. The peak values of the storey displacements calculated from Newmark direct 
numerical integration are shown in columns 4 of Table 2. Obviously, the both computation results from 
complex mode superposition method and direct integration by Newmark beta algorithm are well 
coincided.  
 
Furthermore, based on the response spectra shown in Fig. 4, the maximum storey displacements obtained 
according to CCQC formula (33) are listed in column 5 of Table 2. The calculation results obtained from 
CSRSS method are shown in columns 6 and 7 in Table 2. As an intuitionistic comparison, Fig. 6 shows 
the process of complex mode superposition, in which the bottom curve represents superposition result of 
all the upper mode responses at the same time coordinate and uses symbol ‘o’ to denote the maximum 
displacement of the first floor calculated by CCQC method, ‘+’ to present the maximum displacement of 
the first-floor calculated by CSRSS method. It can be seen Fig. 6 that composite peak value do not locate 
at the time points at which the first-mode response absolute maximum value occurs in this example even 
though the first mode plays the most important part.  
 

Modal Periods (sec.) Modal Damping Ratios (%) 
Mode 

Number Exact Forced Uncoupling 
 Method 

Exact Forced Uncoupling  
Method 

1 
2 
3 
4 
5 

1.0021 
0.3088 
0.2479 
0.1977 
0.1612 

1.0481 
0.3599 
0.2292 
0.1793 
0.1578 

10.78 
9.41 
89.56 
5.61 
4.16 

12.45 
28.90 
34.21 
25.89 
11.19 



 

 

It can be seen from above analysis that the results of CCQC and CSRSS methods, which are based 
complex mode theory, are all close to exact value for this relatively structure because effect of the first-
mode is significant and the mode frequencies are separated, but the results of CCOC method are more 
accurate.    

 

 

Fig. 6. Calculation process of the first-floor displacement using complex mode superposition 
method. (‘.’---peak value at individual mode response time history, ‘*’---the maximum 
displacement of the first-floor obtained from complex mode response time history superposition 
method, ‘o’---the maximum displacement of the first-floor calculated by CCQC method, ‘+’--- the 
maximum displacement of the first-floor calculated by CSRSS method) 
 

Table 2. Maximum storey displacement obtained from Case A  (cm) 

Using Formula (13) 
Using Formula (33) 

(CCQC Method) 
Using Formula (34) 
( CSRSS Method) Storey 

Total-mode 
Incorporated 

First- 
mode 

Newmark-
β  Total-mode  

Incorporated 
Total-mode  

Incorporated 
First-
mode 

5 
4 
3 
2 
1 

11.044 
10.167 
8.4863 
5.9063 
2.7081 

11.276 
10.249 
8.2859 
5.6139 
2.8129 

11.0439 
10.1670 
8.4863 
5.9062 
2.7081 

11.2497 
10.2232 
8.3078 
5.6978 
2.7499 

11.269 
10.227 
8.2871 
5.6582 
2.9011 

11.257 
10.226 
8.267 
5.592 
2.6379 

 
If forced uncoupling method, Case B, is adopted, the corresponding results calculated from this 
assumption will be changed and the results based on this simplified method are listed in Table 3, which 
includes the results of using mode response time history superposition method, CQC method and SRSS 
method. It can be figured out that the results coming from different approaches are close to the exact 
value even though many assumptions have been introduced. Fig. 7 gives the process of the corresponding 
mode superposition. It can be seen from Fig. 6 and Fig. 7 that the contributions of the second-mode and 
the third-mode are different.  
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The columns 5, 6 and 7 in Table 3 also give the results obtained from Case C, the modified forced 
uncoupling method , in which exact modal periods and damping ratios are adopted in forced uncoupling 
method. It can be seen the results are more conservative than that of Case B.  

Table 3. Maximum storey displacement obtained from Case B and Case C  (cm) 

Forced uncoupling method (Case B) 
Modified Forced uncoupling  

method (Case C) 
Storey MRTHS 

Method 
CQC  

Method 
SRSS  

Method 
MRTHS 
 Method 

CQC  
Method 

SRSS 
 Method 

5 
4 
3 
2 
1 

9.6624 
8.8347 
7.3101 
5.2301 
2.6306 

9.6076 
8.8226 
7.3212 
5.2159 
2.6334 

9.6573 
8.8402 
7.2975 
5.1576 
2.5731 

10.2591 
9.4560 
7.9322 
5.7844 
3.0075 

10.3754 
9.4775 
7.8189 
5.5563 
2.8020 

10.3696 
9.4931 
7.8359 
5.5368 
2.7614 

*MRTHS--- Mode Response Time History Superposition 

 
 

 
Fig. 7. Calculation process for the first-floor displacement of proportional damping assumed 
using mode superposition method. (‘.’---peak value at individual mode response time history, ‘*’---
the maximum displacement of the first-floor obtained from mode response time history 
superposition method, ‘o’---the maximum displacement of the first-floor calculated by CQC 
method, ‘+’--- the maximum displacement of the first-floor calculated by SRSS method) 
 
Comparisons between Case A and Case B for the first-floor displacement are pictured in Fig. 8; 
meanwhile Fig. 9 shows the displacement time history curves of Case A and Case C. It can be seen that 
the time history curve obtained from modified forced uncoupling method is close to exact values.  
Comparison of the errors between exact values and different approximate results for the first storey 
displacement are given in Table 4. 
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From this example, it can be seen that the complex mode superposition method for seismic response 
based on response spectrum, which has been suggested in this paper, possesses fairly good precision. 
Introducing the response spectrum, this method can be used to analyze complex structures added 
dampers. Furthermore, there is no obvious error involved in various simplified methods because the 
contribution of the first- mode is significant in modal combination process in this example. 
 

    
Fig. 8. First-floor displacement comparisons: complex mode superposition method, 
Case A and forced uncoupling method, Case B 

 
             Fig. 9. First-floor displacement comparisons: complex mode superposition method, 

Case A and modified forced uncoupling method, Case C 

Table 4. Errors of first inter-storey displacements in different analysis methods (%) 

Case A Case B Case C 
CCQC 
Method 

CSRSS  
Method 

MRTHS 
Method 

CQC 
Method 

SRSS 
Method 

MRTHS 
Method 

CQC 
Method 

SRSS 
Method 

1.54 7.13 2.86 2.76 4.99 11.06 3.47 1.97 

* MRTHS=Mode Response Time History Superposition  

 

CONCLUSIONS AND CONCLUDING REMARKS 

According to theoretical analysis and numerical examination in this paper, some important conclusions 
are obtained as follows: 
   
1) A closed-form formula for calculation of seismic response of general damped linear vibration system 
with complex eigenvalues and eigenvectors in time domain has been deduced. It is an accurate solution in 
form of real values without imaginary terms appeared and is as compact and concise as that of 
proportionally damped system. Compared with step by step integration analysis, the proposed complex 
mode superposition algorithm is more effective and requires less computing time consumption.  
 
2) Based on the proposed real form complex mode superposition formula for calculating seismic response 
of non-proportionally damped system in time domain, a new response spectrum complex complete 
quadratic combination (CCQC) algorithm is deduced. It is similar to normal CQC method for 
proportionally damped system, and the new modal velocity correlation coefficient, together with new 
displacement-velocity correlation coefficient have been involved. The proposed CCQC algorithm does 
not require any additional assumptions except what have been involved in normal CQC method. Hence it 



 

 

is expected that the accuracy of CCQC algorithm is the same as normal CQC. In addition, the CCQC 
algorithm is nearly as concise as normal CQC method, thus can be grasped easily by engineers. If the 
correlations of displacement as well as velocity are neglected in CCQC algorithm, it can be automatically 
reduced to more compact form of CSRSS method which can be used to calculate maximum responses of 
non-proportional damped system with complex eigenvalues when the natural frequencies are separated far 
apart from each other. However, unlike the proposed complex mode superposition method in time 
domain, both CCQC and CSRSS methods are approximate computation formulas which come into 
existence only in probabilistic meaning under certain premises and inevitably comprise errors. The 
numerical example given in this paper show that CCQC are better than CSRSS, and normally gave 
conservative results. 
 
3) It is interesting to point out that the results, calculated by forced uncoupling approach via neglecting all 
the off-diagonal elements in damping matrix in modal coordinate system, are fairly good in this example 
with strong non-proportional damping. The main reason is that the frequencies and contributions coming 
from various modes are turned to different levels, then keep away from such kind of unfavorable situation 
and thus get relatively good results in this example. It seems to illustrate that the forced uncoupling 
method proposed by many seismic codes is adoptive for relatively simple structures. Furthermore, the 
modified forced uncoupling method also gives good result. In order to improve accurate level for all the 
compared methods, doing further research seems to be necessary.     
 
At the end of this paper it should be noted that the example discussed in this paper is relatively simple and 
only the storey displacements are analyzed and compared. For more complex structures, there are many 
generalized displacements and internal forces which would become important parameters. These 
parameters should be concerned in evaluating seismic safety and reliability. Further studies need to be 
done to analyze the accuracy and its sensibility to these generalized displacements and forces of complex 
structures subjected to earthquake excitation. Furthermore, the accuracy of all the response spectrum 
mode superposition algorithms including CQC, SRSS, CCQC and CSRSS depends on the types of input 
motion. This paper only considers EW component of El-Centro acceleration records being as excitation, 
so it should be careful when the conclusions getting from this paper are popularized into other types of 
input motion. In addition further theoretical study and examlpary analyses companying with different 
kind of input ground motion are valuable to check and verify the accuracy of the mentioned approximate 
analysis approaches in this paper. 
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