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SUMMARY 

The Newton Raphson iteration procedure that uses these moment curvature hysteretic relationship to 
solve the displacement equation is unable to recognise a change in yield zone length after yielding 
because it does not result into a change of slope. Also it is unable to recognise yielding that starts 
within the span. Thus it is important to determine the location and length of the yield zone for realistic 
application of the spread plasticity model. 
 
A method to determine, more accurately, the length, and location of yield zones is presented together 
with an Example showing the effect of determining more accurately the lengths and locations of yield 
zones on the structural deformations. The example among other points demonstrates that by 
recognising the location of yield zones in the span before they extend to the support, a 77% 
improvement in the accuracy of the moment rotation curve for the joint under sagging moment is 
achieved. Also a 25% improvement in the load deflection curve is achieved. 
 
 

INTRODUCTION 
Hysteretic relationship, show the variation of a load and a given deformation during cyclic loading for 
a given member, joint or structure. Typical load deformation relationships include; the force–
displacement, moment-rotation, and moment–curvature and shear force versus shear deformation 
relationships. 
 
Hysteretic loops drawn from experimental data provide information on mechanical properties, load 
deformation paths for analysis and correct detailing of members and connections for resisting cyclic 
loading. Also the area enclosed by loops measures the energy dissipation capacity of a structure, 
which plays a dominant role in reducing its vibration. Popov [1]. 
 
Based on the observed hysteretic response of members to cyclic loading during experiments, rules 
have been formulated to model the dynamic response. However most of these experiments are for the 
simplified beam column frames without slabs and those with slabs lack gravity loads of the magnitude 
expected in normal building structures. Whereas it is recognised that one of the limitation of the 
discrete time history analysis models is the use of a set of predefined phenomenological rules or 
hysteretic relationships to confine and define the complex behaviour of a member during a complex 
loading such as that imparted by earthquake. Saadeghraziri, [2]. It is equally important to realise that 
the hysteretic rules based on experiments where the gravity load is not considered might not 
accurately represent real practical situations. 
 
The concentrated plasticity models which concentrate non-linear behaviour in springs at member ends 
use moment rotation hysteretic relationships. The existing spread plasticity models, which assume that 
yielding starts at beam-ends and when unloading the last yielded part is at beam-ends use moment 



curvature hysteretic relationships for the sections at the beam column interfaces. Thus a joint or a 
section controls or represents the hysteretic behaviour of a member. 
 
To explain the limitation of the moment curvature hysteretic relationship, consider the Newton 
Raphson iteration procedure illustrated in Figure 1. Since this relationship is defined by straight lines. 
The iteration is very simple. In the figure; 

RnRn ,M φ  = Moment and curvature at the beginning of the current time step. 

)1n(R)1n(R ,M ++ φ  = Moment and curvature at the end of the current time step. 

crcr ,M φ  = Cracking moment and curvature. 

yy ,M φ  = Yielding Moment and curvature  

M  and φ  refer to the moment and curvature respectively. 

oaK  is the slope of curve between the origin and the cracking point given by line OA. 

abK  is the slope of curve after cracking but before yielding given by line AB. 

bcK  is the slope curve after yielding given by line BC. 

oM∆  is the initial moments. 
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Figure 1 Modified Newton Raphson iteration using the moment curvature hysteretic 
relationship. 
 
Assuming that at the beginning of the current time step, (point W), the moment and curvature, are less 
than the yield moment and curvature, but greater than the cracking moment and curvature. If during 
the time step the external moment increases by an incremental moment EM∆ , the initial calculation of 

curvature increment 1φ∆  is given by; 
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Curvature increments are added to curvatures at the end of the previous step to obtain the current 
curvatures 1Rφ . 

1n1R φ∆φφ +=  (2) 

If the current curvatures are less than the yield curvature; ( y1R φφ ≤ ), the current internal moment is 

given by:  

1abRn1R KMM φ∆+=  (3) 

If the current curvatures are greater than the yield curvatures, y1R φφ > , the current internal moment is 

given by: 
( )y1Rbcy1R KMM φφ −+=  (4) 

The moment corresponding to a curvature of 1Rφ  is the one at D, D1R MM = . The incremental vector 

of internal resisting moments 1RM∆  is then determined by subtracting from the current internal 
resisting moments those at the end of the previous time step. 

Rn1R1R MMM −=∆   (5) 

Comparing the internal moments increments 1RM∆  to the external moments increments, EM∆ , it is 
determined whether a change of slope took place in the moment curvature hysteretic relationship. If 
the difference between the external and internal moment increments is less than a given tolerance, 
then it is assumed that there was no change in stiffness. 

.ToleranceMM 1RE <− ∆∆  (6) 

If ( ) .ToleranceMM 1RE >− ∆∆  then for the second iteration, the incremental curvature is given by; 

( )
bcK

MM oE
2

∆∆φ∆ −
=   (7) 

As long as the value of initial moment oM∆  is correct, the current incremental curvature 2φ∆  that is 

calculated from equation (7) is equal to the true value of incremental curvature φ∆ . The current 

curvatures 2Rφ  are given by adding the current incremental curvature to the converged value of 

curvature Rnφ  from the previous time step. 

2Rn2R φφφ ∆+=  (8) 

The current internal moment 2RM is determined from the hysteretic moment curvature relationship. It 
is given by; 

( )ybcy 2R2R KMM φφ −= +  (9) 

The incremental internal moment is given by: 

Rn2R2R MMM −=∆  (10) 

E2R MM ∆∆ = , as illustrated in Figure 1 and the iteration is complete, 2RM  becomes ( )1nRM + . 

 
It is therefore clear that an increase in yield zone length after yielding can not be recognised by the 
moment curvature relationship because there is no change of slope of the hysteretic curve. On the 
other hand, any change in the slope of moment curvature hysteretic relationship from elastic to 
yielding or yielding to elastic will be accompanied by a change in the yield zone length.  
 
Also yielding in the span will not be recognised by the moment curvature hysteretic relationship for 
the sections at the beam column interface before it extends to the beam-ends.  
Thus provided the yield zone length is calculated accurately, it is a better indicator of  changes in the 
spread plasticity model than the hysteretic moment curvature relationships. 
 
From the fore going, it is necessary to carry out an investigation into whether there has been a change 
in the plastic zone length or not irrespective of the results obtained from the hysteretic relationship. 



That is whether the difference between the incremental external moment EM∆ , and the corresponding 

internal moment increment RM∆  at the beam column interface sections are less or greater than the 
specified tolerance, the yield zones locations and length still need to be computed and their extension 
investigated. 
 
Determination of the location and length of yield zones; 
The accuracy of the spread plasticity model depends on the accurate determination of the location and 
length of yield zones. The existing spread plasticity models assumed that yield zones formed only at 
beam-ends and spread in wards from there. The yield zone length cZ  is given by; 

V
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Where; 

jM , yjM  = The applied moment and yield moment at end j. 

V  = Actual shear force calculated for the end whose yield zone is being calculated, Soleimani [3]. 
To improve on calculation of the yield zone length, Filippou [4] proposed that if both ends of the 
beam have yielded, the shear force V  is given by: 
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Where: 

iM  and jM  are total moments at beam column interfaces i and j. 

L  is the clear span length. 
The yield zone lengths are limited to a maximum value maxZ  given by: 

L25.0Z max =  Filippou [4], Soleimani [3]. 

 
The assumption that yield zones start spreading from beam ends is only true for hogging moments 
yield zones and for sagging moments yield zones of beams in lower storeys of the frame where the 
seismic load is greater than the gravity load. In upper and middle stories, sagging moments yield 
zones start forming within the span and spread towards either support. Even if yield zones form at 
beam-ends, for a beam carrying a gravity load w , equation (11) overestimates the actual yield zone 
length cZ  by a length cZ∆ . Kyakula [5] 

( )2

2
cZ

V

w
Z

i
c =∆  (13) 

The expression in equation (12) assumes that the shear forces at both the beam column interfaces are 
equal. This is true if only the earthquake load is acting on a structure with elastic rectangular beams 
having equal top and bottom reinforcement. The shear force for the section under action of hogging 
moments is the sum of the shear force due to gravity and earthquake load, while that for a section 
under action of sagging moments is the difference between that due to earthquake and gravity load. 
Therefore equation (12) overestimates the yield zone length due to hogging moments and under 
estimates the yield zone length due to sagging moments. Also limiting the maximum yield zone 
length to L25.0  makes it difficult to predict or explore the maximum deformation of the structure 
before collapse, unless it is assumed that once one of the beams reaches a yield zone length of L25.0  
the structure is presumed to have collapsed. 
 
A more accurate method for determination of yield zone length and location is proposed. In this 
method, the record of the distribution of the bending moment due to gravity load is kept by storing 
only the values of the gravity load acting on the beam, and the shear force and bending moment of 
one of the beam column interfaces. 
Only the total end moments of the member due to the earthquake load at the end of the previous time 
step needs to be stored. At the end of the current time step, this is updated by adding the incremental 



end moments to it. The total current moments due to the earthquake load and the gravity load is each 
computed separately at any chosen intervals along the length of the beam. For each of these intervals, 
the moment due to the gravity and total current moment due to the earthquake load are added. Also 
for each interval, the yield moment is subtracted from the total moment and a change in the sign of the 
difference indicates that the yield point has been exceeded. This gives an approximate location of the 
yield point, which is accurate to a fraction of the chosen interval. For each value of approximate yield 
point obtained, interpolation within the interval is carried out. This resulted in a very stable program 
demonstrated by the fact that changing the increment from 0.0001m to 0.76m for a 7.6m clear span 
gave a difference between the two results of 0.1%. 
 
For a yield zone within the span, the first point where the difference between the total moment and the 
sagging yield moment shows a change in sign, identifies one end of the yield zone, the second point 
identifies the other end. The difference in length of these points gives the length of the yield zone. For 
hogging yield zone, the point where the difference between the total moment and the hogging yield 
moment changes signs also identifies the end of the yield zone. The difference in length between this 
point and the end of the beam under hogging moments gives the length of the yield zone. 
When sagging moments at the beam end are equal to or greater than the yield moment, the length 
from the beam column interface to the point where the total sagging moment is equal to the yield 
sagging moment then gives the length of the yield zone.  
 
The expressions for the bending moments aM  and gM  due to the earthquake and gravity load at 

length y  along the beam are given by equation (14) and (15) respectively. 

( )
L

y
MMMM ajaiaia −−=  (14) 

gi
2

gig My
2

w
yVM −−=  (15) 

Where; 

aiM  is the moment due to earthquake load at end i. 

ajM  is the moment due to earthquake load at end j. 

giV  is the shear force due to gravity load at end i. 

giM  is the moment due to gravity load at end i. 

 is the clear span 
The total moment M  at length y  is given by equation (16): 

g
M

a
MM +=  (16) 

Thus starting at one end of the beam column interface and incrementing the points along the beam in 
any desired steps y∆ , the total moment along the beam at any desired interval is computed. Typical 
length increments considered varied from 0.0001m to 0.76m. 
 
Determination of yield points;  
Figure (2) represents the general case of the total bending moment due to gravity and seismic load. 
The yield point is defined as the point at which the total applied moment is exactly equal to the yield 
moment. From Figure (2): 

1y  is the length from the left hand side beam column interface to first sagging yield point. 

2y  is the length from the left hand side beam column interface to the second sagging yield point. 

3y is the length from the left hand side beam column interface to hogging moment yield point. 

At each of the chosen interval along the beam, sagging and hogging yield moments ybM  and ytM , 

are subtracted from the total applied moment M  to obtain the differential moments bM∆ and tM∆ .  



ybb MMM −=∆  & ytt MMM −=∆  (17) 

At the sagging yield points, 0.0M b =∆ , and at the hogging yield point, 0.0M t =∆ . These points are 

identified as follows; 
When 0.0y = ; At the left hands side beam column interface, 

bbo MM ∆∆ =  & tto MM ∆∆ =   (18) 

At any length y  of the beam other than 0.0y = , boM∆  is equal to the value of bM∆ at length 

( )yy ∆−  and toM∆  is equal to the value of tM∆ at length ( )yy ∆−  
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                                        Figure 2 Identification of yield points 

 
Also when 0.0y = , the maximum positive moment (sagging moment) maxM  and minimum moment, 

(maximum hogging moment) minM  are each set equal to the total moment M . 

At any point along the beam if the applied moment M is greater (more positive), than the most 
positive moment so far, the applied moment becomes the most positive moment or largest sagging 
moment and its location is denoted cy . Similarly at any point along the beam, if the applied moment 

M is less (more negative), than the most negative moment so far, the applied moment becomes the 
most negative moment or largest hogging moment and its location is denoted ny .  

yy,MM,MM cmaxmax ==⇒>  & yy,MMMM nminmin ==⇒<   (19) 

In this way the maximum sagging and hogging moments and their respective length from the left hand 
side beam column interface cy and ny  are determined, as the length is incremented along the beam.  

 
Determination of sagging yield points 
Determination of the sagging moment yield points is illustrated in Figure 2. If the total applied 
moment is less than the sagging yield moment; ( )ybMM < , then: 0.0M b <∆ , and 0.0M bo <∆ . On 

the other hand if the total applied moment is greater than the sagging yield moment; ( )ybMM > , then; 

0.0M b >∆ , and 0.0M bo >∆ . It is difficult for the length y  to exactly coincide with the length to the 

yield point, but if it does then 0.0M b =∆ . What normally happens is that at the first yield point when 

the applied moment M  at a length y  along the beam changes from being less to greater than the yield 



moment ybM , the length y  is just a fraction of the chosen interval y∆ , greater than the length to the 

first yield point. And at the second yield point, when the applied moment M  at a length y  along the 

beam changes from being greater to less than the yield moment ybM , the length y  is also just a 

fraction of the chosen interval y∆ , greater than the length to the second yield point. 
 
Therefore before yielding, the product ( )bob MM ∆∆  is greater than zero because both bM∆  and boM∆  

are negative. At the yield point it is equal to zero. At a point where y  is just a fraction of the chosen 

interval greater than the length to the yield point, it is less than zero because bM∆  is positive and 

boM∆  is negative. At other points between the first yield point and the second yield point, 

( )bob MM ∆∆  is greater than zero because both bM∆  and boM∆  are positive. At the second yield point, 

it is again zero. And at a point where y  is just a fraction of the chosen interval greater than the length 

to the second yield point, ( )bob MM ∆∆  is less than zero because bM∆  is negative and boM∆  is 

positive. Between the second yield point and the right hand support, it is positive. Therefore finding 
the sagging yield point involves tracing the point where the sign of the product ( )bob MM ∆∆  changes. 

 
If 12y  is the length to the sagging moment yield points calculated based on the chosen interval y∆ . 

If ( ) yy0.0MM 12bob =⇒≤∆∆  (20) 

It is the only points where ( ) 0.0MM bob ≤∆∆ . Where either, 0.0M b ≥∆ , and 0.0M bo <∆  for the first 

yield point or 0.0M b ≤∆ , and 0.0M bo >∆  for the second yield point. Therefore if ( ) 0.0MM bob ≤∆∆ , 

the locations of yield points have been identified. 
The error caused by the length increments y∆  not coinciding with the actual yield point are corrected 
for by interpolation as given in equation (21) and illustrated in Figure (3): 
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If the length to the yield point oy  corrected in equation (21) is less than the length cy to the point of 

the maximum sagging moment, then it is the first sagging yield point 1y . On the other hand if it is 

greater than cy  then it is the second sagging yield point 2y . 

If o1co yyyy =⇒<  & If o2co yyyy =⇒>  (22) 

From Figure 3, it is seen that the interpolation considerably reduces the error between the yield point 
calculated according to the chosen interval and the actual yield point. And if the chosen interval is 
small enough, the actual curve approximates a straight line and coincides with the assumed curve. 
 

                                               Actual yield point 
                      Assumed curve          Yield point after interpolation 
                                                                                    Calculated yield point  
                
                        
                 boM∆                        

                     
                                  Actual curve                                   bM∆  
                                                        y∆  
 
Figure 3: Interpolation within the interval at sagging yield point. 

 



Determination of the hogging moment yield point. 
If the total applied moment M  is sagging or less than the hogging yield moment, ytM  then; 

0.0M t >∆  and 0.0M to >∆ . If M  is exactly equal to the hogging yield moment ytM , then 

0.0M t =∆ . If M is greater than the hogging yield moment, then 0.0M t <∆  and 0.0M to <∆ . 

Therefore for any value of y  where the applied moment is not equal to the yield hogging moment, the 

product ( )tot M.M ∆∆  is positive. The product is zero at the yield point, and negative if the length y  is 

just a fraction of the chosen interval y∆ , greater than the actual location of negative yield point such 

that toM∆  is positive and tM∆  is negative. Denoting 3y  as the length to the hogging moment yield 

point calculated based on the chosen interval y∆ ; 

If ( ) yy0.0M.M 3tot =⇒≤∆∆   (23) 

The location of the yield point oy  is obtained by interpolation as given in equation (24). 
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Determination of the length of yield zones 
There are four possible cases of bending moment distribution for a beam under the combined action 
of seismic and gravity loading that can be defined in terms of the bending moment at the beam 
column interfaces. These are: 
(a) The moments at the left and right hand side beam column interfaces are hogging.  
(b) The moment at the left-hand side is sagging and that at the right hand side beam column interface 

is hogging. 
(c) The moment at the left-hand side is hogging and that at the right hand side beam column interface 

is sagging. 
(d) The moments at the left and right hand side beam column interface are both sagging. 
 
Cases (a), (b) and (c) have four possible scenarios, these are; 
(i) The yield zone is in the span only. 
(ii) The yield zone is in the span and one of the supports. 
(iii) The yield zone is at only one support. 
(iv) The yield zone is at both supports. 
 
Case(d) has two possible scenarios; these are 
 (i) The moment at one of the beam column interfaces is greater than the yield moment and at the 

other it is not. 
(ii) Neither of moments at the beam column interfaces is greater than the yield moment but the 

sagging moment in the span has reached the yield value. 
 
The formulae for calculating the coefficients of the spread plasticity flexibility matrix are determined 
in terms of the length 1X , 2X , 3X , nX  and cX  from the beam column interface with the more 

positive moments to the point of 1st, 2nd sagging yield points, hogging yield point, maximum hogging 
and sagging moments respectively. Therefore the lengths 1y , 2y , 3y , ny  and cy are converted into 

lengths 1X , 2X , 3X , nX  and cX  respectively. If the total sum of seismic forces on a beam is towards 

the right, the more positive moment is at the left-hand side beam column interface, and 11 yX = , 

22 yX = , 33 yX = , nn yX =  and cc yX = . On the other hand If the total sum of seismic forces on a 

beam is towards the left, the more positive moment is at the right-hand side beam column interface, 
and 21 yLX −= , 12 yLX −= , 33 yLX −= , nn yLX −=  and cc yLX −= . The yield zone length 



due to the sagging moment is found by subtracting 1X  from 2X , while that due to the hogging 

moment is found by subtracting 3X  from nX . 

 
EXAMPLE 
The single bay, single storey structural shown in Figure 4 was analysed. Time history analysis 
computer programs incorporating the existing and proposed spread plasticity models were separately 
subjected to a half cycle sine wave ground acceleration loading shown in Figure 5. Incremental and 
total floor displacements, velocities, joint rotations, moments and forces were recorded at each time 
step. 
 
The Structural Frame 
The structural frame shown in Figure 4 consists of columns of 4m lengths that are 0.4m square and 
fixed at the base and beams of 8m length that are 0.6m deep with effective flange width b = 2.1m but 
supporting a floor slab that is 4m wide. The depth of the slab / beam flange is 0.2m and width of the 
web is 0.3m.  The beam carries a gravity load of m/kN76.42  composed of the dead and imposed 
loads. The fundamental period of the structure is 0.801 seconds. 
 

                                                
                                                   m/kN76.42  
 P                              
            3                                                                                     4 
                    
             
                 
        4m        
                
                                                              
                                                                                          
            1                                                                                    2 
                                                             8m 
                                                     
           Figure 4 Sketch of Single bay Single Storey Frame 

 
The Ground Acceleration; 
A Simple half cycle sine wave ground acceleration A , used in this example is shown in Figure 5. It 
has a period T of 2 seconds. It is given by the expression: 
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K  is a variable that can take any reasonable value. 
 



Figure 5 Half cycle sinewave  Ground Acceleration
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The half cycle sine wave was considered with both large and smaller magnitudes of K . The aim was 
to highlight the merits of the proposed spread plasticity model that incorporates the method of 
calculating yield zone forming in the span before they reach the beam end over existing models that 
assumed that yield zones are only at beam-ends. Under the action of the small ground acceleration, 
yielding within the span may not advance to the supports and therefore can not be recognised by the 
existing models. The larger ground acceleration on the other hand serves to investigate the case where 
yielding has reached the support. The value of K  was 20.0 for the larger ground acceleration and 10.0 
for the small ground acceleration.  
Thus: 
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Also a sine wave with a smaller period of 0.8 seconds was applied to the structure. The major 
difference was in the shape of the output curves, but the difference between the results of the existing 
and proposed model were found to be of the same order. Kyakula [5] 
 
In this example, deformations resulting from analysis based on the proposed and existing spread 
plasticity models are compared. The existing model considers two different methods of determining 
yield zone lengths. Thus the models and the method of determining the yield zone length were 
combined as follows: 
(a) The proposed model incorporating the proposed method of determining the yield zone length  
(b) The existing model incorporating the existing method of determining the yield zone length 

derived by Filippou [4], to be referred to as existing method 1 
(c) The existing model incorporating the existing method of determining the yield zone length due to 

Soleimani [3], to be referred to as existing method 2 
(d) The elastic Analysis. 
 
Load Deflection Curves 



The load deflection curves for the existing and proposed model resulting from applying the larger 
ground acceleration are shown in Figure 6. Before yielding, all the four curves coincide. After the 
hogging moment at the support has reached yield, the curves for the existing and proposed spread 
plasticity model slightly diverge from the elastic curve at point V. Along length VW, the curves for 
the existing and proposed model almost coincide. This is because this divergence is due to yielding of 
the hogging moment at the right hand side support, which is recognised by both models. At point W, 
the sagging moment in the span has reached its yield value and the curve for the proposed model 
sharply diverges. On the other hand the curves of the existing spread plasticity model continue with 
the same slope until point (X). At point X, the sagging moment at the left-hand support has reached 
the yield value. The curves due to the existing spread plasticity model also diverge towards and 
parallel to that of the proposed model. It is seen that after the moments at both supports have reached 
their yield values, the existing model behaves like the proposed model.  
 
The percentage improvement IM%  in accuracy of the load deflection curve of the proposed model 
over that of the existing model is given by; 

( )
100% xIM

p

ep

δ

δδ −
=  

Where: 

pδ  = Deflection for the proposed spread plasticity model corresponding to a given load F 

eδ  = Deflection for the existing spread plasticity model corresponding to F 

At load of about 600kN, the proposed model improves the accuracy of the load deflection curve over 
that given by the existing models by about 25%. 
 

Figure 6:Load deflection curve 
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Moment rotation curves 
The moment rotation curves for joint 3 are shown in figure 7. Between point A and B, there is no 
yielding and all the curves coincide. At point B, the moment at joint 4 reaches yield. Because 
rotations are coupled, this is recognised at joint 3 and the curves of the proposed and existing spread 
plasticity model diverge from that of elastic analysis. At point C, the sagging moment within the span 
reaches the yield value. This is recognised by the proposed spread plasticity model. Its curve diverges 
away from those of the existing model. The curves of the existing model continue on without 



divergence up to point D. At point D the sagging moment at joint 3 also reaches yield, which is now 
recognised by the existing spread plasticity models. This causes the curves of the existing model to 
diverge.  
 
The percentage improvement in the moment rotation curve calculated by the proposed model over 
that calculated by existing models is given by; 
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Where 
IM%   = Percentage improvement corresponding to any chosen moment M  

pθ   = Rotation on the moment rotation curve for proposed model corresponding to 

the moment M  

eθ  = Rotation on the moment rotation curve for existing model corresponding to 

the moment M  

0=tθ  = rotation at time due to the gravity load, before application of any dynamic 

load 
In calculating the percentage improvement, it is necessary to consider the initial rotation  at the joint 
due to gravity load because it does not start from zero and the sign of rotation changes. For a moment 
value of about 300kNm, the percentage improvement increased is about 77%. 
 

Figure 7: Moment rotation curves for joint 3
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CONCLUSION 
It has been shown that the moment curvature hysteretic relationship for the section at the beam 
column interface can not represent the non-linear behaviour in the spread plasticity model. This is 
because the Newton Raphson iteration procedure for solving the force displacement equation depends 
on recognising the difference between the internal and external moment that occurs when the 
hysteretic relationship changes slope at yielding or “unyielding”. Therefore it can not recognise the 
increase in yield zone length that occurs after yielding as these will not result in change of slope and 



the internal moment will be equal to the external moment. For a given section, the yielding and 
“unyielding “ occur a maximum of 4 times steps in a cycle of loading yet there may be several time 
steps in a cycle when the member has yielded and the yield zone length is changing. In the rest of the 
time steps, it is the change in yield zones length that is the only basis for changing the stiffness of the 
member. Thus it is important that the yield zone length is determined accurately. Moreover the cases 
when yielding due to sagging moments starts in the span and during unloading, the span is the last 
yielded point of the beam. The moment curvature hysteretic relationship based at the beam column 
interface can not recognise such a case. It is therefore important that the location of yield zones be 
determined accurately. 
 
A simple yet accurate method for determining yield zone length formed anywhere in the beam has 
been presented. It depends on investigating the difference between the total applied moment (due to 
gravity and seismic load) and the yield moment at suitable intervals along the beam. Change of signs 
in this difference identifies the yield points. Then the error caused by the chosen interval is reduced to 
a minimum by simple interpolation. This method of determining yield zone length was incorporated 
in a spread plasticity model given in Kyakula [5, 6]. 
 
A simple example showing the effect of determining more accurately the lengths and locations of 
yield zones on the structural deformation has been presented. There was a maximum improvement in 
the load deflection and moment rotation curves of up to 25% and 77% respectively. For the moment 
rotation relationship, It was shown that the plastic rotation at a joint under the action of sagging 
moments started when the hogging moments at the other joint reached yield. This caused a slight 
divergence of the moment rotation curve. The curve then diverged sharply when the sagging moment 
in the span reached yield value although the moment at the joint was less than half the yield value. It 
can thus be concluded that the determination of length and location of yield zones is important to the 
accurate application of the spread plasticity model. 
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