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SUMMARY 
 
A cyclic yield-line plastic hinge model is developed to estimate the rotation capacity of fully-restrained 
steel moment connections designed for moment-frame structures in the US under seismic load conditions. 
The geometry of the beam after local buckling occurs in the plastic hinge is modeled using the yield-line 
approach. A simplified force-displacement relation for the plastic hinge is proposed based on large 
deformations and plastic moment at the yield lines using the principle of virtual work. 
 
Two limit states are considered using the cyclic yield-line plastic hinge model. First, post-peak connection 
strength degradation due to local and lateral-torsional buckling is used to establish a connection rotation 
limit similar to the limit used in FEMA-350. Second, low-cycle fatigue crack initiation model based on a 
cumulative local strain concept at the critical yield line is used to predict crack initiation at the creases of 
the local buckles in the plastic hinge and, thus, limit plastic hinge rotation. A comparison of connection 
rotation capacities recorded in recent SAC Joint Venture tests is presented to validate the proposed cyclic 
yield-line plastic hinge model. 
 
The proposed cyclic yield-line plastic hinge model is a calibrated analytical model for estimating 
connection rotation capacity. This model is intended for use by designers to develop new connections 
before the required proof-tests. 
 

INTRODUCTION 
 
Steel moment connections in the US after the 1994 Northridge earthquake have been investigated because 
of their unexpectedly poor performance. These investigations (FEMA-350 [1]) produce design 
recommendations for new steel frame structures. At the core of these design recommendations is 
requirement that fully-restrained moment connections have total rotation capacity exceeding 4% radian 
without loosing more than 20% of their maximum resistance. To demonstrate this, a pre-qualification test 
requirement was imposed. Each new connection type is required to pass a series pre-qualification test 
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conducted using a prescribed procedure. Such pre-qualification test approach was adopted by SAC and 
codified in FEMA-350 and AISC documents because rotation capacity of steel moment connections could 
not be reliably predicted using conventional analytical models, such as finite element or fracture 
mechanics models. Even though this approach is safe, it is expensive, and it hampers development of new 
connection designs.  
 
Failure of pre-qualified steel moment connections after only a few cycles of high-amplitude deformation 
was observed in pre-qualification tests. Such ductile failure occurred after significant buckling of the 
beam in the plastic hinge region. It manifested itself through gradual propagation of cracks in the creases 
of the beam buckled shape. Such low-cycle fatigue failure occurs primarily because significant amounts of 
plastic deformation are accumulated during each cycle. While low-cycle fatigue resistance is not an 
explicit requirement of the connection pre-qualification test procedure, resistance to this failure mode is 
important for seismic structural design because steel structures may have to endure a number of 
significant earthquakes, each having a few cycles of large deformation demand, which may pose a 
cumulative connection fracture risk.  
 
In this paper, a simple yield-line plastic hinge model is proposed to model local buckling of a beam in a 
moment connection in order to estimate the seismic rotation capacity of typical US steel moment 
connections. This approximate method, which uses a plastic collapse mechanism approach, is based on 
interpretation of experimental evidence on the shape of the buckled plastic hinge region. Both ultimate 
strength degradation and low-cycle fatigue caused by plastic strain accumulation at critical points in the 
plastic hinge region are considered. This method fills the gap between finite element numerical models 
and pre-qualification testing and improves our ability to design new steel moment connection capable of 
passing the current pre-qualification requirements. 
 

LITERATURE REVIEW 
 
Local buckling 
Local buckling is expected to occur in the plastic hinge region of the beam in pre-qualified WUF-W, 
Reduced Beam Section (RBS), Free Flange and Cover Plate moment connections prescribed in the 
FEMA-350 design guidelines. Several different methods exist to investigate local buckling: 

• Empirical methods: these methods are based on statistical analysis of test data. They have the 
realism of data, but they also suffer from the large scatter of test result.  

• Classical theoretical methods: these methods are based on integrating the moment-curvature 
relationship for a plastic hinge and can be used to determine the rotation capacity corresponding 
to maximum moment without buckling. They are conservative, given that local buckling causes 
strength degradation which they can not capture.  

• Finite element methods: these numerical methods can be used to model local buckling and the 
resulting strength degradation, but are time consuming and complex.  

• Approximate method: these methods are based on modeling the empirically observed plastic 
collapse mechanisms formed by local buckling. They may offer a desirable mix of accuracy and 
easy of use for practical design. 

 
Gioncu and Petcu [2], Anastasiadis, Gioncu and Mazzolani [3] and Möller [4] introduced the yield-line 
concept to model the buckled shapes observed in experiments. They constructed yield-line models and 
used this plastic mechanism to determine rotation capacity of European H-section beams. They showed 
that the yield-line model produces strength degradation rates and rotation capacities in good agreement 
with both monotonic and cyclic test results. 
 



Low-cycle fatigue 
Low-cycle fatigue limit state, observed during pre-qualification tests of moment connections as ductile 
tearing of the metal in the creases of the beam plastic hinges after a few large-amplitude cycles, is 
indirectly accounted for in the pre-qualification test requirements. On the other hand, low-cycle fatigue 
resistance has been extensively studied in bridge structures [5]. Manson-Coffin’s rule is usually used to 
interpret the data obtained from component constant- and variable-amplitude cyclic tests. Ballio and 
Castiglioni [6], Bernuzzi, Calado and Castiglioni [7] suggested a low-cycle fatigue approach for design of 
steel structural connections. They used the linear damage accumulation Miner’s rule together with the rain 
flow cycle counting method to assess damage under variable-amplitude loading. 
 
It has been observed that plastic behavior of steel under cyclic loading is nonlinear and history dependent. 
Furthermore, the stress-strain response of steel changes significantly with cyclic straining into the plastic 
range. Thus, fatigue life in the plastic range may be more accurately described as a function of the cyclic 
strain amplitude than the cyclic stress amplitude. Low-cycle fatigue test data for a family of different 
constant strain amplitude tests are usually displayed using a logarithmic plot of strain amplitude versus the 
number of cycles to failure at that amplitude. Either plastic strain amplitude or total strain amplitude may 
be used. These plots will typically show an approximately linear relation between the number of cycles to 
failure and strain amplitude in the log-log space (Fig. 1). Using a log-log linear approximation, expected 
fatigue life may be computed from an S-N curve suggested by Manson and Coffin as follows: 

 mNS K=  (1) 

where N is the number of cycles to failure, S is a constant total or plastic strain amplitude, and K and m are 
material properties obtained from tests. Experiments show that m has a value of approximately 2 for 
plastic strain amplitudes and approximately 3 for total strain amplitudes. 
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Fig. 1. S-N curve: Strain amplitude versus number of cycles to failure [8]. 

 
Variable amplitude loading, which occurs during earthquakes, produces strain cycles of variable 
amplitude. A cycle counting method, such as the rain-flow method, may be used to count the number of 
cycles in each strain range. The number of cycles to failure may, then, be determined using the Manson-
Coffin relation that gives the numbers of cycles to failure under constant strain range. Adopting Miner’s 
rule that accumulates damage induced by cycles of constant strain amplitude linearly, a damage index D, 
can be expressed as follows: 
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where ni is the number of cycles at any given amplitude level Si, Ni is the number of cycles to failure under 
a constant amplitude Si, and ntot is total number of variable amplitude strain cycles. More generally, 
equivalent amplitude and number of strain cycles can be computed using a damage index, total number of 
cycles and magnitudes of variable amplitudes by substituting the definition of equivalent number of cycles 
and Miner’s rule into Manson-Coffin relation [7]: 
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METHODOLOGY: YIELD-LINE PLASTIC HINGE MODEL 
 
Local buckling of the flange and/or the web of compact steel W-shapes occurs after substantial yielding. 
In steel moment frames, such yielding is assumed to occur only in the plastic hinge region of the beams. 
Note, however, that the method presented herein is quite general and may be applied to other local 
buckling problems. Deformation capacity of the beam plastic hinge will, therefore, depend on the rotation 
enabled by the local buckling mechanism that takes shape after buckling.  
 
Fig. 2 shows a flow chart for implementing the yield-line plastic hinge (YLPH) model for both monotonic 
and cyclic loading. A cross-section is “fiberized” (discretized into uni-axial fibers) first. Then, the 
expected buckled shape is defined. Under monotonic loading, only one buckled shape shown in Fig. 3 
corresponding to the flange in compression is used. This shape is derived based on experimental evidence. 
Under cyclic loading, a composite buckled shape comprising two buckled shapes shown in Fig. 4, one for 
the top and the other for the bottom flange is used.  In either case, the buckled shape is treated as an initial 
imperfection. Using the buckled shape geometry, the kinematics of the yield-line mechanism is derived to 
relate beam plastic hinge rotation increments to increments of yield-line rotation and flange and web axial 
shortening in the entire cross section of the plastic hinge. Assuming a fully plastic stress state at yield-
lines, a relation between external and internal forces acting on the yield-line plastic hinge fibers is derived 
using the principle of virtual work. The principle of virtual work (a weak form of equilibrium of the yield-
line moments and axial forces in the plastic hinge) is formulated to compute the effective stress 
distributions in the buckled region. In the part of the cross-section where buckling is not expected to 
occur, and the cross-section plane is expected to remain plane an elastic-perfectly-plastic constitutive 
relation for fibers is used to establish an elastic-perfectly-plastic stress distribution in the cross section. 
The complete stress distribution can be integrated across the entire cross-section area. The cross-section 
model is iterated on the buckled flange displacement until equilibrium between internal and external 
forces is achieved. Finally, the available rotation capacity can be computed using force or deformation 
limit state criteria.  The strength limit state defines critical strength degradation, either below the nominal 
plastic strength or below 80% of the maximum strength. The deformation limit state defines fracture 
initiation in a flange when ultimate tensile strain is attained at a critical point of a critical yield-line in the 
buckled region. These steps in implementing the yield-line plastic hinge model are further explained in the 
following sections of this paper. 



 

Fig. 2. Flow-chart for the YLPH model under monotonic loading. 

 
 
Local buckling initiation 
The length of the beam plastic region is set as the flange buckling wavelength, as shown in Fig. 3. To 
compute the flange buckling wave length, Lay’s equation for plate buckling wave length was used. 
Assuming the flange fully yields before inelastic local buckling and considering rotational restraint 
provided the web against flange local buckling Lay [9] computed the half wavelength of the flange buckle, 
Lf, corresponding to the minimum critical buckling stress as follows: 
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where bf is flange width, tf is flange thickness, tw is web thickness, db is beam depth, and h=db-2tf, 
respectively. For a beam under moment gradient, a full wavelength of the beam flange local buckle was 
taken as the length the plastic hinge region. 
 
A beam plastic hinge cross section just prior to local buckling of the compression flange can be expected 
to develop stress values larger than the yield stress in the flange and in a portion of the web. Thus, 
computing the nominal moment resistance of the beam cross section underestimates the resistance of the 
beam in the connection. To compute the moment resistance of a plastic hinge, an expression for the 
probable peak plastic hinge moment at a plastic hinge (FEMA 350 Ch 3 equation (3-1) [1]) was used: 

 pr pr y e yM C R Z F=  (5) 

where Mpr is probable peak plastic hinge moment, Cpr is a factor to account for the peak connection 
strength using equation (3-1) in FEMA-350, Ry is a coefficient to account for yield stress over-strength 
obtained from the AISC Seismic Provisions, Ze is the effective plastic modulus of the section at the 
location of the plastic hinge, and Fy is the specified minimum yield stress of the material of the yielding 
element. This expression was used to compute the critical stress (a modified yield stress) for the elastic-
perfectly plastic constitutive relation of the plastic hinge forming at the yield-lines. 
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Fig. 3. Monotonic YLPH model deformation. 

 
Geometry and kinematics 
Geometry of the yield-line plastic hinge model is shown in Fig. 3. Geometric assumptions and constraints 
are as follows: 1) Flange and web buckling wavelengths, Lf and Lw, remain unchanged during plastic 
rotation; 2) The center of rotation point of the plastic hinge mechanism, defined by yo, does not move 
while rotation increases; 3) The flange remains perpendicular to the web during plastic hinge rotation; 4) 
The unbuckled boundary sections remain plane at either side of the plastic hinge; and 5) Boundary 
condition at the joint between the flange and the web is a simple support. 
 
Let ∆L be a yield-line mechanism displacement with respect to the un-deformed state and ∆θ be a yield-
line mechanism rotation corresponding to beam plastic hinge rotation, as shown in Fig. 3. From geometry, 
the following stands: 
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where ∆Lf is a flange displacement, ∆Lw a displacement at location ym where maximum web buckling 
amplitude occurs, while yo defines the location of the center of rotation of the plastic hinge mechanism. 
 
Flange buckling wavelength Lf can be computed using Equation (4). Then, web buckling wavelength can 
be computed from geometry using similar triangles. Under the assumption that flange and web buckling 
wavelengths, Lf and Lw, are unchanged, and using Pythagoras’ Theorem, each flange and web buckling 
amplitude can be expressed in terms of its yield-line mechanism displacement as:  
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Assuming that the flange and the web twist to keep the flange perpendicular to web, the following relation 
between flange buckling amplitude and web buckling amplitude holds: 
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Location where maximum web buckling amplitude occurs, defined by ym, is obtained by inserting 
Equations (6) and (7) into Equation (8) regardless of the magnitude of plastic hinge rotation increment ∆θ. 
This completes the kinematics of the YLPH model: all deformation quantities in the model can now be 
computed given a value of the beam plastic hinge rotation. 
 
Flange and web yield-line mechanisms within a plastic hinge include plastic zone, where axial shortening 
occurs, and yield lines where plastic rotation occurs. Assume that beam cross-section deformations before 
buckling are small enough to be neglected, except for axial deformation along the beam axis. Axial 
deformations of the flange and the web yield-line mechanisms after buckling are shown in Fig. 3. 
Consider an axial deformation of a fiber strip in yield-line mechanisms. Such axial deformation may be 
decomposed into shortening in the plastic zone and rigid body motion caused by yield-line rotations. With 
the assumption that flange and web buckling wavelengths are unchanged, the increment of flange and web 
buckling amplitude can be related to the increment of axial displacement ∆L and yield-line rotations ∆θi

YL 
as follows: 
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where U is the buckling amplitude of a fiber and φf, φw1, and φw2 are the angles of the inclined yield lines 
with respect to the cross section on which axial deformation is being applied, as shown in Fig. 3. 
 
Under cyclic loading, two buckling shapes must be considered. If the flange that buckled in compression 
straightens completely, such that there is no residual buckling shape, when it goes into tension, as shown 
in Fig. 3, a relation between a yield-line mechanism displacement ∆L and rotation ∆θ under loading and 
reverse loading can be obtained using equation (6) as if the loading was monotonic. If, on the other hand, 
the flange that buckled does not straighten completely when in tension, a residual buckled shape, shown 
in Fig. 4, must be considered. In this case, the relation between ∆L and ∆θ can be obtained by a 
superposition of two opposite monotonic buckling shapes, one for each side of the beam, as: 

 t bL L L∆ = ∆ + ∆  (10) 

 t bθ θ θ∆ = ∆ + ∆  



 

Fig. 4. Cyclic YLPH model with a residual buckling shape. 

 
Principle of virtual work 
Consider a fiber strip with unit width and a yield-line mechanism shown in Fig. 5. Assuming an elastic-
perfectly plastic moment-curvature relation for a yield line cross-section, the plastic bending moment per 
unit length of the yield line is mp = fyt

2/4. This plastic moment is assumed to act on the entire length of all 
yield lines in this yield-line mechanism. The axial force working on the axial shortening of the fiber strip 
works externally. Internal work is assumed to be done by the bending moments working on yield-line 
rotations and by the axial force working on axial shortening of the plastic zones between the yield lines. 
Since axial deformation is composed of shortening and rigid body rotation, the principle of virtual work 
can be expressed as: 
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where N is an externally applied axial force over unit width of the fiber strip. Then, the axial force is 
obtained by inserting Equation (9) into Equation (11) as follows: 
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where A1 and A2 are components of matrix [A] in equation (9). 
 

 

Fig. 5. Principle of virtual work on a fiber strip. 
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Equation (11) is always true, and applies to both loading and re-loading of the flange in compression, 
before and after buckling. Before local buckling occurs (i.e. when the axial force N is less than critical), 
virtual work equation can, also, be used, but the rotation component of internal virtual work must be 
discarded. Buckling occurs when the external axial force reaches a critical value. After local buckling 
occurs, large out-of-plane deformation corresponding to the buckling amplitude results in additional 
internal virtual work along the yield-line plastic hinges. Therefore, the magnitude of the externally applied 
axial force N must decrease after buckling (after it reaches the critical buckling value) simply due to the P-
δ effect at the fiber strip level. Under cyclic loading, external axial force N under such cyclic deformation 
is assumed to follow an elastic unloading and reloading path from and toward a yield surface, 
respectively. 
  
Cross-section forces and stress distribution 
Axial forces at each fiber in a cross section must be in equilibrium with externally applied moment and 
axial force in the plastic hinge. Axial forces in each cross-section fiber, which can be easily converted to 
effective stresses, are computed using either the fiber strip model describe above in the buckled region of 
the cross section, or the elastic-plastic stress-strain relation for the stable (un-buckled) portion of the cross 
section. A possible fiber force distribution in a plastic hinge section after buckling is shown in Fig. 6. In 
the buckled portion of section, a weak form of equilibrium of the yield-line plastic hinge was formulated 
to compute effective fiber force distribution (YLPH in Fig. 6). Assuming that plane sections remains plane 
at the boundaries of the yield line plastic hinge mechanism (Bernouilli’s assumption), a simple 
constitutive relation for elastic-perfectly-plastic material was applied to compute the force distribution in 
the stable portion of section (FCS). Given a candidate force distribution it can be integrated to produce 
cross-section moment and axial force. These values depend on the location where web buckling initiates, 
defined by a distance ym in Fig. 3. Iteration on ym is conducted to enforce cross-section moment and axial 
force equilibrium.  
 
Note that as the rotation of the plastic hinge grows, buckling amplitudes in the flange and the web grow 
according to the kinematics to satisfy geometric compatibility, internal work on the yield lines increases, 
resulting in a reduction of the average compression force in the compressed part of the cross section. This, 
in turn, causes a reduction in tensile force, a shift of the neutral axis, a reduction in the moment arm, and a 
drop in plastic hinge moment resistance. 
 

 

Fig. 6. Force distribution in a plastic hinge cross section. 
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Ultimate strain criterion 
Available rotation capacity of a beam-column connection has been defined as the rotation when the 
strength of the connection falls below the nominal plastic strength of the beam or when it drops bellow 
80% of the highest achieved moment resistance (FEMA-350 [1]). Cross-section equilibrium iteration, 
described above, can be used to establish this rotation capacity.  
 
However, tension fracture of a flange can also be used as a criterion to determine rotation capacity. For 
example, cracks may form along yield lines of the buckled flanges if the monotonic tensile strain capacity 
εu for the material is attained during plastic hinge deformation. Note that yield line rotation may induce 
tension at the convex surface of the buckled flange despite the overall compression of the buckled region. 
Fracture strains on the yield line surface may be related to fracture rotation and resistance of the plastic 
hinge using the yield line plastic mechanism as follows. 
 
Let the length of a plastic hinge along the yield lines lph be equal to plate thickness, as shown in Fig. 7. 
Assume curvature is uniformly distribution over lph and that the center-line of the flange plate does not 
deform. This assumption is consistent with the decomposition of fiber strip deformation into axial 
shortening of the plastic zones and rotation of the yield lines. Then, a relation between yield-line rotation 
and strain at the critical surface of the yield line can be expressed as [10]: 
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Such plastic deformation of the yield line, with a yield-line plastic hinge length equal to flange thickness 
is assume to occur only when yield-lines form, i.e. when the fiber strip buckles, and the externally applied 
axial force N is critical. Setting the critical strain equal to the ultimate tension strain capacity implies a 
corresponding critical plastic hinge rotation. Then, using kinematics, this yield line rotation can be related 
to the overall plastic hinge rotation to give the plastic hinge rotation capacity.  
 

 

Fig. 7. Fracture on a critical yield line of plate.  
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SEISMIC ROTATION CAPACITY EXAMPLE 
 
An exterior connection half-span sub-assembly was modeled to investigate connection stability. ASTM 
A572 Grade 50 W14×257 column and W30×99 beam are taken as the base model for this paper [11]. 
Normalized slenderness of the base model computed using Equation (14) and (15) is equal to one. When 
normalized slenderness is larger than 1.0, the cross section element is slender beyond what is permitted by 
AISC Seismic Provisions 2002 [12]. Normalized flange slenderness λf and normalized web slenderness λw 
are: 
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A bilinear material model with strain hardening was used with the following properties: yield stress of 
50ksi, ultimate stress of 65ksi, elastic modulus of 29000ksi, and hardening modulus of 600ksi. In this 
parametric study, the beam-column connection was assumed to be the WUF-W FEMA-350 connection. 
 
The model of the exterior connection sub-assembly comprised of a rotational spring, a yield-line plastic 
hinge, and a fiber cross section cantilever, as shown in Fig. 8. The rotational spring represents the elastic 
bending behavior of the column. A yield-line plastic hinge model determines the moment and rotation of 
the buckled portion of the beam. Deformation of the stable portion of the beam is, finally, calculated using 
a curvature distribution corresponding to a linear moment distribution over the cantilever span. The 
curvature of the cantilever sections was computed using a fiber cross-section model in FEDEAS [13]. This 
was done because some of the sections may be partially yielded, but not buckled. Beam tip displacement 
∆CL is obtained, after applying the virtual force principle, as: 

 CL col col
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F M M dl M dl

Spring YLPH FCS

δ δ θ δ κ δ κ⋅ ∆ = ⋅ + ⋅ + ⋅∫ ∫14243
1442443 1442443

 (16) 

The story drift angle was defined as the ratio of the tip displacement with respect to the un-deformed 
centerline of beam divided by the beam length measured from the column centerline to beam mid-span.  
 
The model was loaded under drift control. The drift angle cyclic load history, shown in Fig. 8, followed 
the FEMA/SAC loading protocol defined in FEMA-350 Table 3-14. The cycles are symmetric with 
respect to peak drift.  
 
Strength degradation limit state 
The yield-line plastic hinge model was used to determine the load-deformation hysteretic behavior of the 
sub-assembly. The computed model response, in terms of normalized plastic hinge moment versus story 
drift, is shown in Fig. 9.  
 
The limit states specified in FEMA-350 in terms of connection rotation drift angles are investigated next. 
A drift angle corresponding to the onset of local flange buckling of the beam is close to the 0.02 radian 
limit drift angle capacity for the Immediate Occupancy limit state. Connection resistance fell below 80% 
of its peak strength (approximately equal to the beam nominal strength in this example) at a drift angle of 
0.03. This suggests that the rotation capacity of this connection based on the strength drop criterion is less 
than 0.04 radian drift value for the Collapse Prevention limit state in FEMA-350 and less than the 
minimum requirement of connection pre-qualification. Such result is a consequence of the conservative 



assumptions adopted to formulate the YLPH model: beam moment resistance obtained using the YLPH is 
smaller than the actual strength, resulting in a more rapid strength degradation rate obtained from the 
model. Thus, a modified strength degradation rule, allowing a more severe strength drop, should be used 
with this yield-line plastic hinge model in order to obtain results consistent with FEMA-350.  

 

Fig. 8. Definition of model rotation and the FEMA/SAC loading protocol. 

 

Fig. 9. Moment versus drift angle hysteretic response of the YLPH model under cyclic loading. 

 
Low-cycle fatigue limit state 
In keeping with the spirit of deformation-based design, FEMA-350 Collapse Prevention limit state may be 
related to initiation of flange fracture in the plastic hinge model using a low-cycle fatigue limit state. 
Several steps must be taken to evaluate the low-cycle fatigue limit state under the variable-amplitude 
FEMA/SAC loading protocol. 
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First, the tensile strain capacity at the critical point on a yield line of the buckled flange was assumed to be 
0.2, which corresponds to the ultimate steel strain achieved in monotonic axial tension tests. This strain 
limit was used in the YLPH model to determine the corresponding number of cycles to failure under a 
constant-amplitude drift angle loading history. These analyses showed that the constant-amplitude drift 
angle loading history results in an incrementally increasing yield-line strain amplitude sequence because 
of the inability of the buckled flange to straighten and the resulting cumulative buckling deformation.  
 
A Manson-Coffin relation between the drift angle amplitude and the number of half-cycles to failure 
(fatigue life) was developed by conducting a series of analyses at different constant amplitude levels, 
shown in Fig. 10. Both total and plastic drift angle fatigue plot are in good agreement with Manson-Coffin 
relations for total and plastic strain. Linear least square fitting of the YLPH model results produced 
material property values of m = 2.52 for the total drift angle and m = 2.12 for the plastic drift angle. These 
values are, also, in good agreement with values obtained by analyzing the available experimental data 
[14]. 
 
Fig. 10 also shows a log-log plot comparing the constant-amplitude plastic drift loading with the 
FEMA/SAC variable plastic drift loading in terms of the equivalent number of cycles to failure. Critical 
yield-line strain histories computed using the YLPH model were used to compute the equivalent number 
of drift cycles to failure in each case. A rain-flow cycle counting method was used first to compute the 
number of strain cycles at the crucial yield-line. Then, using the S-N line slope m = 2.12 computed for 
plastic drift, Miner’s rule was applied to get and equivalent Manson-Coffin relation, assuming that a 
damage index D = 1.0 when fracture occurs, i.e. when the tensile strain on the critical yield-line attains the 
value of ultimate tension strain. Finally, this Manson-Coffin relation was used to compute the equivalent 
number of constant amplitude cycles for the FEMA/SAC drift load history. The point shown in Fig. 10 
corresponds to the FEMA/SAC load history applied until completion of the 0.04 radian total drift (or 0.03 
radian plastic drift) cycles. This point lies on the S-N line defined by the constant-amplitude load data, 
showing excellent agreement. This, in turn, means that FEMA-350 collapse prevention limit state of 0.04 
radian and pre-qualification test rotation acceptance criteria may have a foundation in the low-cycle 
fatigue limit state defined at the material level. This result also shows that the YLPH model can be 
successfully used to predict low-cycle fatigue failure in steel moment connections. 

 

Fig. 10. Low cycle fatigue plot for drift angle and plastic strain amplitude. 
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CONCLUSIONS 
 
A yield-line plastic hinge model was proposed to study local buckling behavior of US steel beam-column 
connections under monotonic and cyclic loading. Rotation capacity of a beam-column connection was 
determined with respect to strength degradation and to fracture limit states 
 
Yield-line model approach is not commonly used to analyze steel beam-column connections. Finite 
element method or fracture mechanics approaches dominated the research practice in the last decade. 
However, the yield-line plastic hinge model approach has a distinct advantage over other approaches 
when post-buckling moment-rotation response of a beam-column connection is examined. Even though 
the yield-line approach does not yield a mechanically completely consistent solution, it offers a 
sufficiently accurate approximate solution. The failure criterion based on a critical yield line strain limit 
offers a very good estimate of plastic rotation capacity compared to a connection test results obtained 
during the SAC Steel Project. 
 
A number of issues are still open. The authors are working to:  

1. Improve and calibrate the model by comparing connection rotation capacities predicted by the 
proposed yield-line plastic hinge model to connection tests results and to finite element studies.  

2. Use the yield-line plastics hinge model on different connections, such as RBS and Free Flange 
connections, and investigate how the model behaves under variation of beam section parameters, 
such as section size, and flange and web slenderness.  

3. Implement the yield-line plastic hinge model in user-friendly software such that designers can use 
it to prototype new connections before proof-testing.  
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